• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.)

    2018-06-04 03:33:26ShshiKumrGuptThirunvukkrsuNepolenbChinnGhouseShikhKedrnthRiChrlesThomsHshcRomRniDsAbhishekRthore
    The Crop Journal 2018年3期

    Shshi Kumr Gupt*,Thirunvukkrsu Nepolenb,Chinn Ghouse ShikhKedrnth RiChrles Thoms Hshc,Rom Rni DsAbhishek Rthore

    aInternational Crops Research Institute for the Semi-Arid Tropics(ICRISAT),Patancheru 502 324,India

    bIndian Agricultural Research Institute(IARI),New Delhi 110012,India

    cInternational Crops Research Institute for the Semi-Arid Tropics(ICRISAT),Niamey BP 12404,Niger

    1.Introduction

    Pearl millet(Pennisetum glaucum[L.]R.Br.)is a major food and fodder crop for farmers living on marginal agricultural lands in the arid and semi-arid tropics of Africa and Asia(largely India).Its grain serves as staple food and its stover is equally important for livestock in these marginal economies.In India,pearl millet breeding programs have been developing hybrids since the 1960s,and hybrids presently occupy about 5 Mha of the total of>8 Mha under cultivation,especially in higher-yielding environments.Hybrid adoption contributed to a crop productivity increase from 288 kg ha?1during 1951–1955 to 1164 kg ha?1during 2013–2014,registering an improvement of about 300%for pearl millet in India[1].Although this order of productivity gain is quite impressive for a crop grown under low-input conditions in marginal environments,greater advances are possible if hybrids are developed based on heterosis prediction using parental information for genetic diversity.The level of genetic diversity between parents has been proposed as a predictor of F1hybrid performance and heterosis[2,3].This predictive method may help to identify more heterotic combinations,thus reducing costs associated with making crosses and field evaluation to select promising hybrids.

    Conflicting results with respect to the relationship between genetic distance and heterosis have been reported in various crops.Some earlier work is in agreement with the classical theories of heterosis;Zhang et al.[4]in rice(Oryza sativa),Riaz et al.[5]in rapeseed(Brassica napus),and Kiula et al.[6]in maize(Zea mays)found molecular marker-based genetic diversity to be linked to increased heterosis.In contrast,several other studies reported little or no possibility of predicting heterosis from molecular marker-based genetic distance in other crops[7–9].

    In a pearl millet study conducted earlier on a limited number of parental lines with a narrow range of molecular diversity,there was no correlation between molecular marker-based genetic distance and heterosis for grain yield[10].In our earlier work based on a large number of potential hybrid parents and SSR markers[11?12],we observed a wide spectrum of genetic diversity among the hybrid parents,and markers were well able to group genotypes related by pedigree and traits.Based on these results,hybrids involving parental lines with varying genetic distances were evaluated in this study along with their parental lines for yield and other agronomic traits.The trial data was investigated,with the aim of assessing the relationship between genetic distance based on molecular markers and phenotypic traits including performance per se,heterosis for grain and stover yield,and other agronomic traits.

    2.Materials and methods

    2.1.Experimental material

    The basic genetic material for this study comprised two sets of parental lines.The first set(hereafter,referred as Set I)comprised of 213 lines,which involved 98 maintainer parents(designated between 1984 and 2004 at ICRISAT,Patancheru,India)and 115 restorer parents(designated between 1985 and 1995 at ICRISAT,Patancheru,India).The second set(hereafter,referred as Set II)comprised of 166 hybrid parents,which comprised 88 maintainer parents and 78 restorer parents bred at ICRISAT,Patancheru,India since 2004.Genotyping data was generated using 38 SSRs for 213 lines in Set I[11]and its subset of 28 SSRs for 166 lines in Set II[12].Genotyping data of both the sets were analyzed using Darwin 5.0[13].The SSRs were highly polymorphic and 30 of them were distributed over all seven linkage groups in earlier studies[14–17](Table 1).A dissimilarity matrix was calculated for pairs of maintainer parents(B lines)×restorer parents(R lines)using simple matching[13].Twenty-two and 29 hybrid combinations were identified for sets I and II,respectively,based on genetic distance between B and R lines.Hybrid combinations were identified,considering that pairs with diverse pedigree parents were selected,and the genetic distances between B and R lines of pairs represented all levels(low,medium and high)of genetic distance.Genetic distance varied from 0.19 to 0.90 between B and R lines of Set I and from 0.17 to 0.93 in Set II lines.Seed of these identified hybrid combinations was produced in summer season of 2008(for Set I)and 2009(for Set II).Twenty-two hybrids(20 B×R and 2 R×R)were developed from Set I lines using 20 B lines and 23 R lines.Twenty-nine B×R hybrids were developed from Set II lines using 29 each of maintainer and restorer parents.

    2.2.Field trials

    Hybrids and their parents were planted in alfisol soils in two seasons(rainy season of 2008 and summer season of 2010 for Set I,and rainy season of 2009 and summer season of 2010 for Set II),in randomized complete block designs with three replications,at ICRISAT,Patancheru,India(17.35°N latitude,78.27°E longitude).Plots consisted of four rows of 4 m length with inter-row spacing of 60 cm in summer season and 75 cm in rainy season with an interplot spacing of 10–15 cm within rows.The hybrids and parents were planted in separate but adjacent blocks within each replication and randomization was performed separately for crosses and parents.Data were recorded for time to flowering as number of days from sowing to full stigma emergence on the main panicle of 50%plants in a plot.Plant height(cm),number of productive tillers,panicle length(cm),and panicle diameter(mm)were recorded for five competitive plants from the central two rows of a plot.At maturity,panicles were harvested manually,sun-dried for two weeks,and threshed to determine grain weight(g).Remaining plants were cut at ground level and fresh stover weight was recorded(kg).About 1 kg of fresh stover was then chopped and oven-dried to determine plot dry weight(kg).Grain and stover(fresh and dry)yield were converted to kg ha?1.A random sample of 200 kernels for each plot was weighed and multiplied by five to determine 1000-grain weight(g).Data for days to 50%flowering and dry stover yield were available from only one season in Set II of hybrids and parents.

    2.3.Data analysis

    Euclidean distance(ED)was calculated based on eight phenotypic traits(days to50%flowering,plant height,productive tillers, panicle length, panicle diameter,1000-grain weight,grain yield,and dry stover yield)and simple matching distance(SM)was computed using SSR data for both sets of hybrid parents.Population structure analysis was performed with STRUCTURE software version 2.3.4[18].

    The dissimilarity matrices from phenotypic traits and from molecular markers were used to construct dendrograms based on Wars hierarchical agglomerative clustering using R version 3.2.2[19]and unweighted pair group method with arithmetic mean(UPGMA)using Darwin.Analysis of variance(ANOVA)was performed using SAS 9.4 for Windows[20]to identify significant differences between the F1s and their parents and among the F1s.For all the traits,absolute mid-parent heterosis(AMPH),relative mid-parent heterosis(RMPH),and better-parent heterosis(BPH)were calculated as follows:

    where,F1is trait value for hybrid performance,BP is trait value for better parent,and MP is mid parental trait value.

    where,P1is trait value for first parent and P2is trait value for second parent.

    Pearson's correlation coefficients between SM and ED were estimated for both sets of parents separately considering all traits and markers and between SM and ED on one hand and better-parent heterosis,mid-parent heterosis and hybrid performance on the other,for all traits and both sets of hybrids.

    3.Results

    3.1.SSR polymorphism and parental relatedness

    3.1.1.Set I

    The 38 SSR loci detected a total of 232 alleles in 43 lines(20 B and 23 R lines),with an average of 6.05 alleles per locus.The number of alleles per locus varied from 2 to 17(Table 1).Nineteen of the 38 SSRs were highly polymorphic,with PIC values varying from 0.62 to 0.89 and averaging 0.58.Gene diversity varied from 0.09(Xicmp3048)to 0.9(Xpsmp2218)withan average of 0.62.The level of heterozygosity in SSRs across B lines and R lines ranged from 0.02 to 0.09 and averaged 0.029,exceeding 0.05 in six SSRs.Allele sizes for the internal control(Tift23dD2B1)were uniform and reproducible for each of the markers,indicating the accuracy of the protocol and reproducibility of allelic data for a given primer across assays in both the sets of parental lines.

    Table 1–Chromosome position,allelic composition,polymorphic information content(PIC),gene diversity,and observed heterozygosity of simple sequence repeat loci based on 101 parents(43 of Set I and 58 of Set II).

    Fig.1–Clustering pattern of parents based on Euclidean distance based on eight morphological traits using Ward's method.Genotypes shown in red are R lines and in blue are B lines.(a)43 parents of Set I hybrids,(b)58 parents of Set II hybrids.

    All 20 B lines and 23 R lines were diverse in parentage,resulting in a wide range of ED and SM estimates.SM among pairs of B and R lines ranged from 0.04 to 0.95 with a mean of 0.61,and ED varied from 1.22 to 7.44 with a mean of 4.17.

    3.1.2.Set II

    The 28 SSR loci detected 192 alleles in 58 lines(29 B lines and 29 R lines),with an average of 6.75 alleles per locus.The number of alleles per locus varied from 2 to 16(Table 1).Twelve of the28SSRs were highly polymorphic,with PIC values ranging from 0.60 to 0.91 and averaging 0.56.Gene diversity varied from 0.19(Xpsmp2222)to 0.92(Xpsmp2089).The level of heterozygosity in SSRs across B and R lines ranged from 0.01 to 0.18 and averaged 0.036,exceeding 0.05 in six SSRs.

    All 58 lines(29 each of B and R lines)were diverse in parentage;the range of SM was from 0.06 to 0.88 with a mean of 0.58.ED varied from 0.99 to 7.99 with a mean of 3.57.

    3.2.Cluster analysis based on phenotypic traits and molecular data

    3.2.1.Set I

    The dendrograms from cluster analysis based on the ED and SM matrices are presented in Figs.1-a and 2-a,respectively.The ED-based clustering formed two separate clusters for R lines(with 13 and 5 R lines each)and two separate clusters for B lines(with 10 and two B lines each),and one cluster contained a mixture of six B lines and five R lines(Fig.1-a).The SM-based dendrogram clearly grouped B and R lines into separate clusters with only one B and R line each found in contrasting clusters(Fig.2-a).In the structure-based population stratification analysis,B and R lines were clearly separated into two subgroups(Fig.3).

    3.2.2.Set II

    The dendrograms from cluster analysis based on ED and SM matrices are presented in Figs.1-b and 2-b,respectively.The ED-based clustering formed two separate major clusters for R lines(26 R lines)and two clusters for B lines(with 3 and 22 B lines each)(Fig.1-b).The SM-based dendrogram clearly partitioned B and R lines into separate clusters with two B and three R lines found in alternate clusters(Fig.2-b).In the structure analysis,the majority of the lines fell into their respective B and R groups,though there was some admixture(Fig.3).

    3.3.Performance per se and heterosis

    A combined analysis of variance across both the seasons for all phenotypic traits in both the sets of hybrids and parents showed highly significant differences among the parents and the F1s(results not presented).Parents vs.F1,which tests for heterosis,was also highly significant for all the traits.The means and ranges of heterosis for grain yield and other important traits are presented in Table 2.The extent of heterosis varied considerably for different traits.Grain yield showed the highest RMPH in both sets of hybrids(76.5%in Set I and 86.2%in Set II),followed by plant height,1000-grain weight,and panicle length in both sets.RMPH for grain yield varied from 37.1%(ICMB 92111×IPC 1000)to 155.9%(ICMB 04777×IPC 569)in Set I hybrids,and from 23.1%(B-4×R-33)to 154.3%(B-12×R-41)in Set II hybrids.Grain yield showed the highest BPH in both sets of hybrids,with a mean of 56.3%in Set I and a range of 20.7%–122.3%and a mean of 65.3%with range of?19%–118%in Set II.

    3.4.Correlation of parental diversity with hybrid performance per se and heterosis

    The correlations of ED and SM with hybrid performance,mid-parent heterosis,and better-parent heterosis for different traits in both sets of hybrids are presented in Table 3.ED and SM showed no correlation with hybrid performance for any of the traits in either Set of hybrids,whereas ED showed a significant negative correlation with better-parent heterosis for panicle diameter in Set I and with panicle length in Set II hybrids.ED showed a positive significant correlation(r=0.38;P<0.05)with better-parent heterosis for grain yield in both sets of hybrids.SM showed a significant positive correlation with better-parent heterosis for panicle diameter in Set II hybrids.

    ED showed a significant positive correlation with mid-parent heterosis for grain yield(r=0.59 for Set I and r=0.50 for Set II),whereas for plant height and dry stover yield it showed a positive correlation for Set I hybrids only.No significant correlation was found between SM and heterosis for grain yield and dry stover yield,though a positive correlation was found for plant height in Set I hybrids and for productive tillers and panicle diameter in Set II hybrids.The correlation between ED and SM(r=0.2,P<0.001)for parental lines of both the hybrid sets was positive and significant but very low(Fig.4-a,b).

    4.Discussion

    Set I,comprising 213 pearl millet hybrid parents(98 B lines and 115 R lines),and Set II.comprising 166 hybrid parents(88 B lines and 78 R lines)were found to be genetically diverse sets of hybrid parents.SSR analysis in each of these two sets showed B and R lines falling in two separate clusters[11,12].This result indicated that SSRs used in those studies could detect the morphological differences for which B and R lines are bred in ICRISAT's trait-specific breeding program of pearl millet.The structure-based population stratification analysis also explained the grouping pattern between B and R lines in Set I and Set II.Set I was separated into two subgroups,in which B and R-lines were clearly separated.In Set II,though there was some admixture,a majority of the lines fell into their respective B and R groups.Cross-breeding between B and R lines may account for the presence of admixture in the lines(12).Thus,22 hybrid combinations(20 B×R and two R×R)from Set I and 29(B×R)from Set II,having 0.1 to 0.9 SM between their parents,were evaluated along with the parental lines selected for investigation.

    Fig.2–Clustering pattern of parents based on simple matching distance.Genotypes shown in red are R lines and those in blue are B lines.(a)43 parents of Set I hybrids using 38 SSRs,(b)58 parents of Set II hybrids using 28 SSRs.

    Table 2–Parental and F1performance along with mean and range for absolute mid-parent heterosis(AMPH),relative mid-parent heterosis(RMPH),and better-parent heterosis(BPH)for morphological traits in two sets of pearl millet hybrids evaluated in two seasons at ICRISAT,Patancheru,India.

    In this study,SM was poorly,though significantly and positively(r=0.2,P<0.001),correlated with ED in both sets of hybrids.Earlier studies have also shown both theoretically and experimentally that molecular marker distance does not necessarily correspond to phenotypic trait-based differences[21,22].According to Burstin and Charcosset[22],polygenic inheritance and linkage disequilibrium could cause such low levels of relationship between the two measures of diversity.

    The molecular and phenotypic distance measurements differed in their ability to predict heterosis and F1performance.Neither phenotypic(ED)nor molecular genetic distance(SM)showed any correlation with hybrid performance per se for grain yield in either set of hybrids.Phenotypic distance was significantly correlated(r=0.38,P<0.05)with better-parent heterosis in both sets,and with mid-parent heterosis(r=0.59,P<0.01 in Set I and r=0.50,P<0.01 in Set II).In contrast,molecular distance was not significantly correlated with either better-parent heterosis,hybridperformance,or mid-parent heterosis for grain yield in either set of hybrids.Chowdari et al.[10]also found a non-significant correlation between genetic distances based on 20 RAPDs and mid-parent heterosis for grain yield in pearl millet.Similarly,Teklewold and Becker[9]found genetic distance estimation from phenotypic traits to be a better predictor of mid-parent heterosis and F1performance than genetic distance estimated from RAPD markers in Ethiopian mustard(Brassica carinata).Riday et al.[7]found a significant correlation of heterosis with morphological distance but not with molecular distance based on microsatellite and AFLP markers in two subspecies of Medicago sativa.

    Table 3–Correlations of Euclidean distance(ED)and simple matching distance(SM)with hybrid performance,relative mid-parent heterosis,and better-parent heterosis in pearl millet hybrids evaluated in two seasons at ICRISAT,Patancheru,India.

    In contrast to our observation of lack of correlation between molecular marker-based genetic distance and heterosis for grain yield in both sets of hybrids in pearl millet,Knaak and Ecke[23],and Riaz et al.[5]reported the utility of molecular marker-based distance among parental lines in rapeseed to predict heterosis,especially when the parents were genetically related.In our study also,most of the B and R lines fell into clear-cut separate broad-based diverse gene pools.The wide diversity between B and R lines is a consequence of trait-specific breeding,which B and R lines undergo during their development process,and also of the involvement of separate breeding stocks in their parentage,leading to high levels of genetic unrelatedness between B and R lines.This high level of unrelatedness might have resulted in a lack of correlation between genetic distance and heterosis in B×R crosses in both sets.Other likely reasons for low or no correlation between molecular distance and heterosis and/or F1performance might be inadequate genome coverage,or due to random dispersion of molecular markers[24].The presence of multiple alleles[25]and epistasis[2]could also cause the low correlation of SM with heterosis and F1performance.

    Significant correlation between genetic distance and heterosis was reported in intra-group crosses of inbred lines compared to intergroup crosses in maize[6,26].Thus,making intra-group crosses in our materials,say B×B or R×R,might reveal a significant linear relationship with heterosis and lead to identification of heterotic crosses.This approach can help hybrid parental line development programs to develop parents(B lines and R lines)with high yield per se.Also,there is a need to investigate the relationship between SM and combining ability of parents,an important component of hybrid breeding to enable breeders to predict heterosis based on genetic distances between parents.

    5.Conclusions

    This study based on phenotypic traits and molecular markers in diverse hybrid parents showed that molecular marker-based distance was not strongly correlated with phenotype-based distance,a conclusion that invites further investigation with a higher number of markers evenly distributed across all linkage groups.Also,it revealed that marker-based distance was not a reliable predictor of heterosis in hybrids produced from crosses between maintainer and restorer parents in pearl millet.This observation might be due to B and R lines behaving as parts of two broad-based diverse and different gene pools,leading to higher levels of genetic diversity where heterosis might not be correlated with diversity.It might also be due to the concentration of the markers used in the study in relatively short segments of chromosomes that lacked linkage with heterosis for grain yield and its component traits.Given that earlier studies have reported higher probabilities of predicting heterosis in intra-group crosses,we suggest that B line×B line and R line×R line intra-group crosses should be investigated in search of a linear relationship between heterosis and genetic distance.This can also help line breeding programs to generate hybrid parents with higher per se productivity.However,phenotypic trait-based genetic distance was,to some extent,able to predict mid-parent heterosis and better-parent heterosis for grain yield.Accordingly,it is suggested that the relationship between phenotypic distance and heterosis should be further investigated to determine whether phenotypic distance can be reliably used to select potential parents for heterotic and high-yielding hybrids.

    Fig.3–Structure-based population stratification analysis of B-and R-lines of Set I and Set II.

    Fig.4–Relationship between phenotyping distance(ED)and molecular distance(SM)based on all pairwise combinations of parental lines of(a)Set I,and(b)Set II.

    Acknowledgments

    This research was supported by the ICRISAT-Sehgal Family Foundation Endowment Fund(YSFF06)and the CGIAR Research Program on Dryland Cereals.

    [1]O.P.Yadav,R.S.Mahala,K.N.Rai,S.K.Gupta,B.S.Rajpurohit,H.P.Yadav,Pearl Millet Seed Production and Processing,All India Coordinated Research project on Pearl millet,Indian Council of Agricultural Research,Mandor,Jodhpur,Rajasthan,India,2015.

    [2]R.H.Moll,J.H.Lonnquist,J.V.Fortuno,E.C.Johnson,The relationship of heterosis and genetic divergence in maize,Genetics 52(1965)139–144.

    [3]D.S.Falconer,T.F.C.Mackay,Introduction to Quantitative Genetics,4th edition Longmans Green,Essex,UK,1996.

    [4]Q.F.Zhang,Z.Q.Zhou,G.P.Yang,C.G.Xu,K.D.Liu,Molecular marker heterozygosity and hybrid performance in indica and japonica rice,Theor.Appl.Genet.93(1996)1218–1224.

    [5]A.Riaz,G.Li,Z.Quresh,M.S.Swati,C.F.Quiros,Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance,Plant Breed.120(2001)411–415.

    [6]B.A.Kiula,N.G.Lyimo,A.M.Botha,Association between AFLP-based genetic distance and hybrid performance in tropical maize,Plant Breed.127(2008)140–144.

    [7]H.Riday,E.C.Brummer,T.A.Campbell,D.Luth,P.M.Cazcarro,Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp.sativa and subsp.falcata,Euphytica 131(2003)37–45.

    [8]L.F.Geleta,M.T.Labuschagne,C.D.Viljoen,Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper,Plant Breed.123(2004)467–473.

    [9]A.Teklewold,H.C.Becker,Comparison of phenotypic and molecular distances to predict heterosis and F1performance in Ethiopian mustard(Brassica carinata A.Braun),Theor.Appl.Genet.112(2006)752–759.

    [10]K.V.Chowdari,S.R.Venkatachalam,A.P.Davierwala,V.S.Gupta,P.K.Ranjekar,O.P.Govila,Hybrid performance and genetic distance as revealed by the(GATA)4microsatellite and RAPD markers in pearl millet,Theor.Appl.Genet.97(1998)163–169.

    [11]T.Nepolean,S.K.Gupta,S.L.Dwivedi,R.Bhattacharjee,K.N.Rai,C.T.Hash,Genetic diversity in maintainer and restorer lines of pearl millet,Crop Sci.52(2012)2555–2563.

    [12]S.K.Gupta,T.Nepolean,S.M.Sankar,A.Rathore,R.R.Das,K.N.Rai,Patterns of molecular diversity in current and previously developed hybrid parents of pearl millet[Pennisetum glaucum(L.)R.Br.],Am.J.Plant Sci.06(2015)1697–1712.

    [13]X.Perrier,A.Flori,F.Bonnot,Data analysis methods,in:P.Hamon,M.Seguin,X.Perrier,J.C.Glaszmann(Eds.),Genetic Diversity of Cultivated Tropical Plants,Science Publishers,Enfield,USA 2003,pp.43–76.

    [14]O.P.Yadav,S.E.Mitchell,A.Zamora,T.M.Fulton,S.Kresovich,Development of new simple sequence repeat markers for pearl millet,SAT eJournal 3(2007)34.

    [15]S.Senthilvel,B.Jayashree,V.Mahalakshmi,P.S.Kumar,S.Nakka,T.Nepolean,C.T.Hash,Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags,BMC Plant Biol.8(2008)119.

    [16]V.Rajaram,T.Nepolean,S.Senthilvel,R.K.Varshney,V.Vadez,R.K.Srivastava,T.M.Shah,A.Supriya,S.Kumar,B.R.Kumari,A.Bhanuprakash,M.L.Narasu,Oscar Riera-Lizarazu,C.T.Hash,Pearl millet[Pennisetum glaucum(L.)R.Br.]consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs,BMC Genomics 14(2013)159.

    [17]K.H.Moumouni,B.A.Kountche,M.Jean,C.T.Hash,Y.Vigouroux,B.I.G.Haussmann,F.Belzile,Construction of a genetic map for pearl millet,Pennisetum glaucum(L.)R.Br.,using a genotyping-by-sequencing(GBS)approach,Mol.Breed.(2015)35.

    [18]J.K.Pritchard,M.Stephens,P.Donnelly,Inference of population structure using multilocus genotype data,Genetics 155(2000)945–959.

    [19]R Development Core Team,R:A Language and Environment for Statistical Computing,R Foundation for Statistical Computing,Vienna,Austria,2015.

    [20]SAS Institute,Base SAS 9.4 Procedures Guide,SAS Institute,Cary,North Carolina,USA,2015.

    [21]J.Burstin,A.Charcosset,Y.Barriere,Y.Hebert,D.Vienne,C.Damerval,Molecular markers and protein quantities as genetic descriptors in maize.II.Prediction of performance of hybrids for forage traits,Plant Breed.114(1995)427–433.

    [22]J.Burstin,A.Charcosset,Relationship between phenotypic and marker distances:theoretical and experimental investigations,J.Hered.79(1997)477–483.

    [23]C.Knaak,W.Ecke,Genetic diversity and hybrid performance in European winter oilseed rape(Brassica napus L.),Proceedings of the 9th International Rapeseed Congress,July 4–7,1995,Cambridge,UK 1995,pp.110–112.

    [24]R.Bernardo,Relationship between single-cross performance and molecular marker heterozygosity,Theor.Appl.Genet.83(1992)628–634.

    [25]C.E.Cress,Heterosis of the hybrid related to gene frequency differences between two populations,Genetics 53(1966)86–94.

    [26]A.Menkir,A.Melake-Berhan,C.The,I.Ingelbrecht,A.Adepoju,Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers,Theor.Appl.Genet.108(2004)1582–1590.

    可以免费在线观看a视频的电影网站| 老司机靠b影院| 国产成+人综合+亚洲专区| 久久国产亚洲av麻豆专区| 欧美另类亚洲清纯唯美| 国产区一区二久久| 亚洲国产av新网站| 亚洲av日韩在线播放| 成人亚洲精品一区在线观看| 深夜精品福利| 91av网站免费观看| 老熟女久久久| 精品高清国产在线一区| 天堂8中文在线网| 女警被强在线播放| 欧美成狂野欧美在线观看| 色精品久久人妻99蜜桃| 亚洲精品自拍成人| 狠狠婷婷综合久久久久久88av| 欧美黄色片欧美黄色片| 国产91精品成人一区二区三区 | 亚洲午夜精品一区,二区,三区| 亚洲午夜精品一区,二区,三区| 一级黄色大片毛片| 久久久久久久大尺度免费视频| 手机成人av网站| 亚洲专区中文字幕在线| 一边摸一边做爽爽视频免费| www.熟女人妻精品国产| 免费一级毛片在线播放高清视频 | 国产亚洲精品久久久久5区| 国产成人精品久久二区二区91| 69精品国产乱码久久久| 伦理电影免费视频| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲视频免费观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 又紧又爽又黄一区二区| 久久久久网色| 法律面前人人平等表现在哪些方面 | 国产激情久久老熟女| 日韩大片免费观看网站| 色婷婷av一区二区三区视频| 熟女少妇亚洲综合色aaa.| 国产99久久九九免费精品| 中文字幕高清在线视频| 亚洲色图综合在线观看| 真人做人爱边吃奶动态| 美女国产高潮福利片在线看| 亚洲精品成人av观看孕妇| 欧美日韩av久久| 97人妻天天添夜夜摸| 美国免费a级毛片| 国产成人av教育| 午夜精品久久久久久毛片777| 亚洲人成77777在线视频| 久久人妻熟女aⅴ| 天天操日日干夜夜撸| av福利片在线| 日本vs欧美在线观看视频| 少妇的丰满在线观看| 中文字幕最新亚洲高清| 国产成人啪精品午夜网站| 大型av网站在线播放| 国产男女超爽视频在线观看| 欧美在线黄色| 午夜视频精品福利| www.自偷自拍.com| 日本91视频免费播放| tube8黄色片| 精品人妻一区二区三区麻豆| 韩国精品一区二区三区| 精品亚洲成a人片在线观看| 男人添女人高潮全过程视频| 久久精品国产a三级三级三级| 欧美 日韩 精品 国产| 好男人电影高清在线观看| 国产精品影院久久| 丁香六月天网| 日本欧美视频一区| 中文字幕人妻丝袜一区二区| 国产免费现黄频在线看| 国产精品av久久久久免费| 美女脱内裤让男人舔精品视频| 大陆偷拍与自拍| 99精品久久久久人妻精品| 男女边摸边吃奶| 亚洲av电影在线进入| 免费观看av网站的网址| 亚洲精品美女久久av网站| 日韩欧美国产一区二区入口| 超碰97精品在线观看| 精品一区二区三区四区五区乱码| 亚洲精品日韩在线中文字幕| 欧美日韩福利视频一区二区| 亚洲综合色网址| 高潮久久久久久久久久久不卡| 夫妻午夜视频| 免费在线观看日本一区| 一本久久精品| 热99国产精品久久久久久7| a级毛片黄视频| videos熟女内射| 日韩欧美一区视频在线观看| 日韩欧美一区视频在线观看| 精品国产一区二区三区久久久樱花| av网站免费在线观看视频| 亚洲精品日韩在线中文字幕| 亚洲天堂av无毛| 麻豆av在线久日| 久久精品亚洲av国产电影网| 国产成人影院久久av| 最新在线观看一区二区三区| 精品国产乱子伦一区二区三区 | 高清欧美精品videossex| 欧美少妇被猛烈插入视频| 国产亚洲欧美精品永久| 777米奇影视久久| 久久久精品国产亚洲av高清涩受| 老司机午夜福利在线观看视频 | 纵有疾风起免费观看全集完整版| 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 亚洲人成电影免费在线| 熟女少妇亚洲综合色aaa.| 爱豆传媒免费全集在线观看| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 国产男人的电影天堂91| 精品久久蜜臀av无| 成人三级做爰电影| 高清av免费在线| 精品少妇久久久久久888优播| 精品少妇内射三级| 无遮挡黄片免费观看| 亚洲av日韩在线播放| bbb黄色大片| 十分钟在线观看高清视频www| bbb黄色大片| av片东京热男人的天堂| 天堂8中文在线网| 中文字幕av电影在线播放| 欧美精品啪啪一区二区三区 | 成人国产一区最新在线观看| 成年动漫av网址| 国产欧美日韩一区二区三 | 操出白浆在线播放| 成人国语在线视频| 少妇的丰满在线观看| 一本色道久久久久久精品综合| 可以免费在线观看a视频的电影网站| 国产精品一区二区在线不卡| 精品久久久精品久久久| 久久久久久免费高清国产稀缺| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 日本黄色日本黄色录像| 国产在线免费精品| 汤姆久久久久久久影院中文字幕| 欧美在线一区亚洲| 交换朋友夫妻互换小说| 1024视频免费在线观看| 国产精品亚洲av一区麻豆| 久久热在线av| 在线 av 中文字幕| 亚洲精品国产区一区二| h视频一区二区三区| 91av网站免费观看| 亚洲五月婷婷丁香| 狂野欧美激情性xxxx| 日日夜夜操网爽| 在线观看www视频免费| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 国产亚洲av片在线观看秒播厂| 高清黄色对白视频在线免费看| 久久久精品94久久精品| 国产精品影院久久| 青草久久国产| 中文字幕精品免费在线观看视频| 在线永久观看黄色视频| 两人在一起打扑克的视频| a 毛片基地| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 老司机深夜福利视频在线观看 | 黄色a级毛片大全视频| 亚洲伊人色综图| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 亚洲av成人不卡在线观看播放网 | 欧美日本中文国产一区发布| 菩萨蛮人人尽说江南好唐韦庄| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三 | a级毛片黄视频| 91精品三级在线观看| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 亚洲国产精品999| bbb黄色大片| 欧美精品啪啪一区二区三区 | 成人三级做爰电影| 国产精品影院久久| 欧美日韩视频精品一区| 超碰成人久久| videosex国产| 中国国产av一级| 另类精品久久| 男女下面插进去视频免费观看| 国产男女内射视频| 国产精品久久久久久精品古装| 亚洲国产日韩一区二区| 亚洲avbb在线观看| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 国产成人啪精品午夜网站| 中文字幕制服av| 精品免费久久久久久久清纯 | 日韩有码中文字幕| 精品少妇一区二区三区视频日本电影| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久| 91字幕亚洲| 亚洲黑人精品在线| 高清欧美精品videossex| 国产一卡二卡三卡精品| 女人精品久久久久毛片| 999精品在线视频| 国产福利在线免费观看视频| 男男h啪啪无遮挡| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 欧美精品啪啪一区二区三区 | 国产成人啪精品午夜网站| 成年av动漫网址| 1024视频免费在线观看| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 国产97色在线日韩免费| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 亚洲成人手机| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 成人国产av品久久久| 999久久久国产精品视频| www.av在线官网国产| 国产极品粉嫩免费观看在线| 韩国高清视频一区二区三区| 51午夜福利影视在线观看| 一区二区三区四区激情视频| 天天影视国产精品| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 欧美xxⅹ黑人| 天堂8中文在线网| 天天影视国产精品| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| 一级a爱视频在线免费观看| 国产av精品麻豆| 久久ye,这里只有精品| 飞空精品影院首页| 大香蕉久久成人网| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片| 9色porny在线观看| 久久毛片免费看一区二区三区| 黄色片一级片一级黄色片| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频 | 老司机靠b影院| 亚洲黑人精品在线| 久久精品国产综合久久久| 国产一卡二卡三卡精品| 高清av免费在线| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 国产亚洲精品久久久久5区| 一区二区三区四区激情视频| 高清欧美精品videossex| 国产91精品成人一区二区三区 | 亚洲欧美日韩高清在线视频 | 久久国产精品大桥未久av| 看免费av毛片| 深夜精品福利| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 午夜激情久久久久久久| 麻豆乱淫一区二区| av网站免费在线观看视频| 国精品久久久久久国模美| 国产av一区二区精品久久| 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 少妇裸体淫交视频免费看高清 | 久久久国产精品麻豆| 国产片内射在线| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 亚洲精品一卡2卡三卡4卡5卡 | 可以免费在线观看a视频的电影网站| 另类精品久久| 91国产中文字幕| 国产精品1区2区在线观看. | 国产无遮挡羞羞视频在线观看| 91成年电影在线观看| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 777米奇影视久久| 成人国产一区最新在线观看| 99久久国产精品久久久| 韩国精品一区二区三区| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 国产精品 国内视频| 五月天丁香电影| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 欧美另类亚洲清纯唯美| 精品一区二区三卡| 色婷婷av一区二区三区视频| 91成人精品电影| 制服诱惑二区| 成人av一区二区三区在线看 | 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 999精品在线视频| 国产黄频视频在线观看| 纵有疾风起免费观看全集完整版| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| av片东京热男人的天堂| 新久久久久国产一级毛片| 欧美亚洲 丝袜 人妻 在线| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 热99re8久久精品国产| 每晚都被弄得嗷嗷叫到高潮| 日本av免费视频播放| 激情视频va一区二区三区| 大型av网站在线播放| 老司机亚洲免费影院| 免费观看av网站的网址| av国产精品久久久久影院| 一个人免费看片子| 老司机午夜十八禁免费视频| 天天躁夜夜躁狠狠躁躁| 性少妇av在线| 日本91视频免费播放| 首页视频小说图片口味搜索| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 啦啦啦啦在线视频资源| 大香蕉久久成人网| 亚洲精品国产区一区二| 国产熟女午夜一区二区三区| 欧美日韩黄片免| 免费看十八禁软件| 亚洲五月色婷婷综合| 又大又爽又粗| 蜜桃国产av成人99| av福利片在线| 欧美+亚洲+日韩+国产| 一区二区av电影网| 国产精品久久久久久精品古装| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 中文字幕色久视频| 91九色精品人成在线观看| 在线永久观看黄色视频| 极品人妻少妇av视频| 国产亚洲av高清不卡| 欧美成人午夜精品| 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| 色婷婷久久久亚洲欧美| 亚洲国产毛片av蜜桃av| tocl精华| 手机成人av网站| 国产免费现黄频在线看| 青春草亚洲视频在线观看| 亚洲中文字幕日韩| 中文字幕另类日韩欧美亚洲嫩草| 国产成人啪精品午夜网站| 久久久精品区二区三区| 男女之事视频高清在线观看| 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 亚洲av美国av| √禁漫天堂资源中文www| 在线亚洲精品国产二区图片欧美| 欧美激情高清一区二区三区| 看免费av毛片| 欧美在线黄色| 色婷婷av一区二区三区视频| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女 | 中亚洲国语对白在线视频| 国产亚洲精品一区二区www | 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 黄色视频不卡| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| www.自偷自拍.com| 国产极品粉嫩免费观看在线| 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 秋霞在线观看毛片| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 免费观看av网站的网址| av国产精品久久久久影院| 波多野结衣av一区二区av| 国产精品秋霞免费鲁丝片| 一级a爱视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 久久久精品国产亚洲av高清涩受| 9热在线视频观看99| 亚洲人成77777在线视频| 天堂8中文在线网| 午夜福利一区二区在线看| 少妇的丰满在线观看| 99久久人妻综合| 黄频高清免费视频| 亚洲成人手机| 高清视频免费观看一区二区| 在线av久久热| 老汉色∧v一级毛片| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 久久人人爽人人片av| 亚洲av日韩在线播放| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 午夜福利视频精品| 精品第一国产精品| 久久中文看片网| 日日夜夜操网爽| 美女脱内裤让男人舔精品视频| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| 黄片大片在线免费观看| 18禁观看日本| 成人三级做爰电影| 99精品欧美一区二区三区四区| 色视频在线一区二区三区| 岛国毛片在线播放| 精品久久久精品久久久| 人成视频在线观看免费观看| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 国产精品影院久久| 午夜成年电影在线免费观看| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频| 国产精品 国内视频| 老汉色∧v一级毛片| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 丰满迷人的少妇在线观看| 日韩熟女老妇一区二区性免费视频| 在线观看舔阴道视频| 亚洲黑人精品在线| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| 人人妻人人爽人人添夜夜欢视频| 欧美久久黑人一区二区| 国产av精品麻豆| 老熟妇乱子伦视频在线观看 | 国产成+人综合+亚洲专区| 亚洲激情五月婷婷啪啪| 亚洲全国av大片| 狂野欧美激情性xxxx| a级片在线免费高清观看视频| 后天国语完整版免费观看| 91字幕亚洲| 大片电影免费在线观看免费| 欧美激情 高清一区二区三区| 亚洲色图综合在线观看| 91av网站免费观看| 一区二区三区激情视频| 两人在一起打扑克的视频| av视频免费观看在线观看| 黄色毛片三级朝国网站| 人成视频在线观看免费观看| 少妇粗大呻吟视频| 大片电影免费在线观看免费| 国产伦理片在线播放av一区| 亚洲成人手机| 亚洲激情五月婷婷啪啪| 韩国精品一区二区三区| 免费av中文字幕在线| 亚洲国产日韩一区二区| 夜夜骑夜夜射夜夜干| 国产黄色免费在线视频| 欧美 日韩 精品 国产| 夜夜夜夜夜久久久久| 日韩欧美一区二区三区在线观看 | 国产精品 国内视频| 精品国产国语对白av| 五月开心婷婷网| 一区二区三区四区激情视频| 欧美午夜高清在线| 国产人伦9x9x在线观看| 国产不卡av网站在线观看| 欧美国产精品一级二级三级| 亚洲国产看品久久| 免费久久久久久久精品成人欧美视频| 日本欧美视频一区| 高清av免费在线| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| a 毛片基地| 亚洲七黄色美女视频| 岛国在线观看网站| 欧美精品人与动牲交sv欧美| www日本在线高清视频| 亚洲七黄色美女视频| 手机成人av网站| 又大又爽又粗| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 日本撒尿小便嘘嘘汇集6| av在线老鸭窝| 婷婷丁香在线五月| 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 亚洲成av片中文字幕在线观看| 黄色a级毛片大全视频| 岛国毛片在线播放| 久久 成人 亚洲| 国产一区二区三区在线臀色熟女 | 日本精品一区二区三区蜜桃| 老司机福利观看| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆| 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 欧美一级毛片孕妇| 欧美变态另类bdsm刘玥| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 啦啦啦视频在线资源免费观看| 女人久久www免费人成看片| 国产成人精品久久二区二区免费| 国产精品.久久久| 真人做人爱边吃奶动态| 日韩欧美免费精品| 丝袜脚勾引网站| 欧美精品一区二区大全| www.自偷自拍.com| 丰满饥渴人妻一区二区三| 成年人黄色毛片网站| 91字幕亚洲| 老司机午夜福利在线观看视频 | 中文字幕高清在线视频| 久久人妻福利社区极品人妻图片| 亚洲欧美清纯卡通| 后天国语完整版免费观看| 国产淫语在线视频| 一级毛片精品| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 国产精品一区二区免费欧美 | 日韩一区二区三区影片| 操美女的视频在线观看| 亚洲精品美女久久久久99蜜臀| 又黄又粗又硬又大视频| 亚洲熟女精品中文字幕| 国产精品久久久av美女十八| 国产av国产精品国产| 纵有疾风起免费观看全集完整版| 中文字幕制服av| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产一级毛片在线| 色综合欧美亚洲国产小说| 久久精品人人爽人人爽视色| 建设人人有责人人尽责人人享有的| 首页视频小说图片口味搜索| 岛国毛片在线播放| 九色亚洲精品在线播放| 国产成人免费观看mmmm| 99精品欧美一区二区三区四区| 国产精品熟女久久久久浪| 最黄视频免费看|