• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification, development, and application of cross-species intron-spanning markers in lentil(Lens culinaris Medik.)

    2018-06-04 03:33:36DejyotiSenGuptJitendrKumrSunndGuptSonliDueyPriynkGuptNrendrPrtpSinghGurvSlokc
    The Crop Journal 2018年3期

    Dejyoti Sen Gupt*,Jitendr Kumr*,Sunnd GuptSonli DueyPriynk GuptNrendr Prtp Singh,Gurv Slokc

    aDivision of Crop Improvement,ICAR-Institute of Pulses Research,Kanpur 208024,UP,India

    bDivision of Plant Biotechnology,ICAR-Institute of Pulses Research,Kanpur 208024,UP,India

    cDepartment of Biodiversity and Molecular Ecology,Research and Innovation Centre,Fondazione Edmund Mach,Via E.Mach 1,38010 San Michele all'Adige,Trento,Italy

    1.Introduction

    Lentil(Lens culinaris Medik.)is one of the most important food legumes and is grown in many parts of the world including Canada,Australia,northwestern USA,Turkey,Syria,Nepal,India,and Bangladesh[1].The world annual production is nearly 5 Mt[1].Lentil originated in the Fertile Crescent and is reported to be one of the earliest domesticated food crops[2].Cultivation of lentil is affected by various biotic and abiotic stresses including foliar and root diseases,high temperature,drought,soil pH(<5.4),and water logging.Most lentil-producing countries use conventional breeding approaches in their active breeding programs for developing high-yielding lentil cultivars with better grain quality.However,in recent years,molecular markers are being widely used for accelerating precise breeding in several crops including major pulse crops such as chickpea and pigeonpea[3].Further,the advent of next-generation sequencing technologies has allowed the rapid genome sequencing of pulses such as chickpea(Cicer arietinum)[4]and pigeonpea(Cajanus cajan)[5,6].Availability of the genome sequences in these species has permitted the development of genome-anchored maps,visualization of single nucleotide polymorphism SNPs,and identifying species-specific SNPs.In the past,limited efforts have been made toward the development of molecular marker systems such as simple sequence repeats(SSRs)and SNPs for enriching genomic resources in lentil[7–12].The plant genomes have genes with larger intronsand spliced alignment of transcripts to the genome has revealed a large diversity in intron size.Despite being of diverse lengths,introns have been a major resource for molecular-marker development in several crop species[13–16]and have been recently leveraged to develop marker resources for legumes through the development of intron-spanning markers(ISMs),which are codominant or dominant,reproducible markers that show multi-allelic patterns[13–16].Development of these markers is gaining importance in species for which a reference genome sequence is available.In lack of the reference genome cross-species reference genome mapping can be used to identify the intron-spanning markers.Briefly,development of intron-spanning markers canbedone by performing a spliced alignment of the gene transcripts to the reference genome and developing polymerase chain reaction(PCR)primers that are anchored in conserved exons that span target introns.Previously,intron-spanning markers were developed in legumes using CSGM Designer[17],which provides algorithm-or alignment-based identification of intron spanning markers and these can be validated on a set of diverse genotypes.Similarly,in lentil,transcript sequence databases available in the public domain can be used for de novo assembly and identification and design of primers for the amplification of ISM regions.The objectives of this study were to(1)develop polymorphic ISMs in lentil using expressed sequence tag(EST)sequences,and(2)validate polymorphic ISM markers in a diverse panel of Lens genotypes including wild lentil species.

    2.Materials and methods

    2.1.Development of intron-spanning markers,primer design,and functional annotation

    A cross-species mapping-based approach was used for developing intron-spanning markers.In this approach,a well annotated and curated reference genome of Medicago truncatula was used because of its close phylogenetic positioning with L.culinaris.The L.culinaris putative unique transcripts(PUTs)from Plant GDB version 187[18]were mapped onto the M.truncatula genome.Prior to mapping,repeat masking of the genome was performed using Repeat Masker,available from http://www.repeatmasker.org/.The Rep Base libraries available from http://www.girinst.org/repbase/and the L.culinaris ESTs downloaded from Plant GDB version 187 were aligned to the genome using Gene Seqer[19],a spliced alignment tool available from http://brendelgroup.org/bioinformatics2go/GeneSeqer.php.Following alignment,intron-spanning coordinates were extracted and primers were designed for the respective coordinates using Primer3 version 1.1.4,available from http://primer3.sourceforge.net/releases.php[20].

    Following the identification of intron-spanning regions,primer pairs were designed using Primer3 with parameters defined as minimum amplicon size 100 bp and maximum amplicon size 300 bp,primer size 18–27 bp,primer Tm57–63 °C,primer GC content30%–70%,CG clamp0,maximum end stability 250,maximum Tmdifference2,maximum self-complementarity 6,maximum 3′end self-complementarity 3,maximum Ns accepted 0,and maximum poly-X5.The aligned PUTs to the Medicago genome have been annotated and then after annotation gene ontology has been defined based on the annotation.Functional annotation and gene ontology of the intron-spanning markers were performed using BLASTx searches(E-value,1 × 10?5) against GenBank (http://www.ncbi.nlm.nih.gov/),UniProt(http://www.uniprot.org/),and TAIR (https://www.arabidopsis.org/)databases.

    2.2.Plant materials and DNA extraction

    Thirty-two Lens genotypes were used for genotyping with 105 primers.A diverse panel of thirty-two Lens genotypes consisting of L.culinaris released cultivars,advanced breeding lines,parents of mapping populations,and genotypes of L.ervoides and L.culinaris subsp.orientalis was tested to identify polymorphic markers(Table 1).DNA samples were extracted from individual plant leaf tissue when seedlings were two weeks old using the cetyltrimethylammonium bromide(CTAB)procedure[21].The DNA concentrations of the extracted samples were recorded and were compared with after corresponding concentration with λDNA.The extracted DNA samples were diluted to a uniform concentration of 20 μg μL?1for PCR amplification.

    2.3.PCR amplification

    One hundred and five primer pairs(Table S1)were synthesized from Imperial Life Sciences(P)Limited,Gurugram,India and used in this study.PCR reactions(in 25-μL volumes)were conductedinaG-Strom(modelnumberGT-40319,UK)thermocycler.Each reaction contained 2.5 μL Taq buffer(Merck,Bangalore,India),1.5 μL MgCl2(25 mmol L?1)(Merck,Bangalore,India),0.20 mmol L?1of each dNTP(Merck,Bangalore India),0.50 mmol L?1of each primer[Imperial Life Sciences(P)Limited,Gurugram India],0.5 U of Taq polymerase(Merck,Bangalore,India),and 20 ng of template DNA.Primers amplifying Lens DNA were validated in a set of 32 diverse Lens genotypes using the following PCR conditions:94°C for 4 min,followed by 35 cycles of 94 °C for 1 min,58 °C for 1 min,and 72 °C for 1 min followed by a final elongation step of 72°C for 15 min.PCR products were resolved by 10%polyacrylamide vertical gel electrophoresis(Sigma-Aldrich,New Delhi,India)and visualized by silver staining.Fragments were scored visually after staining.

    2.4.Molecular data scoring and statistical analysis

    Polymorphism information content(PIC)values were calculated following Botstein et al.[22].The presence and absence of the band were scored as 1 and 0 and the binary data so obtained for all Lens genotypes for polymorphic markers were used to calculate a correlation matrix using Jaccard's similarity coefficient analysis[23].The similarity coefficient was used to construct a dendrogram based on the unweighted pair groupmethod with arithmetic average(UPGMA)using NTSYS pc-2.21q[24]software.The data were also subjected to principal coordinate analysis(PCA)using NTSYS.

    Table 1–Details of plant materials used.

    3.Results

    3.1.Development and validation of ISM markers in lentil

    A total of 1703 ISMs were developed in lentil using a cross-species mapping-based approach.For the identification of ISMs,16,279 EST sequences of L.culinaris from were mapped onto the M.truncatula genome(Table 2).RepBase libraries and L.culinaris ESTs were aligned which resulted in a total of 25,717 GeneSeqer alignments.These were further curated to identify 1703ISMs(TableS2).Among these,a set of 105 primer pairs were used for experimental validation,which resulted in successful amplification of 54 primer pairs(51%)on lentil genomic DNA.

    Table 2–Summary statistics from bioinformatic analysis and wet-lab validation.

    3.2.Application of ISMs in assessing genetic diversity in Lens species

    Fifty-four ISM primer pairs were tested for identification of polymorphic markers in a diverse panel of 32 Lens genotypes consisting of released cultivars,advanced breeding lines,parents of mapping populations(L.culinaris)and genotypes of L.ervoides and L.culinaris ssp.orientalis.Thus,a total of 40 ISMs were found polymorphic(Table 3,Fig.1),so that these ISMs showed high polymorphism(74%).The number of alleles ranged from 2 to 11 with an average of 3.7 alleles for each primer pair,while the PIC ranged between 0.10 and 0.50 with an average of 0.31.The sizes of alleles varied from 52 to 390 bp.

    In the present study,polymorphic ISMs were used to assess the genetic diversity among the 32 genotypes and to establish the genetic relationships among them.Ten accessions belonging to different Lens wild species amplified 667 alleles with an average of 17 alleles per marker,while 22 accessions belonging to cultivated species amplified 1404 alleles with an average of 35 alleles per marker.These results showed high allelic diversity among the lentil genotypes for ISMs,indicating that these markers can be used further in lentil breeding programs for several purposes.Cluster analysis based on genotyping data of 40 polymorphic ISMs clustered the 32 Lens genotypes into two groups(Fig.2).Group I contained 19 genotypes which belonged mostly to cultivated and wild species of lentil(L.culinaris subsp.culinaris,L.culinaris subsp.orientalis,and L.ervoides genotypes).Genotypes of L.ervoides were clustered within group I(Fig.2).Another 13 accessions were clustered in group II and belonged only to L.culinaris subsp.culinaris.The first three components of PCA accounted for 13%,9%,and 8%of total observed variation reflected as a measure of the polymorphism,respectively.In total,three PCA components accounted for 30% of total variation for the 32 genotypes.

    Table 3–Tm,allelesize,and polymorphism information content(PIC)of each polymorphic intron-spanning marker.

    Fig.1–PCR amplification profiles of 32 lentil genotypes for the primer PUT 11770_1.1,IG-72632;2,IG-136668;3,IG-136655;4,IG-72678;5,IG-136620;6,IG-136615;7,IG-72860;8,IG-72861;9,IG-72636;10,IG-116039;11,DPL-62;12,IPL-220;13,DPL-58;14,IPL-526;15,IPL-81;16,IPL-221;17,JL-01;18,ILL-7663;19,IPL-316;20,IPL-325;21,IPL-219;22,IG3973;23,IG3364;24,IG3575;25,IG3568;26,DPL15;27,IG2507;28.IG4258;29,FLIP2009-55L;30,IG3327;31,IG3330;32,IG3546.Lane M contains a molecular ladder.

    We also studied the functional annotation of ISMs.Protein databases available in the public domain were searched for the designed ISMs.Annotations of the entire set of 1703 ISMs showed sequence similarity with legumes encoding genes,as presented in Table S3 and summarized in Fig.S1.

    4.Discussion

    Various molecular markers have been developed in lentil[7–12,25].PCR-based markers such as SSRs have been the choice of plant breeders.Because the full genome sequence of lentil is not available in the public domain[11],development of polymorphic markers in lentil is slower than in other sequenced food legumes such as chickpea and pigeonpea.However,it is possible to develop intron-spanning markers(ISMs)by exploiting exon conservation to develop highly polymorphic,highly transferable,and codominant markers[26,27].Earlier,using a cross-species mapping based approach,91 ISMs markers were developed from pairs of highly similar genes of M.truncatula,a model legume,and Glycine max and validated on six different legume species including M.truncatula,Pisum sativum,Lotus japonicus,L.filicaulis,Vigna radiata,and Phaseolus vulgaris[28].In this study,genomic synteny between M.truncatula and Lens was used for developing ISMs in lentil.Because ISMs can contribute toward the development of informative markers by saturating the chromosomal region of interest[26,27].In our study,51%of markers could be amplified on Lens DNA.However,in grass species,intron-spanning markers showed high(79%–95%)amplification rates on bulk DNA samples made from six forage species(Lolium perenne,L.multiflorum,Festuca pratensis,F.arundinacea,Phleum pretense,and Dactylis glomerata)[29].ISMs developed in the present study showed high polymorphism,74%(40 of 54 ISMs)with an average PIC of 0.31.Similarly,ISMs were highly polymorphic in other crop species such as mustard[30]and rice[13,31].Also,in another food legume species,pigeonpea,55%of ISR(intron-spanning region)markers were polymorphic with an average PIC value of 0.16 and alleles amplified ranged from one to three[32].More recently,119,169 and 110,491 ISMs were developed from introns of desi and kabuli chickpea genes,respectively[33]and a set of 2405 ILP markers showed high polymorphism(86.2%)in 32 accessions of chickpea[33].

    Fig.2–Dendrogram based on Jaccard's similarity coefficient using UPGMA clustering.The black dotted line denotes the reference line.Group I consisted of 19 genotypes(IG72632,IG72636,IG136668,IG116309,DPL62,IPL220,IPL221,JL01,ILL7663,IPL81,IPL316,DPL58,IPL526,IG136655,IG72678,IG136620,IG136615,IG72860,IG72861)and Group II consisted of 13 genotypes(IPL325,IG2507,IG4258,FLIP2009-55L,IG3327,IPL219,IG3973,IG3364,IG3575,IG3568,IG7663,IG3330,IG3546).Name of the respective Lens species of each genotype were given beside their names.

    Our results also showed high allelic diversity among the lentil genotypes for ISMs,indicating that these markers can be useful in lentil breeding programs for several purposes.The cluster analysis based on genotyping data of 40 polymorphic ISMs clustered the 32 Lens genotypes into two groups.The first group showed subclustering of wild and cultivated accessions separately and further subclustering of the lentil cultivars along with a few other genotypes from ICARDA(International Center for Agricultural Research in the Dry Areas)might be due to the use of ICARDA materials in lentil breeding programs of India.The second group,comprised mostly lentil germplasm or landraces of exotic origin,indicating that they have different genetic constitution compared to cultivated accessions.Thus,the present ISMs clearly differentiated the 32 Lens genotypes.These ISMs will enrich current genomic resources of lentil.Further,ISMs can be used for gene expression studies for a set of candidate genes in lentil.

    5.Conclusions

    A set of 1703 ISMs were designed using spliced alignment of lentil EST sequences against the Medicago genome.A panel of 57 ISM primer pairs(polymorphic as well as monomorphic ISMs)was validated in a group of cultivated and wild lentils.These markers have been developed from gene sequences of lentil that encode several functional proteins.Therefore,these ISMs will be useful as functional or genic markers in lentil genetics and breeding.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.09.004.

    Acknowledgments

    The authors thank the Indian Council of Agricultural Research,New Delhi,India for research support.This work was partially funded by the Department of Biotechnology,Government of India,New Delhi,India through a grant support(BT/PR10921/AG11/106/943/2014).Gaurav Sablok acknowledges bioinformatics server from Fondazione Edmund Mach,Italy for performing the bioinformatics analysis and development of the intron-spanning markers.

    [1]FAOSTAT Database,http://www.fao.org/faostat/en/#data/QC,Accessed date:10 January 2017.

    [2]S.S.Yadav,A.Z.Rizvi,M.Manohar,A.K.Verma,R.Shrestha,C.Chen,G.Bejiga,W.Chen,M.Yadav,P.N.Bahl,Lentil growers and production systems around the world,in:S.S.Yadav,L.McNeil,P.C.Stevenson(Eds.),Lentil:An Ancient Crop of Modern Times,Springer,Dordrecht,The Netherlands,2007.

    [3]R.K.Varshney,Exciting journey of 10 years from genomes to fields and markets:some success stories of genomics-assisted breeding in chickpea,pigeonpea and groundnut,Plant Sci.242(2016)98–107.

    [4]R.K.Varshney,C.Song,R.K.Saxena,S.Azam,S.Yu,A.G.Sharpe,S.Cannon,J.Baek,B.D.Rosen,B.Taran,T.Millan,Draft genome sequence of chickpea(Cicer arietinum)provides a resource for trait improvement,Nat.Biotechnol.31(2013)240–246.

    [5]R.K.Varshney,W.Chen,Y.Li,A.K.Bharti,R.K.Saxena,J.A.Schlueter,M.T.Donoghue,S.Azam,G.Fan,A.M.Whaley,A.D.Farmer,2012:draft genome sequence of pigeonpea(Cajanus cajan),an orphan legume crop of resource-poor farmers,Nat.Biotechnol.30(2012)83–89.

    [6]N.K.Singh,D.K.Gupta,P.K.Jayaswal,A.K.Mahato,S.Dutta,S.Singh,S.Bhutani,V.Dogra,B.P.Singh,G.Kumawat,J.K.Pal,The first draft of the pigeonpea genome sequence,J.Plant Biochem.Biotechnol.21(2012)98–112.

    [7]A.Hamwieh,S.M.Udupa,A.Sarkar,C.Jung,M.Baum,Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils,Breed.Sci.59(2009)77–86.

    [8]S.Kaur,N.O.Cogan,L.W.Pembleton,M.Shinozuka,K.W.Savin,M.Materne,J.W.Forster,Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery,BMC Genomics 12(2011)1.

    [9]S.Kaur,N.O.Cogan,A.Stephens,D.Noy,M.Butsch,J.W.Forster,M.Materne,EST-SNP discovery and dense genetic mapping in lentil(Lens culinaris Medik.)enable candidate gene selection for boron tolerance,Theor.Appl.Genet.127(2014)703–713.

    [10]P.Verma,N.Shah,S.Bhatia,Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil(Lens culinaris Medik.)transcriptome,Plant Biotechnol.J.11(2013)894–905.

    [11]K.Bett,L.Ramsay,C.Crystal,A.G.Sharpe,D.R.Cook,P.R.Varma,P.Chang,C.J.Coyne,R.McGee,D.Main,A.Vandenberg,LenGen:The International Lentil Genome Sequencing Project,Plant and Animal Genome XXIII Conference,January10–14,2015(San Diego,California USA).

    [12]D.Sen Gupta,P.Cheng,G.Sablok,P.Thavarajah,C.J.Coyne,S.Kumar,M.Baum,R.J.McGee,Development of a panel of unigene-derived polymorphic EST-SSR markers in lentil using public database information,Crop J.4(2016)425–433.

    [13]S.Badoni,S.Das,Y.K.Sayal,S.Gopalakrishnan,A.K.Singh,A.R.Rao,P.Agarwal,S.K.Parida,A.K.Tyagi,Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice,Sci.Rep.6(2016)23765.

    [14]P.J.Hiremath,A.Farmer,S.B.Cannon,J.Woodward,H.Kudapa,R.Tuteja,A.Kumar,A.Bhanuprakash,B.Mulaosmanovic,N.Gujaria,L.Krishnamurthy,Large-scale transcriptome analysis in chickpea(Cicer arietinum L.),an orphan legume crop of the semi-arid tropics of Asia and Africa,Plant Biotechnol.J.9(2011)922–931.

    [15]S.Choudhary,R.Gaur,S.Gupta,S.Bhatia,EST-derived genic molecular markers:development and utilization for generating an advanced transcript map of chickpea,Theor.Appl.Genet.124(2012)1449–1462.

    [16]N.Gujaria,A.Kumar,P.Dauthal,A.Dubey,P.Hiremath,A.B.Prakash,A.Farmer,M.Bhide,T.Shah,P.M.Gaur,H.D.Upadhyaya,Development and use of genic molecular markers(GMMs)for construction of a transcript map of chickpea(Cicer arietinum L.),Theor.Appl.Genet.122(2011)1577–1589.

    [17]J.H.Kim,C.Lee,D.Hyung,Y.J.Jo,J.S.Park,D.R.Cook,H.K.Choi,CSGM Designer:a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes,Plant Methods 11(2015)30.

    [18]J.Duvick,A.Fu,U.Muppirala,M.Sabharwal,M.D.Wilkerson,C.J.Lawrence,B.Volker,PlantGDB:a resource for comparative plant genomics,Nucleic Acids Res.36(2008)D959–D965.

    [19]V.Brendel,L.Xing,W.Zhu,Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus,Bioinformatics 20(2004)1157–1169.

    [20]A.Untergasser,I.Cutcutache,T.Koressaar,J.Ye,B.C.Faircloth,M.Remm,S.G.Rozen,Primer3–new capabilitiesand interfaces,Nucleic Acids Res.40(2012)e115.

    [21]J.J.Doyle,J.L.Doyle,A rapid DNA isolation procedure for small quantities of fresh leaf tissue,Phytochem.Bull.19(1987)11–15.

    [22]B.Botstein,R.L.White,M.Skolnick,R.W.Davis,Molecular markers in plant genome analysis,Am.J.Hum.Genet.32(1980)314–331.

    [23]P.Jaccard,Nouvellesrecherchessur la distribution florale,Bull.Soc.Vaud.Sci.Nat.44(1908)223–270(in French).

    [24]F.J.Rohlf,NTSYS-pc Numerical Taxonomy and Multivariate Analysis System,Version 2.21q,Exeter Publ,New York,USA,2009.

    [25]E.E.Andeden,F.S.Baloch,E.?ak?r,F.Toklu,H.?zkan,Development,characterization and mapping of microsatellite markers for lentil(Lens culinaris Medik.),Plant Breed.134(2015)589–598.

    [26]U.M.Quraishi,F.Murat,M.Abrouk,C.Pont,C.Confolent,F.X.Oury,J.Ward,D.Boros,K.Gebruers,J.A.Delcour,C.M.Courtin,Z.Bedo,L.Saulnier,F.Guillon,S.Balzergue,P.R.Shewry,C.Feuillet,G.Charmet,J.Salse,Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat(Triticum aestivum L.),Funct.Integr.Genomics 11(2011)71–83.

    [27]U.M.Quraishi,M.Abrouk,F.Murat,C.Pont,S.Foucrier,G.Desmaizieres,C.Confolent,N.Riviere,G.Charmet,E.Paux,A.Murigneux,Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution,Plant J.65(2011)745–756.

    [28]H.K.Choi,M.A.Luckow,J.Doyle,D.R.Cook,Development of nuclear gene-derived molecular markers linked to legume genetic maps,Mol.Genet.Genomics 276(2006)56–70.

    [29]K.I.Tamura,T.Kiyoshi,J.I.Yonemaru,The development of highly transferable intron-spanning markers for temperate forage grasses,Mol.Breed.30(2012)1–8.

    [30]P.Panjabi,A.Jagannath,N.C.Bisht,K.L.Padmaja,S.Sharma,V.Gupta,A.K.Pradhan,D.Pental,2008:comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism(IP)markers:homoeologous relationships,diversification and evolution of the A,B and C Brassica genomes,BMC Genomics 9(2008)113.

    [31]X.M.Xu,K.J.Liang,S.G.Zhang,W.Shang,Y.Y.Zhang,X.Y.Wei,B.Ke,Analysis of Indica-Japonica differentiation in rice parents and derived lines using ILP markers,Agric.Sci.China 8(2009)1409–1418.

    [32]H.Kudapa,A.K.Bharti,S.B.Cannon,A.D.Farmer,B.Mulaosmanovic,R.Kramer,A.Bohra,N.T.Weeks,J.A.Crow,R.Tuteja,T.Shah,A comprehensive transcriptome assembly of pigeonpea(Cajanus cajan L.)using Sanger and secondgeneration sequencing platforms,Mol.Plant 5(2012)1020–1028.

    [33]R.Srivastava,D.Bajaj,Y.K.Sayal,P.K.Meher,H.D.Upadhyaya,R.Kumar,S.Tripathi,C.Bharadwaj,A.R.Rao,S.K.Parida,Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea,Plant Sci.252(2016)374–387.

    亚洲专区中文字幕在线| www.精华液| 亚洲欧美日韩无卡精品| 日本三级黄在线观看| 日日干狠狠操夜夜爽| 国产蜜桃级精品一区二区三区| 欧美成人午夜精品| 一本大道久久a久久精品| 亚洲欧美精品综合久久99| 国产精品美女特级片免费视频播放器 | 精品国产一区二区久久| 久久精品国产亚洲av香蕉五月| 91字幕亚洲| 97人妻天天添夜夜摸| 久久久久久久久中文| 国产精华一区二区三区| 精品久久久久久久毛片微露脸| 亚洲成人精品中文字幕电影 | 国产av在哪里看| 777久久人妻少妇嫩草av网站| 亚洲色图综合在线观看| 老司机福利观看| 在线观看日韩欧美| 久久久久久大精品| 亚洲自拍偷在线| √禁漫天堂资源中文www| 在线观看日韩欧美| 桃红色精品国产亚洲av| 国产亚洲精品久久久久5区| 老汉色av国产亚洲站长工具| 美女大奶头视频| 亚洲熟女毛片儿| 国产精品1区2区在线观看.| 高清欧美精品videossex| 人妻丰满熟妇av一区二区三区| 成熟少妇高潮喷水视频| 69精品国产乱码久久久| 亚洲欧美一区二区三区黑人| 欧美激情高清一区二区三区| 88av欧美| 午夜a级毛片| 每晚都被弄得嗷嗷叫到高潮| 99久久久亚洲精品蜜臀av| 日韩中文字幕欧美一区二区| av电影中文网址| 可以在线观看毛片的网站| 精品国内亚洲2022精品成人| 日日夜夜操网爽| 欧美大码av| 成人国语在线视频| 一区二区三区精品91| 亚洲av电影在线进入| 少妇被粗大的猛进出69影院| 好男人电影高清在线观看| 9热在线视频观看99| 窝窝影院91人妻| 亚洲avbb在线观看| 日本wwww免费看| 日韩人妻精品一区2区三区| 国产成人精品在线电影| 亚洲av美国av| 久久狼人影院| 国产精品影院久久| 丰满饥渴人妻一区二区三| 欧美乱色亚洲激情| 男男h啪啪无遮挡| 91大片在线观看| 久久久久久亚洲精品国产蜜桃av| 久久精品亚洲av国产电影网| 亚洲黑人精品在线| 午夜福利在线免费观看网站| 女性生殖器流出的白浆| 国产精品二区激情视频| 在线视频色国产色| 每晚都被弄得嗷嗷叫到高潮| 九色亚洲精品在线播放| 女人爽到高潮嗷嗷叫在线视频| 两个人看的免费小视频| 久久伊人香网站| 欧美另类亚洲清纯唯美| 国产激情久久老熟女| 少妇的丰满在线观看| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩综合在线一区二区| 波多野结衣一区麻豆| 亚洲一区二区三区欧美精品| 欧美激情高清一区二区三区| 久久久精品欧美日韩精品| 深夜精品福利| 深夜精品福利| 深夜精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩无卡精品| 亚洲精品在线美女| 国产视频一区二区在线看| 老熟妇乱子伦视频在线观看| 精品卡一卡二卡四卡免费| 9色porny在线观看| 夫妻午夜视频| 亚洲第一欧美日韩一区二区三区| 后天国语完整版免费观看| 亚洲五月天丁香| 色精品久久人妻99蜜桃| 男人舔女人下体高潮全视频| 午夜免费激情av| 国产精品自产拍在线观看55亚洲| 他把我摸到了高潮在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 老司机靠b影院| 久久精品91蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利一区二区在线看| 国产成人系列免费观看| 乱人伦中国视频| 大型黄色视频在线免费观看| 美女午夜性视频免费| 国产精品免费一区二区三区在线| 久久久国产精品麻豆| 久久人妻福利社区极品人妻图片| 午夜亚洲福利在线播放| 狠狠狠狠99中文字幕| 欧美日韩视频精品一区| 精品午夜福利视频在线观看一区| 成人三级做爰电影| 首页视频小说图片口味搜索| 精品久久久久久电影网| 国产亚洲欧美98| 制服诱惑二区| 99热国产这里只有精品6| 欧美日韩一级在线毛片| 成年女人毛片免费观看观看9| 美女 人体艺术 gogo| 国产欧美日韩综合在线一区二区| 操出白浆在线播放| 一区在线观看完整版| 午夜精品在线福利| 久久久久九九精品影院| 亚洲人成电影观看| 日韩一卡2卡3卡4卡2021年| 欧美中文日本在线观看视频| 老司机午夜福利在线观看视频| 18禁黄网站禁片午夜丰满| 两性夫妻黄色片| 久久久久国内视频| av超薄肉色丝袜交足视频| 精品福利永久在线观看| 性色av乱码一区二区三区2| 久久精品人人爽人人爽视色| 免费观看人在逋| 天堂中文最新版在线下载| 亚洲黑人精品在线| 青草久久国产| 日本一区二区免费在线视频| 亚洲欧美激情综合另类| 国产亚洲欧美98| 亚洲男人的天堂狠狠| 亚洲欧美日韩高清在线视频| 黑人欧美特级aaaaaa片| 国产人伦9x9x在线观看| 久久久久国产一级毛片高清牌| 久久久国产一区二区| 婷婷丁香在线五月| 久久影院123| 日日爽夜夜爽网站| 级片在线观看| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁在线播放| 午夜91福利影院| 色老头精品视频在线观看| 一边摸一边做爽爽视频免费| 一边摸一边做爽爽视频免费| 精品久久久久久,| 国产xxxxx性猛交| 美女午夜性视频免费| 一区二区日韩欧美中文字幕| 黄色女人牲交| 啦啦啦 在线观看视频| 俄罗斯特黄特色一大片| 一夜夜www| 久久亚洲真实| 香蕉国产在线看| 99在线视频只有这里精品首页| bbb黄色大片| 校园春色视频在线观看| 人妻久久中文字幕网| 午夜久久久在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品国产一区二区精华液| 免费av中文字幕在线| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 一级毛片高清免费大全| 亚洲中文字幕日韩| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区视频在线观看| 国产精品二区激情视频| 日韩视频一区二区在线观看| 一区二区三区精品91| 欧美日韩一级在线毛片| 首页视频小说图片口味搜索| 男女高潮啪啪啪动态图| 亚洲专区字幕在线| 亚洲一区二区三区色噜噜 | 午夜免费观看网址| 51午夜福利影视在线观看| 电影成人av| 亚洲人成电影观看| 欧美精品一区二区免费开放| 一级作爱视频免费观看| 精品一区二区三区四区五区乱码| 精品午夜福利视频在线观看一区| 男女高潮啪啪啪动态图| 脱女人内裤的视频| av电影中文网址| 老熟妇乱子伦视频在线观看| 亚洲欧美精品综合一区二区三区| 精品国产超薄肉色丝袜足j| 日韩免费av在线播放| 免费看a级黄色片| 国产不卡一卡二| 国产成年人精品一区二区 | 天堂影院成人在线观看| 可以在线观看毛片的网站| 不卡av一区二区三区| 一二三四在线观看免费中文在| 妹子高潮喷水视频| 神马国产精品三级电影在线观看 | 精品久久久久久,| 婷婷六月久久综合丁香| 欧美黄色片欧美黄色片| 美女高潮到喷水免费观看| 叶爱在线成人免费视频播放| 久久久久久久精品吃奶| 一级作爱视频免费观看| 亚洲欧美精品综合久久99| 丝袜美足系列| 中文亚洲av片在线观看爽| 欧美午夜高清在线| 国产精品久久视频播放| 国产av又大| 最新在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 日本免费a在线| av网站免费在线观看视频| 制服诱惑二区| 成人国语在线视频| xxx96com| 午夜91福利影院| 欧美成人午夜精品| 欧美+亚洲+日韩+国产| 美女午夜性视频免费| 一二三四社区在线视频社区8| 天天添夜夜摸| 午夜免费激情av| 首页视频小说图片口味搜索| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷丁香在线五月| 一级毛片精品| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区蜜桃| www.www免费av| 日本wwww免费看| 国产高清videossex| 又黄又粗又硬又大视频| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 国产精品国产av在线观看| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看| 操出白浆在线播放| 一级片'在线观看视频| 91九色精品人成在线观看| 国产亚洲av高清不卡| 神马国产精品三级电影在线观看 | 国产精品国产高清国产av| 大型黄色视频在线免费观看| av视频免费观看在线观看| 日韩视频一区二区在线观看| av网站免费在线观看视频| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| www日本在线高清视频| 日韩中文字幕欧美一区二区| 久久久国产欧美日韩av| 欧美老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 免费av中文字幕在线| 手机成人av网站| av天堂在线播放| 午夜免费观看网址| а√天堂www在线а√下载| 视频区图区小说| 好看av亚洲va欧美ⅴa在| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟妇中文字幕五十中出 | 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 搡老岳熟女国产| 成人亚洲精品一区在线观看| 免费看十八禁软件| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜 | 精品无人区乱码1区二区| 看免费av毛片| 超碰97精品在线观看| 精品国产美女av久久久久小说| 视频在线观看一区二区三区| 三级毛片av免费| 日日夜夜操网爽| 身体一侧抽搐| 欧美激情 高清一区二区三区| tocl精华| 中文字幕av电影在线播放| 不卡一级毛片| 久热这里只有精品99| 国内毛片毛片毛片毛片毛片| 日本wwww免费看| 最近最新中文字幕大全电影3 | 丝袜在线中文字幕| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 久99久视频精品免费| 黑人欧美特级aaaaaa片| 国产精品1区2区在线观看.| 久久人人精品亚洲av| 女性生殖器流出的白浆| 后天国语完整版免费观看| 级片在线观看| 国产精品免费视频内射| 日韩 欧美 亚洲 中文字幕| 69av精品久久久久久| 久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费视频内射| av在线播放免费不卡| 亚洲九九香蕉| 美女 人体艺术 gogo| xxxhd国产人妻xxx| 亚洲一区二区三区色噜噜 | 欧美在线一区亚洲| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜 | 青草久久国产| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 亚洲精品国产精品久久久不卡| 在线av久久热| 欧美性长视频在线观看| 亚洲第一av免费看| 亚洲国产精品一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 一级毛片高清免费大全| 国产精品综合久久久久久久免费 | 亚洲专区国产一区二区| 亚洲精品一二三| 超色免费av| 窝窝影院91人妻| 国产精品综合久久久久久久免费 | 18禁观看日本| 亚洲中文av在线| 黄色片一级片一级黄色片| 看黄色毛片网站| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| 国产亚洲欧美98| 激情在线观看视频在线高清| 国产精品久久久人人做人人爽| 十八禁人妻一区二区| 午夜福利欧美成人| 久久国产精品人妻蜜桃| 亚洲一区二区三区色噜噜 | 女人高潮潮喷娇喘18禁视频| 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 女人被躁到高潮嗷嗷叫费观| 在线天堂中文资源库| 三级毛片av免费| av电影中文网址| 亚洲第一av免费看| 亚洲黑人精品在线| 国产高清国产精品国产三级| 国产成人欧美| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 婷婷精品国产亚洲av在线| 久9热在线精品视频| 亚洲自偷自拍图片 自拍| 啦啦啦免费观看视频1| 一级,二级,三级黄色视频| 夜夜躁狠狠躁天天躁| 国产成人欧美| 精品福利永久在线观看| 最新美女视频免费是黄的| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 大香蕉久久成人网| 精品国产乱子伦一区二区三区| 男女午夜视频在线观看| 亚洲精品中文字幕一二三四区| 免费久久久久久久精品成人欧美视频| 女性被躁到高潮视频| 在线观看免费视频网站a站| a级毛片在线看网站| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| 91成年电影在线观看| 亚洲成国产人片在线观看| 久久久久国产精品人妻aⅴ院| 日本 av在线| 国产精华一区二区三区| 怎么达到女性高潮| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 亚洲欧美日韩另类电影网站| 88av欧美| 国产欧美日韩综合在线一区二区| 一本综合久久免费| 久热这里只有精品99| 国产精华一区二区三区| 国产精品电影一区二区三区| 男女午夜视频在线观看| 日韩av在线大香蕉| av天堂久久9| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 一边摸一边抽搐一进一出视频| 精品乱码久久久久久99久播| 免费在线观看黄色视频的| videosex国产| 波多野结衣一区麻豆| 黄色毛片三级朝国网站| 亚洲精品一区av在线观看| 久久99一区二区三区| 搡老乐熟女国产| 精品国产超薄肉色丝袜足j| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 丝袜在线中文字幕| 大型av网站在线播放| 淫妇啪啪啪对白视频| 亚洲国产精品999在线| 老鸭窝网址在线观看| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 香蕉丝袜av| 男女高潮啪啪啪动态图| 亚洲精品国产区一区二| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 老司机在亚洲福利影院| 国产精品二区激情视频| 在线av久久热| 黄网站色视频无遮挡免费观看| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 身体一侧抽搐| 日本免费a在线| 怎么达到女性高潮| 美女午夜性视频免费| 久久久久九九精品影院| 国产熟女xx| 亚洲激情在线av| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 欧美激情高清一区二区三区| 黄色怎么调成土黄色| 国产主播在线观看一区二区| 女警被强在线播放| 亚洲五月色婷婷综合| 99精国产麻豆久久婷婷| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 亚洲五月婷婷丁香| 午夜激情av网站| 久久中文字幕人妻熟女| av天堂久久9| 久久精品国产99精品国产亚洲性色 | 老汉色av国产亚洲站长工具| 校园春色视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 中国美女看黄片| 日韩免费高清中文字幕av| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 好男人电影高清在线观看| 18美女黄网站色大片免费观看| 91在线观看av| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 午夜免费鲁丝| 波多野结衣av一区二区av| 男人操女人黄网站| 亚洲av五月六月丁香网| 精品国产乱码久久久久久男人| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲少妇的诱惑av| x7x7x7水蜜桃| 国产成人欧美| 亚洲av熟女| 99国产精品一区二区三区| 天天添夜夜摸| 丰满迷人的少妇在线观看| 精品一区二区三卡| 人人妻人人澡人人看| 麻豆成人av在线观看| 在线看a的网站| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 免费少妇av软件| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三区在线| 18美女黄网站色大片免费观看| 老司机深夜福利视频在线观看| 国产精品爽爽va在线观看网站 | 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品99久久99久久久不卡| 国产精品自产拍在线观看55亚洲| 精品国产乱子伦一区二区三区| 久热这里只有精品99| 亚洲免费av在线视频| 精品国产亚洲在线| 中国美女看黄片| 又黄又爽又免费观看的视频| 免费高清在线观看日韩| 日日夜夜操网爽| 岛国视频午夜一区免费看| 男女高潮啪啪啪动态图| avwww免费| 欧美另类亚洲清纯唯美| 国产三级在线视频| tocl精华| 日本黄色视频三级网站网址| www.www免费av| 黑人巨大精品欧美一区二区mp4| 日韩人妻精品一区2区三区| 老司机深夜福利视频在线观看| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 欧美黑人欧美精品刺激| 搡老乐熟女国产| 另类亚洲欧美激情| 国产激情久久老熟女| 国产精品久久久av美女十八| bbb黄色大片| 老司机靠b影院| 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 亚洲成av片中文字幕在线观看| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 另类亚洲欧美激情| 国产片内射在线| 久久精品国产亚洲av香蕉五月| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成a人片在线一区二区| 国产亚洲精品第一综合不卡| 99久久国产精品久久久| 悠悠久久av| 国产精品成人在线| 亚洲三区欧美一区| 国产色视频综合| 不卡一级毛片| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 18禁观看日本| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 国产麻豆69| 男女午夜视频在线观看| 欧美丝袜亚洲另类 | 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 国产97色在线日韩免费| 亚洲美女黄片视频| 欧美成人免费av一区二区三区| 在线视频色国产色| 中出人妻视频一区二区| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆| 村上凉子中文字幕在线| 国产精品亚洲av一区麻豆| 色在线成人网| 国产激情久久老熟女| 88av欧美| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 久久精品亚洲精品国产色婷小说| 日日干狠狠操夜夜爽|