• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification, development, and application of cross-species intron-spanning markers in lentil(Lens culinaris Medik.)

    2018-06-04 03:33:36DejyotiSenGuptJitendrKumrSunndGuptSonliDueyPriynkGuptNrendrPrtpSinghGurvSlokc
    The Crop Journal 2018年3期

    Dejyoti Sen Gupt*,Jitendr Kumr*,Sunnd GuptSonli DueyPriynk GuptNrendr Prtp Singh,Gurv Slokc

    aDivision of Crop Improvement,ICAR-Institute of Pulses Research,Kanpur 208024,UP,India

    bDivision of Plant Biotechnology,ICAR-Institute of Pulses Research,Kanpur 208024,UP,India

    cDepartment of Biodiversity and Molecular Ecology,Research and Innovation Centre,Fondazione Edmund Mach,Via E.Mach 1,38010 San Michele all'Adige,Trento,Italy

    1.Introduction

    Lentil(Lens culinaris Medik.)is one of the most important food legumes and is grown in many parts of the world including Canada,Australia,northwestern USA,Turkey,Syria,Nepal,India,and Bangladesh[1].The world annual production is nearly 5 Mt[1].Lentil originated in the Fertile Crescent and is reported to be one of the earliest domesticated food crops[2].Cultivation of lentil is affected by various biotic and abiotic stresses including foliar and root diseases,high temperature,drought,soil pH(<5.4),and water logging.Most lentil-producing countries use conventional breeding approaches in their active breeding programs for developing high-yielding lentil cultivars with better grain quality.However,in recent years,molecular markers are being widely used for accelerating precise breeding in several crops including major pulse crops such as chickpea and pigeonpea[3].Further,the advent of next-generation sequencing technologies has allowed the rapid genome sequencing of pulses such as chickpea(Cicer arietinum)[4]and pigeonpea(Cajanus cajan)[5,6].Availability of the genome sequences in these species has permitted the development of genome-anchored maps,visualization of single nucleotide polymorphism SNPs,and identifying species-specific SNPs.In the past,limited efforts have been made toward the development of molecular marker systems such as simple sequence repeats(SSRs)and SNPs for enriching genomic resources in lentil[7–12].The plant genomes have genes with larger intronsand spliced alignment of transcripts to the genome has revealed a large diversity in intron size.Despite being of diverse lengths,introns have been a major resource for molecular-marker development in several crop species[13–16]and have been recently leveraged to develop marker resources for legumes through the development of intron-spanning markers(ISMs),which are codominant or dominant,reproducible markers that show multi-allelic patterns[13–16].Development of these markers is gaining importance in species for which a reference genome sequence is available.In lack of the reference genome cross-species reference genome mapping can be used to identify the intron-spanning markers.Briefly,development of intron-spanning markers canbedone by performing a spliced alignment of the gene transcripts to the reference genome and developing polymerase chain reaction(PCR)primers that are anchored in conserved exons that span target introns.Previously,intron-spanning markers were developed in legumes using CSGM Designer[17],which provides algorithm-or alignment-based identification of intron spanning markers and these can be validated on a set of diverse genotypes.Similarly,in lentil,transcript sequence databases available in the public domain can be used for de novo assembly and identification and design of primers for the amplification of ISM regions.The objectives of this study were to(1)develop polymorphic ISMs in lentil using expressed sequence tag(EST)sequences,and(2)validate polymorphic ISM markers in a diverse panel of Lens genotypes including wild lentil species.

    2.Materials and methods

    2.1.Development of intron-spanning markers,primer design,and functional annotation

    A cross-species mapping-based approach was used for developing intron-spanning markers.In this approach,a well annotated and curated reference genome of Medicago truncatula was used because of its close phylogenetic positioning with L.culinaris.The L.culinaris putative unique transcripts(PUTs)from Plant GDB version 187[18]were mapped onto the M.truncatula genome.Prior to mapping,repeat masking of the genome was performed using Repeat Masker,available from http://www.repeatmasker.org/.The Rep Base libraries available from http://www.girinst.org/repbase/and the L.culinaris ESTs downloaded from Plant GDB version 187 were aligned to the genome using Gene Seqer[19],a spliced alignment tool available from http://brendelgroup.org/bioinformatics2go/GeneSeqer.php.Following alignment,intron-spanning coordinates were extracted and primers were designed for the respective coordinates using Primer3 version 1.1.4,available from http://primer3.sourceforge.net/releases.php[20].

    Following the identification of intron-spanning regions,primer pairs were designed using Primer3 with parameters defined as minimum amplicon size 100 bp and maximum amplicon size 300 bp,primer size 18–27 bp,primer Tm57–63 °C,primer GC content30%–70%,CG clamp0,maximum end stability 250,maximum Tmdifference2,maximum self-complementarity 6,maximum 3′end self-complementarity 3,maximum Ns accepted 0,and maximum poly-X5.The aligned PUTs to the Medicago genome have been annotated and then after annotation gene ontology has been defined based on the annotation.Functional annotation and gene ontology of the intron-spanning markers were performed using BLASTx searches(E-value,1 × 10?5) against GenBank (http://www.ncbi.nlm.nih.gov/),UniProt(http://www.uniprot.org/),and TAIR (https://www.arabidopsis.org/)databases.

    2.2.Plant materials and DNA extraction

    Thirty-two Lens genotypes were used for genotyping with 105 primers.A diverse panel of thirty-two Lens genotypes consisting of L.culinaris released cultivars,advanced breeding lines,parents of mapping populations,and genotypes of L.ervoides and L.culinaris subsp.orientalis was tested to identify polymorphic markers(Table 1).DNA samples were extracted from individual plant leaf tissue when seedlings were two weeks old using the cetyltrimethylammonium bromide(CTAB)procedure[21].The DNA concentrations of the extracted samples were recorded and were compared with after corresponding concentration with λDNA.The extracted DNA samples were diluted to a uniform concentration of 20 μg μL?1for PCR amplification.

    2.3.PCR amplification

    One hundred and five primer pairs(Table S1)were synthesized from Imperial Life Sciences(P)Limited,Gurugram,India and used in this study.PCR reactions(in 25-μL volumes)were conductedinaG-Strom(modelnumberGT-40319,UK)thermocycler.Each reaction contained 2.5 μL Taq buffer(Merck,Bangalore,India),1.5 μL MgCl2(25 mmol L?1)(Merck,Bangalore,India),0.20 mmol L?1of each dNTP(Merck,Bangalore India),0.50 mmol L?1of each primer[Imperial Life Sciences(P)Limited,Gurugram India],0.5 U of Taq polymerase(Merck,Bangalore,India),and 20 ng of template DNA.Primers amplifying Lens DNA were validated in a set of 32 diverse Lens genotypes using the following PCR conditions:94°C for 4 min,followed by 35 cycles of 94 °C for 1 min,58 °C for 1 min,and 72 °C for 1 min followed by a final elongation step of 72°C for 15 min.PCR products were resolved by 10%polyacrylamide vertical gel electrophoresis(Sigma-Aldrich,New Delhi,India)and visualized by silver staining.Fragments were scored visually after staining.

    2.4.Molecular data scoring and statistical analysis

    Polymorphism information content(PIC)values were calculated following Botstein et al.[22].The presence and absence of the band were scored as 1 and 0 and the binary data so obtained for all Lens genotypes for polymorphic markers were used to calculate a correlation matrix using Jaccard's similarity coefficient analysis[23].The similarity coefficient was used to construct a dendrogram based on the unweighted pair groupmethod with arithmetic average(UPGMA)using NTSYS pc-2.21q[24]software.The data were also subjected to principal coordinate analysis(PCA)using NTSYS.

    Table 1–Details of plant materials used.

    3.Results

    3.1.Development and validation of ISM markers in lentil

    A total of 1703 ISMs were developed in lentil using a cross-species mapping-based approach.For the identification of ISMs,16,279 EST sequences of L.culinaris from were mapped onto the M.truncatula genome(Table 2).RepBase libraries and L.culinaris ESTs were aligned which resulted in a total of 25,717 GeneSeqer alignments.These were further curated to identify 1703ISMs(TableS2).Among these,a set of 105 primer pairs were used for experimental validation,which resulted in successful amplification of 54 primer pairs(51%)on lentil genomic DNA.

    Table 2–Summary statistics from bioinformatic analysis and wet-lab validation.

    3.2.Application of ISMs in assessing genetic diversity in Lens species

    Fifty-four ISM primer pairs were tested for identification of polymorphic markers in a diverse panel of 32 Lens genotypes consisting of released cultivars,advanced breeding lines,parents of mapping populations(L.culinaris)and genotypes of L.ervoides and L.culinaris ssp.orientalis.Thus,a total of 40 ISMs were found polymorphic(Table 3,Fig.1),so that these ISMs showed high polymorphism(74%).The number of alleles ranged from 2 to 11 with an average of 3.7 alleles for each primer pair,while the PIC ranged between 0.10 and 0.50 with an average of 0.31.The sizes of alleles varied from 52 to 390 bp.

    In the present study,polymorphic ISMs were used to assess the genetic diversity among the 32 genotypes and to establish the genetic relationships among them.Ten accessions belonging to different Lens wild species amplified 667 alleles with an average of 17 alleles per marker,while 22 accessions belonging to cultivated species amplified 1404 alleles with an average of 35 alleles per marker.These results showed high allelic diversity among the lentil genotypes for ISMs,indicating that these markers can be used further in lentil breeding programs for several purposes.Cluster analysis based on genotyping data of 40 polymorphic ISMs clustered the 32 Lens genotypes into two groups(Fig.2).Group I contained 19 genotypes which belonged mostly to cultivated and wild species of lentil(L.culinaris subsp.culinaris,L.culinaris subsp.orientalis,and L.ervoides genotypes).Genotypes of L.ervoides were clustered within group I(Fig.2).Another 13 accessions were clustered in group II and belonged only to L.culinaris subsp.culinaris.The first three components of PCA accounted for 13%,9%,and 8%of total observed variation reflected as a measure of the polymorphism,respectively.In total,three PCA components accounted for 30% of total variation for the 32 genotypes.

    Table 3–Tm,allelesize,and polymorphism information content(PIC)of each polymorphic intron-spanning marker.

    Fig.1–PCR amplification profiles of 32 lentil genotypes for the primer PUT 11770_1.1,IG-72632;2,IG-136668;3,IG-136655;4,IG-72678;5,IG-136620;6,IG-136615;7,IG-72860;8,IG-72861;9,IG-72636;10,IG-116039;11,DPL-62;12,IPL-220;13,DPL-58;14,IPL-526;15,IPL-81;16,IPL-221;17,JL-01;18,ILL-7663;19,IPL-316;20,IPL-325;21,IPL-219;22,IG3973;23,IG3364;24,IG3575;25,IG3568;26,DPL15;27,IG2507;28.IG4258;29,FLIP2009-55L;30,IG3327;31,IG3330;32,IG3546.Lane M contains a molecular ladder.

    We also studied the functional annotation of ISMs.Protein databases available in the public domain were searched for the designed ISMs.Annotations of the entire set of 1703 ISMs showed sequence similarity with legumes encoding genes,as presented in Table S3 and summarized in Fig.S1.

    4.Discussion

    Various molecular markers have been developed in lentil[7–12,25].PCR-based markers such as SSRs have been the choice of plant breeders.Because the full genome sequence of lentil is not available in the public domain[11],development of polymorphic markers in lentil is slower than in other sequenced food legumes such as chickpea and pigeonpea.However,it is possible to develop intron-spanning markers(ISMs)by exploiting exon conservation to develop highly polymorphic,highly transferable,and codominant markers[26,27].Earlier,using a cross-species mapping based approach,91 ISMs markers were developed from pairs of highly similar genes of M.truncatula,a model legume,and Glycine max and validated on six different legume species including M.truncatula,Pisum sativum,Lotus japonicus,L.filicaulis,Vigna radiata,and Phaseolus vulgaris[28].In this study,genomic synteny between M.truncatula and Lens was used for developing ISMs in lentil.Because ISMs can contribute toward the development of informative markers by saturating the chromosomal region of interest[26,27].In our study,51%of markers could be amplified on Lens DNA.However,in grass species,intron-spanning markers showed high(79%–95%)amplification rates on bulk DNA samples made from six forage species(Lolium perenne,L.multiflorum,Festuca pratensis,F.arundinacea,Phleum pretense,and Dactylis glomerata)[29].ISMs developed in the present study showed high polymorphism,74%(40 of 54 ISMs)with an average PIC of 0.31.Similarly,ISMs were highly polymorphic in other crop species such as mustard[30]and rice[13,31].Also,in another food legume species,pigeonpea,55%of ISR(intron-spanning region)markers were polymorphic with an average PIC value of 0.16 and alleles amplified ranged from one to three[32].More recently,119,169 and 110,491 ISMs were developed from introns of desi and kabuli chickpea genes,respectively[33]and a set of 2405 ILP markers showed high polymorphism(86.2%)in 32 accessions of chickpea[33].

    Fig.2–Dendrogram based on Jaccard's similarity coefficient using UPGMA clustering.The black dotted line denotes the reference line.Group I consisted of 19 genotypes(IG72632,IG72636,IG136668,IG116309,DPL62,IPL220,IPL221,JL01,ILL7663,IPL81,IPL316,DPL58,IPL526,IG136655,IG72678,IG136620,IG136615,IG72860,IG72861)and Group II consisted of 13 genotypes(IPL325,IG2507,IG4258,FLIP2009-55L,IG3327,IPL219,IG3973,IG3364,IG3575,IG3568,IG7663,IG3330,IG3546).Name of the respective Lens species of each genotype were given beside their names.

    Our results also showed high allelic diversity among the lentil genotypes for ISMs,indicating that these markers can be useful in lentil breeding programs for several purposes.The cluster analysis based on genotyping data of 40 polymorphic ISMs clustered the 32 Lens genotypes into two groups.The first group showed subclustering of wild and cultivated accessions separately and further subclustering of the lentil cultivars along with a few other genotypes from ICARDA(International Center for Agricultural Research in the Dry Areas)might be due to the use of ICARDA materials in lentil breeding programs of India.The second group,comprised mostly lentil germplasm or landraces of exotic origin,indicating that they have different genetic constitution compared to cultivated accessions.Thus,the present ISMs clearly differentiated the 32 Lens genotypes.These ISMs will enrich current genomic resources of lentil.Further,ISMs can be used for gene expression studies for a set of candidate genes in lentil.

    5.Conclusions

    A set of 1703 ISMs were designed using spliced alignment of lentil EST sequences against the Medicago genome.A panel of 57 ISM primer pairs(polymorphic as well as monomorphic ISMs)was validated in a group of cultivated and wild lentils.These markers have been developed from gene sequences of lentil that encode several functional proteins.Therefore,these ISMs will be useful as functional or genic markers in lentil genetics and breeding.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.09.004.

    Acknowledgments

    The authors thank the Indian Council of Agricultural Research,New Delhi,India for research support.This work was partially funded by the Department of Biotechnology,Government of India,New Delhi,India through a grant support(BT/PR10921/AG11/106/943/2014).Gaurav Sablok acknowledges bioinformatics server from Fondazione Edmund Mach,Italy for performing the bioinformatics analysis and development of the intron-spanning markers.

    [1]FAOSTAT Database,http://www.fao.org/faostat/en/#data/QC,Accessed date:10 January 2017.

    [2]S.S.Yadav,A.Z.Rizvi,M.Manohar,A.K.Verma,R.Shrestha,C.Chen,G.Bejiga,W.Chen,M.Yadav,P.N.Bahl,Lentil growers and production systems around the world,in:S.S.Yadav,L.McNeil,P.C.Stevenson(Eds.),Lentil:An Ancient Crop of Modern Times,Springer,Dordrecht,The Netherlands,2007.

    [3]R.K.Varshney,Exciting journey of 10 years from genomes to fields and markets:some success stories of genomics-assisted breeding in chickpea,pigeonpea and groundnut,Plant Sci.242(2016)98–107.

    [4]R.K.Varshney,C.Song,R.K.Saxena,S.Azam,S.Yu,A.G.Sharpe,S.Cannon,J.Baek,B.D.Rosen,B.Taran,T.Millan,Draft genome sequence of chickpea(Cicer arietinum)provides a resource for trait improvement,Nat.Biotechnol.31(2013)240–246.

    [5]R.K.Varshney,W.Chen,Y.Li,A.K.Bharti,R.K.Saxena,J.A.Schlueter,M.T.Donoghue,S.Azam,G.Fan,A.M.Whaley,A.D.Farmer,2012:draft genome sequence of pigeonpea(Cajanus cajan),an orphan legume crop of resource-poor farmers,Nat.Biotechnol.30(2012)83–89.

    [6]N.K.Singh,D.K.Gupta,P.K.Jayaswal,A.K.Mahato,S.Dutta,S.Singh,S.Bhutani,V.Dogra,B.P.Singh,G.Kumawat,J.K.Pal,The first draft of the pigeonpea genome sequence,J.Plant Biochem.Biotechnol.21(2012)98–112.

    [7]A.Hamwieh,S.M.Udupa,A.Sarkar,C.Jung,M.Baum,Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils,Breed.Sci.59(2009)77–86.

    [8]S.Kaur,N.O.Cogan,L.W.Pembleton,M.Shinozuka,K.W.Savin,M.Materne,J.W.Forster,Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery,BMC Genomics 12(2011)1.

    [9]S.Kaur,N.O.Cogan,A.Stephens,D.Noy,M.Butsch,J.W.Forster,M.Materne,EST-SNP discovery and dense genetic mapping in lentil(Lens culinaris Medik.)enable candidate gene selection for boron tolerance,Theor.Appl.Genet.127(2014)703–713.

    [10]P.Verma,N.Shah,S.Bhatia,Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil(Lens culinaris Medik.)transcriptome,Plant Biotechnol.J.11(2013)894–905.

    [11]K.Bett,L.Ramsay,C.Crystal,A.G.Sharpe,D.R.Cook,P.R.Varma,P.Chang,C.J.Coyne,R.McGee,D.Main,A.Vandenberg,LenGen:The International Lentil Genome Sequencing Project,Plant and Animal Genome XXIII Conference,January10–14,2015(San Diego,California USA).

    [12]D.Sen Gupta,P.Cheng,G.Sablok,P.Thavarajah,C.J.Coyne,S.Kumar,M.Baum,R.J.McGee,Development of a panel of unigene-derived polymorphic EST-SSR markers in lentil using public database information,Crop J.4(2016)425–433.

    [13]S.Badoni,S.Das,Y.K.Sayal,S.Gopalakrishnan,A.K.Singh,A.R.Rao,P.Agarwal,S.K.Parida,A.K.Tyagi,Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice,Sci.Rep.6(2016)23765.

    [14]P.J.Hiremath,A.Farmer,S.B.Cannon,J.Woodward,H.Kudapa,R.Tuteja,A.Kumar,A.Bhanuprakash,B.Mulaosmanovic,N.Gujaria,L.Krishnamurthy,Large-scale transcriptome analysis in chickpea(Cicer arietinum L.),an orphan legume crop of the semi-arid tropics of Asia and Africa,Plant Biotechnol.J.9(2011)922–931.

    [15]S.Choudhary,R.Gaur,S.Gupta,S.Bhatia,EST-derived genic molecular markers:development and utilization for generating an advanced transcript map of chickpea,Theor.Appl.Genet.124(2012)1449–1462.

    [16]N.Gujaria,A.Kumar,P.Dauthal,A.Dubey,P.Hiremath,A.B.Prakash,A.Farmer,M.Bhide,T.Shah,P.M.Gaur,H.D.Upadhyaya,Development and use of genic molecular markers(GMMs)for construction of a transcript map of chickpea(Cicer arietinum L.),Theor.Appl.Genet.122(2011)1577–1589.

    [17]J.H.Kim,C.Lee,D.Hyung,Y.J.Jo,J.S.Park,D.R.Cook,H.K.Choi,CSGM Designer:a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes,Plant Methods 11(2015)30.

    [18]J.Duvick,A.Fu,U.Muppirala,M.Sabharwal,M.D.Wilkerson,C.J.Lawrence,B.Volker,PlantGDB:a resource for comparative plant genomics,Nucleic Acids Res.36(2008)D959–D965.

    [19]V.Brendel,L.Xing,W.Zhu,Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus,Bioinformatics 20(2004)1157–1169.

    [20]A.Untergasser,I.Cutcutache,T.Koressaar,J.Ye,B.C.Faircloth,M.Remm,S.G.Rozen,Primer3–new capabilitiesand interfaces,Nucleic Acids Res.40(2012)e115.

    [21]J.J.Doyle,J.L.Doyle,A rapid DNA isolation procedure for small quantities of fresh leaf tissue,Phytochem.Bull.19(1987)11–15.

    [22]B.Botstein,R.L.White,M.Skolnick,R.W.Davis,Molecular markers in plant genome analysis,Am.J.Hum.Genet.32(1980)314–331.

    [23]P.Jaccard,Nouvellesrecherchessur la distribution florale,Bull.Soc.Vaud.Sci.Nat.44(1908)223–270(in French).

    [24]F.J.Rohlf,NTSYS-pc Numerical Taxonomy and Multivariate Analysis System,Version 2.21q,Exeter Publ,New York,USA,2009.

    [25]E.E.Andeden,F.S.Baloch,E.?ak?r,F.Toklu,H.?zkan,Development,characterization and mapping of microsatellite markers for lentil(Lens culinaris Medik.),Plant Breed.134(2015)589–598.

    [26]U.M.Quraishi,F.Murat,M.Abrouk,C.Pont,C.Confolent,F.X.Oury,J.Ward,D.Boros,K.Gebruers,J.A.Delcour,C.M.Courtin,Z.Bedo,L.Saulnier,F.Guillon,S.Balzergue,P.R.Shewry,C.Feuillet,G.Charmet,J.Salse,Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat(Triticum aestivum L.),Funct.Integr.Genomics 11(2011)71–83.

    [27]U.M.Quraishi,M.Abrouk,F.Murat,C.Pont,S.Foucrier,G.Desmaizieres,C.Confolent,N.Riviere,G.Charmet,E.Paux,A.Murigneux,Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution,Plant J.65(2011)745–756.

    [28]H.K.Choi,M.A.Luckow,J.Doyle,D.R.Cook,Development of nuclear gene-derived molecular markers linked to legume genetic maps,Mol.Genet.Genomics 276(2006)56–70.

    [29]K.I.Tamura,T.Kiyoshi,J.I.Yonemaru,The development of highly transferable intron-spanning markers for temperate forage grasses,Mol.Breed.30(2012)1–8.

    [30]P.Panjabi,A.Jagannath,N.C.Bisht,K.L.Padmaja,S.Sharma,V.Gupta,A.K.Pradhan,D.Pental,2008:comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism(IP)markers:homoeologous relationships,diversification and evolution of the A,B and C Brassica genomes,BMC Genomics 9(2008)113.

    [31]X.M.Xu,K.J.Liang,S.G.Zhang,W.Shang,Y.Y.Zhang,X.Y.Wei,B.Ke,Analysis of Indica-Japonica differentiation in rice parents and derived lines using ILP markers,Agric.Sci.China 8(2009)1409–1418.

    [32]H.Kudapa,A.K.Bharti,S.B.Cannon,A.D.Farmer,B.Mulaosmanovic,R.Kramer,A.Bohra,N.T.Weeks,J.A.Crow,R.Tuteja,T.Shah,A comprehensive transcriptome assembly of pigeonpea(Cajanus cajan L.)using Sanger and secondgeneration sequencing platforms,Mol.Plant 5(2012)1020–1028.

    [33]R.Srivastava,D.Bajaj,Y.K.Sayal,P.K.Meher,H.D.Upadhyaya,R.Kumar,S.Tripathi,C.Bharadwaj,A.R.Rao,S.K.Parida,Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea,Plant Sci.252(2016)374–387.

    国产一区二区激情短视频| 国产精品久久久人人做人人爽| 天天躁夜夜躁狠狠躁躁| 亚洲中文av在线| 久久性视频一级片| 丰满迷人的少妇在线观看| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 国产精品永久免费网站| 欧美成人午夜精品| 男女床上黄色一级片免费看| 欧美乱妇无乱码| 国产人伦9x9x在线观看| 激情视频va一区二区三区| 日韩欧美一区视频在线观看| 久久中文字幕一级| 女人精品久久久久毛片| 王馨瑶露胸无遮挡在线观看| 精品一区二区三区视频在线观看免费 | 波多野结衣av一区二区av| 好男人电影高清在线观看| 日韩免费av在线播放| 国产精品影院久久| 一区福利在线观看| 99国产精品免费福利视频| 久久久国产精品麻豆| 亚洲av第一区精品v没综合| 久久亚洲真实| 一区在线观看完整版| 日本撒尿小便嘘嘘汇集6| 国产精品免费大片| 精品国内亚洲2022精品成人 | 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女 | 丁香六月欧美| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 成人手机av| 欧美大码av| 国产精品一区二区精品视频观看| 人妻 亚洲 视频| 满18在线观看网站| 亚洲精品国产色婷婷电影| 国产精品99久久99久久久不卡| 国产不卡一卡二| videosex国产| e午夜精品久久久久久久| 在线观看免费高清a一片| 国产精品综合久久久久久久免费 | ponron亚洲| 欧美日本中文国产一区发布| 三级毛片av免费| 91精品国产国语对白视频| 老司机靠b影院| 精品国产一区二区三区四区第35| 91麻豆精品激情在线观看国产 | 18禁国产床啪视频网站| av有码第一页| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 脱女人内裤的视频| 在线十欧美十亚洲十日本专区| 丰满饥渴人妻一区二区三| 久久狼人影院| 久久精品亚洲av国产电影网| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 欧美日韩视频精品一区| 老司机午夜福利在线观看视频| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区mp4| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看 | 欧美最黄视频在线播放免费 | 色在线成人网| 欧美在线一区亚洲| 丰满迷人的少妇在线观看| 精品一区二区三区视频在线观看免费 | 精品亚洲成国产av| 精品福利永久在线观看| 黄片播放在线免费| 乱人伦中国视频| 国产成人精品在线电影| 成人三级做爰电影| 成人特级黄色片久久久久久久| 国产91精品成人一区二区三区| 亚洲人成电影观看| 免费观看精品视频网站| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 国产成人av激情在线播放| 身体一侧抽搐| 精品国产一区二区三区久久久樱花| 欧美丝袜亚洲另类 | 精品第一国产精品| 999久久久国产精品视频| 免费高清在线观看日韩| 欧美成人免费av一区二区三区 | 99国产综合亚洲精品| 十分钟在线观看高清视频www| 国产免费男女视频| 少妇被粗大的猛进出69影院| 免费观看a级毛片全部| 国产精品一区二区免费欧美| 超碰成人久久| 欧美精品亚洲一区二区| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| 久久久久国内视频| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 9色porny在线观看| 日韩欧美国产一区二区入口| av网站免费在线观看视频| 黄色丝袜av网址大全| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 国产成人欧美在线观看 | 久久天躁狠狠躁夜夜2o2o| aaaaa片日本免费| 制服人妻中文乱码| 999久久久国产精品视频| 黑丝袜美女国产一区| 99久久国产精品久久久| 亚洲情色 制服丝袜| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看 | 欧美不卡视频在线免费观看 | 午夜福利在线观看吧| 黑人欧美特级aaaaaa片| 亚洲成人免费av在线播放| 在线看a的网站| av一本久久久久| 国产一区二区三区视频了| 久久久久久久午夜电影 | 免费在线观看日本一区| 久久影院123| 午夜福利影视在线免费观看| 中文字幕制服av| 国产精品国产av在线观看| 久久九九热精品免费| 一级毛片精品| av欧美777| 国产精品偷伦视频观看了| 国产99久久九九免费精品| 午夜免费成人在线视频| 丝袜人妻中文字幕| 韩国av一区二区三区四区| 精品一区二区三卡| 国产熟女午夜一区二区三区| 欧美日韩瑟瑟在线播放| 午夜福利,免费看| 18禁黄网站禁片午夜丰满| 国产精品久久久久成人av| 午夜福利一区二区在线看| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 国产精品久久久av美女十八| 亚洲熟女精品中文字幕| 国产亚洲精品一区二区www | 亚洲av成人一区二区三| 久久亚洲精品不卡| 日韩三级视频一区二区三区| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网| 久久久久国内视频| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月 | 91成人精品电影| 亚洲精华国产精华精| av国产精品久久久久影院| 亚洲美女黄片视频| 国产熟女午夜一区二区三区| 国产精品国产高清国产av | 韩国av一区二区三区四区| 久久久精品免费免费高清| 后天国语完整版免费观看| 咕卡用的链子| 黄色女人牲交| 亚洲免费av在线视频| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 亚洲熟女毛片儿| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 中文字幕制服av| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 色综合婷婷激情| 久久精品aⅴ一区二区三区四区| av福利片在线| 曰老女人黄片| 国产av精品麻豆| 国产高清videossex| 亚洲全国av大片| 人成视频在线观看免费观看| 亚洲国产欧美网| 久热这里只有精品99| 在线观看免费午夜福利视频| 成年版毛片免费区| 日韩视频一区二区在线观看| 人人澡人人妻人| 亚洲欧美色中文字幕在线| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 天堂√8在线中文| 91麻豆av在线| 99久久人妻综合| 又大又爽又粗| 在线观看舔阴道视频| 国产精品国产av在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看. | 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 无遮挡黄片免费观看| 成年人黄色毛片网站| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 在线播放国产精品三级| 啦啦啦免费观看视频1| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 窝窝影院91人妻| 国产精品久久久人人做人人爽| aaaaa片日本免费| 日本黄色视频三级网站网址 | 午夜两性在线视频| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 三级毛片av免费| 在线观看免费视频日本深夜| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 女人被狂操c到高潮| 国产精品国产高清国产av | 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 国产深夜福利视频在线观看| 亚洲中文av在线| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲一区高清亚洲精品| 亚洲国产精品合色在线| 黄色女人牲交| 后天国语完整版免费观看| 一级毛片高清免费大全| 亚洲美女黄片视频| 交换朋友夫妻互换小说| xxx96com| 久久人人97超碰香蕉20202| 丝袜美腿诱惑在线| 法律面前人人平等表现在哪些方面| 亚洲精品国产区一区二| 老鸭窝网址在线观看| 香蕉久久夜色| 国产欧美亚洲国产| 亚洲欧美日韩高清在线视频| 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 天天影视国产精品| 亚洲免费av在线视频| 中文字幕制服av| 桃红色精品国产亚洲av| 亚洲一区中文字幕在线| 少妇裸体淫交视频免费看高清 | 国产av又大| 国产精品乱码一区二三区的特点 | 日本精品一区二区三区蜜桃| 黑人猛操日本美女一级片| tube8黄色片| 精品熟女少妇八av免费久了| 国产一区二区三区视频了| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲熟妇少妇任你| 久久人妻熟女aⅴ| 在线观看免费高清a一片| 国产一区在线观看成人免费| 如日韩欧美国产精品一区二区三区| 母亲3免费完整高清在线观看| 大码成人一级视频| 国产99白浆流出| 精品电影一区二区在线| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3 | 欧美 亚洲 国产 日韩一| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器 | 午夜免费成人在线视频| 国产99久久九九免费精品| 美女视频免费永久观看网站| 久久人妻福利社区极品人妻图片| 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 麻豆av在线久日| 男男h啪啪无遮挡| 亚洲片人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 亚洲久久久国产精品| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽 | 在线观看舔阴道视频| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 日韩免费高清中文字幕av| 欧美黄色片欧美黄色片| 十分钟在线观看高清视频www| 国产视频一区二区在线看| 老司机影院毛片| svipshipincom国产片| 久久人人97超碰香蕉20202| 久久99一区二区三区| 午夜免费鲁丝| 色在线成人网| 欧美乱妇无乱码| 高清欧美精品videossex| 18禁国产床啪视频网站| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 最近最新中文字幕大全电影3 | 久久精品熟女亚洲av麻豆精品| 久久午夜亚洲精品久久| 国产在视频线精品| 亚洲av美国av| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 国产日韩一区二区三区精品不卡| 91麻豆av在线| 99re6热这里在线精品视频| 午夜精品久久久久久毛片777| av不卡在线播放| 亚洲成人国产一区在线观看| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 大陆偷拍与自拍| 国产男女内射视频| 亚洲专区中文字幕在线| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜添小说| 精品视频人人做人人爽| 中文字幕人妻熟女乱码| av不卡在线播放| 99在线人妻在线中文字幕 | 不卡一级毛片| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区 | 狠狠狠狠99中文字幕| 国产精品电影一区二区三区 | 国产男女内射视频| 午夜精品国产一区二区电影| 夜夜爽天天搞| 色播在线永久视频| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 少妇粗大呻吟视频| 大型av网站在线播放| 国产激情欧美一区二区| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 久久国产精品大桥未久av| 黄色怎么调成土黄色| 亚洲精品久久成人aⅴ小说| 亚洲熟女精品中文字幕| 激情在线观看视频在线高清 | 亚洲国产欧美网| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩在线播放| 中文字幕高清在线视频| 黄片小视频在线播放| 狂野欧美激情性xxxx| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 成人永久免费在线观看视频| 一本一本久久a久久精品综合妖精| av网站在线播放免费| 99久久人妻综合| 久久精品亚洲av国产电影网| 曰老女人黄片| 极品教师在线免费播放| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看 | 欧美性长视频在线观看| 亚洲精品国产精品久久久不卡| 国产精品久久电影中文字幕 | 国内毛片毛片毛片毛片毛片| 人人妻人人添人人爽欧美一区卜| 久久精品aⅴ一区二区三区四区| 女人精品久久久久毛片| 成人av一区二区三区在线看| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区免费| 宅男免费午夜| 夫妻午夜视频| 在线视频色国产色| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品1区2区在线观看. | 高清av免费在线| 亚洲美女黄片视频| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 亚洲五月色婷婷综合| 大型av网站在线播放| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 精品人妻1区二区| 男人操女人黄网站| 成年版毛片免费区| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 免费在线观看日本一区| 91麻豆精品激情在线观看国产 | 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 香蕉国产在线看| 一级黄色大片毛片| 亚洲一码二码三码区别大吗| 脱女人内裤的视频| 国产精品免费一区二区三区在线 | 黄色成人免费大全| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 天堂√8在线中文| 伦理电影免费视频| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 99久久国产精品久久久| 精品卡一卡二卡四卡免费| 国产三级黄色录像| 国产精品一区二区免费欧美| 久久精品aⅴ一区二区三区四区| 首页视频小说图片口味搜索| 自线自在国产av| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 久久精品成人免费网站| 国产在视频线精品| 久久精品人人爽人人爽视色| 一级毛片女人18水好多| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 国产精品久久久av美女十八| 十分钟在线观看高清视频www| 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 久久热在线av| 人妻 亚洲 视频| 操美女的视频在线观看| 亚洲五月色婷婷综合| 久久久久久久精品吃奶| 咕卡用的链子| 亚洲人成77777在线视频| 日日摸夜夜添夜夜添小说| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 黄片小视频在线播放| 欧美大码av| 国产免费av片在线观看野外av| 午夜久久久在线观看| av欧美777| 欧美另类亚洲清纯唯美| 日本欧美视频一区| 中出人妻视频一区二区| 亚洲成人免费av在线播放| 免费在线观看亚洲国产| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 日本黄色视频三级网站网址 | 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 亚洲国产欧美网| 日韩视频一区二区在线观看| 一级毛片高清免费大全| videosex国产| 精品高清国产在线一区| 久久久久久久午夜电影 | 在线十欧美十亚洲十日本专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 在线观看舔阴道视频| 国产精品av久久久久免费| 亚洲午夜理论影院| 国产精品自产拍在线观看55亚洲 | 女性生殖器流出的白浆| 精品国产乱子伦一区二区三区| 亚洲久久久国产精品| 免费观看精品视频网站| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 亚洲成人免费av在线播放| 操美女的视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 无人区码免费观看不卡| 999精品在线视频| 亚洲熟女精品中文字幕| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 少妇粗大呻吟视频| 亚洲人成电影免费在线| www.自偷自拍.com| 色婷婷av一区二区三区视频| 涩涩av久久男人的天堂| 国产成人欧美在线观看 | 老司机福利观看| 久久狼人影院| 国产精品永久免费网站| 亚洲成人国产一区在线观看| 精品第一国产精品| 欧美日本中文国产一区发布| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 亚洲av成人一区二区三| 老司机影院毛片| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 老司机在亚洲福利影院| 免费看十八禁软件| 精品一区二区三区视频在线观看免费 | 在线观看免费视频日本深夜| 中国美女看黄片| 成人特级黄色片久久久久久久| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 中出人妻视频一区二区| 国产主播在线观看一区二区| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 中文字幕av电影在线播放| 国产一区二区三区在线臀色熟女 | 久热爱精品视频在线9| 成人手机av| 国产欧美日韩一区二区三区在线| 69精品国产乱码久久久| 亚洲av成人不卡在线观看播放网| 亚洲精品乱久久久久久| 国产一区在线观看成人免费| 色尼玛亚洲综合影院| 亚洲第一青青草原| 免费观看精品视频网站| 99在线人妻在线中文字幕 | 成人免费观看视频高清| 欧美乱码精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 高潮久久久久久久久久久不卡| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲五月色婷婷综合| 欧美色视频一区免费| av天堂在线播放| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 中文字幕人妻丝袜制服| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区蜜桃| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 制服人妻中文乱码| 久久久久久久午夜电影 | av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 91九色精品人成在线观看| 亚洲国产精品一区二区三区在线| 在线观看66精品国产| 一区在线观看完整版| videos熟女内射| 丰满人妻熟妇乱又伦精品不卡| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 天天操日日干夜夜撸| 一区二区三区激情视频| 午夜老司机福利片| 久久狼人影院| 精品一区二区三区av网在线观看|