• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-wide association mapping of vitamins B1 and B2 in common wheat

    2018-06-04 03:33:26JieyunLiJindongLiuWeiWenPingzhiZhngYingxiuWnXinhunXiYnZhngZhonghuHe
    The Crop Journal 2018年3期

    Jieyun Li,Jindong Liu,Wei'e Wen,Pingzhi Zhng,Yingxiu Wn,Xinhun Xi,Yn Zhng,*,Zhonghu He,b,**

    aInstitute of Crop Science,National Wheat Improvement Center,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bInternational Maize and Wheat Improvement Center(CIMMYT)China Office,c/o CAAS,Beijing 100081,China

    cCrop Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230001,Anhui,China

    1.Introduction

    Vitamin B,one of the important microelements,is essential for maintaining normal life activities in human and animals.The vitamin B complex comprises eight water-soluble components,viz.thiamin(vitamin B1),riboflavin(vitamin B2),pantothenic acid(vitamin B3),nicotinic acid(vitamin B5),pyridoxine(vitamin B6),biotin(vitamin B7),folic acid(vitamin B9),and cobalamine(vitamin B12)that play important roles in the metabolism of carbohydrates,proteins and fats.Thiamin deficiency is associated with neurological problems,including Alzheimer's disease,cognitive deficit and encephalopathy[1–2].Riboflavin deficiency destroys mucosal membranes in the digestive system and can lead to cardiovascular disease and colorectal cancer[3–4].Instead of biosynthesizing these vitamins within their own bodies,humans and animals must obtain them from external sources in order to remain healthy.

    Vitamins B1 and B2 often occur together in the same foods and were initially regarded as a single component.In cereals,the most important staple food sources,the complex vitamin B complex is concentrated in the bran and germ,with 32%to 64%of the vitamin B1 and 26%to 37%of the vitamin B2 being present in the aleurone layer and embryo,respectively[5–6].A number of studies of vitamin B1 and B2 contents in wheat have been reported.For example,Davis et al.[7]evaluated 231 cultivars grown at 49 locations over three years and determined variation in vitamins B1 and B2 levels ranging from 3.3 to 6.5 μg g?1and 1.0 to 1.7 μg g?1,respectively.Batifoulier et al.[8]determined the variation in vitamin B1(2.6–6.1 μg g?1)and vitamin B2(0.5–1.1 μg g?1)contents in 49 wheat cultivars.Shewry et al.[9]showed that there were large and significant variations in B1 and B2 contents among 24 wheat cultivars,ranging from 5.5 to 13.6 μg g?1for vitamin B1,and from 0.8 to 1.4 μg g?1for vitamin B2.Davis et al.[7]indicated that the total contents of vitamins B1 and B2 were influenced by genotype,environment and genotype×environment(G×E).However,there are no reports on QTL mapping and genome-wide association studies(GWAS)of the genetic bases of variation in vitamin B1 and B2 contents to date.

    GWAS is an efficient approach to identify associations between genotypes and phenotypes in plants[10–11].For example,Rasheed etal.[12]identified 44marker-trait associations(MTAs)for nine yield and related traits using a GWAS of 123 wheat cultivars and 14,960 SNP markers.Dong et al.[13]detected 52 MTAs for stem water-soluble carbohydrate in 166 bread wheat cultivars using GWAS based on data obtained with the wheat 90 K SNP array.These studies were carried to determine genetic factors affecting complex traits.In the present study,a GWAS of vitamin B1 and B2 contents was performed using the same panel of 166 Chinese and foreign bread wheat cultivars and the wheat 90 K iSelect assay.The aim was to identify loci associated with vitamins B1 and B2 for quality improvement in bread wheat.

    2.Materials and methods

    2.1.Plant materials

    A collection of 166 bread wheat cultivars and advanced lines from the Yellow and Huai Valley Facultative Region and foreign countries was used for the study(Table S1);144 of them were from China,nine from Italy,seven from Argentina,four from Japan,one from Australia and one from Turkey.Field trials were conducted in randomized complete blocks with three replicates in Anyang(Henan province)and Suixi(Anhui province)during the 2015–2016 cropping season,providing data for two environments.Each plot contained three 2 m rows spaced 20 cm apart.

    2.2.Genotyping and quality control

    Genomic DNA was extracted by a modified method according to Lagudah et al.[15];samples were sent to CapitalBio Corporation(Beijing,China;http://www.capitalbio.com/)for genotyping with the high-density illumina 90 K infinium SNP array[16].PowerMarker V3.2.5 was used to calculate gene diversity,minor allele frequency(MAF)and polymorphism information content(PIC).Genotyping and quality control was described in our previous study[13].Markers were removed if their locations in chromosomes were unknown,there were>30%missing values,they showed a MAF of<5%,or were represented by>10%heterozygosis.

    2.3.Milling

    Thirty g kernel samples were milled using a Cyclotec 1093 Mill(Foss Tecator).The ground whole meal was stored at?20 °C prior to analysis.The water contents of the whole meal samples were measured in a drying oven at 130°C for 1 h after freezing.

    2.4.Vitamin B1 and B2 extraction and determination

    Vitamins B1 and B2 were extracted following Ndaw et al.[17]with minor modifications,in which the extraction solvent contents were reduced by 50%.A finely ground sample(2.5 g)was weighed into a 100 mL reagent bottle.Twenty-five ml of 0.05 mol L?1sodium acetate(pH 4.5)were added to the sample,followed by a mixture of papain(50 mg),1%glutathione(250 μL),acid phosphatase(10 mg)and α-amylase(5 mg).The sample was mixed completely and incubated in a shaker at 37°C for 20 h,then diluted with distilled water in a 50 mL volumetric flask.The supernatant was filtered through filter paper.The filtrate obtained after a second filtration through a cellulose acetate filter(0.2 μm)was used for chromatographic determination of vitamin B2.An aliquot of the first filtrate(2 mL)was added to a 10 mL tube with an alkaline solution of potassium ferricyanide(2 mL).The mixture was agitated and then left to stand for exactly 5 min.Two mL of butanol was added with vortexing,and the tube was stood for stratification.The supernatant fluid filtered through a cellulose acetate filter(0.2 μm)was used for the chromatographic determination of vitamin B1.

    2.5.Chromatographic determination

    A high performance liquid chromatography(HPLC)system(a 2010 Shimadzu Model)and an RF10Axl fluorescence detector(Shimadzu,Shimane,Japan)was used to determine vitamins B1 and B2 contents.Separation by HPLC was accomplished using a XTerra RP18 column(150.0 mm × 4.6 mm,5 μm,Waters Corporation,Massachusetts,USA)following Arella et al.[18].

    2.6.Statistical analyses

    Analysis of variance(ANOVA)was performed using PROC GLM in SAS software version 9.2(SAS Institute Inc.,Cary,NC,USA).Least square means were calculated for each parameter and used to test the significance of differences(P<0.001)between samples.Broad-sense heritabilities(h2)were calculated following Lin and Allaire[19].

    2.7.Population structure analysis

    Population structure was described in our previous study[13].Briefly,Structure v.2.3.4 was used to estimate population structure based on 5624 SNP markers distributed evenly across the entire genome using Bayesian cluster analysis;markers were chosen on the basis of a MAF of over 5%and<30%missing data,and showed heterozygosis of<10%[20].Each K value was run repeatedly and independently to ensure the sampling variance of inferred population structure.A range of K from 1 to 10 was based on admixture and correlated allele frequencies models.Each run was carried out with 10,000 replicates for the burn-in period and 100,000 replicates during analysis.The optimum value of K was chosen by the highest ΔK[21].

    Table 1–Analysis of variance of vitamin B1 and B2 contents in 166 cultivars grown in two environments.

    2.8.Association analysis

    Vitamin B1and B2 contents,genotype and populationstructure(Q-matrix)were implemented in TASSEL software version 5.0 using the mixed linear model(MLM)for association analysis.The significance of SNP markers was determined by a threshold P-value of 0.001[13,14],and MTAs within 5-cM intervals were declared to be the same loci according to Wang et al.[16].The distributions of observed and expected P-values.Manhattan plots were used to map SNP markers significantly associated with vitamin B1 and B2 contents.Both the Quantile-Qantile and Manhattan plots were drawn in R Language(R version 3.1.2;http://www.r-project.org/).

    3.Results

    3.1.Phenotypic variation

    There was continuous variation for vitamin B1 and B2 contents in both environments(Fig.S1).The averaged vitamin B1 and B2 contents among cultivars ranged from 5.34 to 16.74 μg g?1and from 0.48 to 0.74 μg g?1,respectively.Cultivars Lumai 23,Xiaoyan 22,Zhengmai 366,Zhoumai 16,Nidera Baguette 10,and Nidera Baguette 20 had the highest vitamin B1 contents,whereas Aifeng 3,Xinmai 19,Xiaoyan 54,Bima 1,and Zhengzhou 3 had the highest vitamin B2 contents(Table S1).ANOVA showed significant differences for vitamins B1(P<0.001)and B2 contents(P<0.01)among genotypes(Table 1).No significant differences were identified among three sub-populations for vitamin B2 content,whereas the mean value of vitamin B1 content of sub-population 3 was significantly(P<0.05)less than those of sub-populations 1 and 2 based on multiple comparison analysis(Table S2).The heritabilities of vitamin B1 and B2 contents were 0.83 and 0.77,respectively.

    Table 2–SNP markers significantly associated with vitamin B1 content in the association panel.

    Table 3–SNP markers significantly associated with vitamin B2 content in the association panel.

    3.2.Analysis of SNP markers and population structure

    Among the 81,587 SNP markers in the 90 K array,40,267(49.4%)were mapped to individual chromosomes[16].Finally,18,207(22.3%)markers were selected after a strict quality control in our association panel and were integrated into a linkage map involving all 21 wheat chromosomes.These markers covered a genetic distance of 3700 cM,with an average density of one marker per 0.2 cM.The marker density was much lower for the D genome(254.4 markers per chromosome)compared to the A(1007.7markersper chromosome)and B(1338.9 markers per chromosome)genomes.Among D genome chromosomes,and 4D had the lowest(50).The average SNP diversity(H)and PIC values were 0.35 and 0.29,respectively.

    3.3.Marker-trait associations

    Fig.1 –Manhattan plots from GWAS for vitamin B1 in two environments.The horizontal line depicts the 1E–03 threshold for significant association.A,Anyang;B,Suixi.

    Fig.2 –Manhattan plots from GWAS for vitamin B2 in two environments.The horizontal line depicts the 1E–03 threshold for significant association.A,Anyang;B,Suixi.

    Considering the criteria(P<0.001),17 loci were significantly associated with vitamin B1 content,and 7 were associated with vitamin B2 content;these were distributed on 12 chromosomes(Tables 2 and 3).The largest numbers of MTAs were on chromosomes 4A and 6A,and no MTA was detected on chromosomes 1B,3A,3D,4D,5A,5D,6D,7A,and 7D(Figs.1 and 2).MTAs consistently identified in both environments were considered to be stable.Among them,multiple SNP markers associated with vitamin B1 were identified on chromosomes 6AS(0 cM)and 6AS(13 cM)in both environments,explaining 7.7%and 8.4%of the phenotypic variation(R2),respectively(Table 2).There were multiple SNP markers associated with vitamin B2 on chromosomes 1DS(68 cM),5BL(49 cM)and 6AS(59 cM).QQ plots for the distribution of expected and observed P-values of associated SNP markers are shown in Fig.S2.

    3.4.Effects of favorable alleles on vitamins B1 and B2

    Alleles with positive effects increasing vitamin B1 and B2 contents were considered to be favorable.Significantly positive correlations were observed between vitamin B1(r=0.97,P<0.001)or vitamin B2(r=0.94,P<0.001)contents and the number of favorable alleles(Fig.3).The numbers of favorable alleles present in a cultivar ranged from 5 to 16 for vitamin B1 content,and from 0 to 6 for vitamin B2(Table S1).

    4.Discussion

    4.1.Marker–trait associations for vitamins B1 and B2

    The present results confirmed previous findings[8]that Vitamin B contents of cereal products are controlled mainly by genetic factors[8].Therefore,identification of QTL associated with vitamins B1 and B2 should be helpful for wheat improvement.Previously,work on vitamin B in cereals primarily focused on extraction[17],content determination[18]and synthesis pathways[22–24].In the present study,we used a GWAS approach to analyse a panel of 166 bread wheat cultivars by assaying 18,207 SNP markers to identify chromosomal regions associated with vitamin B1 and B2 contents.This is the first attempt to identify genes controlling vitamin B1 and B2 contents in wheat by GWAS.The results provide a basis for improving vitamin B1 and B2 contents.ANOVA indicated that the G×E contributed largely phenotypic variance in vitamin B1(24.53%)and vitamin B2(49.11%)contents(Table 1),resulting in some inconsistencies in MTA across environments.

    Fig.3–Linear regression analysis for number of favorable alleles and vitamin B.A,vitamin B1;B,vitamin B2.

    Markers IWB12483(1DL,100 cM),IWB6046(2AS,156 cM),IWB1795(2BL,146 cM),IWB11577(3B,33 cM),IWB48019(5BL,105 cM),IWB43809(6AS,0 cM)and IWB69903(6AS,13 cM)were significantly associated with vitamin B1 content.Among them,IWB12483(R2=10.6%),IWB6046(10.3%)and IWB1795(9.2%)loci explained the highest phenotypic variations.Notably,MTAs at IWB43809 and IWB69903 on chromosome 6AS were identified in both environments,indicating the QTL were stable.Markers IWB11044(1AS,51 cM),IWB23595(1DS,68 cM),IWB58793(3B,62 cM),IWB56921(4AL,75 cM),IWA8005(5BL,49 cM),IWB58995(6AS,59 cM)and IWB65016(7BL,159 cM)were significantly associated with vitamin B2 content.Among the IWB23595(R2=10.5%),IWA8005(9.0%)and IWB65016(9.7%)loci explained the highest phenotypic variations.

    4.2.Putative candidate genes

    The biosynthetic pathways of vitamins B1 and B2 have been well studied in prokaryotes Escherichia coli[25–26]and Bacillus subtilis[27–28],but the biosynthesis in eukaryotes is much less understood.The results of the present GWAS study provides a basis for searching for candidate genes involved in vitamin B1 and B2 biosynthesis in wheat.

    In bacteria 12 genes involving 11 enzymatic steps are required for vitamin B1 biosynthesis[29–30];in yeast 19 genes are involved[31].The functions of several of these genes have been elucidated,e.g.,THI2,THI3,THI6,THI20 and THI21.One of the most important genes is THI3,which has an important role in pyrimidine biosynthesis and DNA repair[31–33],and has been isolated in Arabidopsis thaliana[22]and Solanum lycopersicum[34].However,the homologous gene in common wheat remains unidentified.The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5–phosphate.GTP cyclohydrolase II is the first committed step in biosynthesis of the key enzyme involved in riboflavin,catalyzing the opening of the imidazole ring of GTP and release of pyrophosphate[35–36].The encoding gene(rib A)has been isolated in bacteria[37]and yeast[38],but little information is available in plants.No QTL related to this gene has been identified.

    4.3.Potential implications for wheat breeding

    Wheat,with a total estimated production of 120 Mt.during 2015–2016(http://data.stats.gov.cn/),is one of the three most important crops in China.It is mainly consumed in human nutrition and is regarded as an important source of vitamins[39].Markers for MTAs explaining higher phenotypic variation,such as IWB12483,IWB6046,and IWB1795 identified in this study could be used for improvement of vitamin B1 in marker–assisted breeding.Markers IWB23595,IWA8005 and IWB65016 with high phenotypic variation explained could be used for improvement of vitamin B2.The cultivars Lumai 15,Jimai 19,Aifeng 3 and Bima 1 had higher contents of both vitamins B1 and B2,and therefore can be used as parents in breeding programs.There were also multiple MTAs associated with vitamin B1 on chromosomes 4A and 6A,implying that these regions are important for vitamin B1 content only.Germplasms of this type with higher numbers of favorable alleles included Zhoumai 31,Nidera Baguette 10 and Nidera Baguette 20(Table S1).Likewise,cultivars Lankao 2,Mantol and Funo have higher numbers of favorable alleles for vitamin B2 content,and these can be used as parents to improve vitamin B contents in breeding programs with the expectation of human health benefits.

    Acknowledgments

    This work was supported by National Key Research and Development Programs of China (2016YFD0101802,2016YFE0108600,2014CB1381050),Gene Transformation Projects(2016ZX08002003–003)and Core Research Budget of the Non–profit Governmental Research Institutions(Y2016XT06).

    Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.08.002.

    [1]G.E.Gibson,J.A.Hirsch,P.Fonzetti,B.D.Jordan,R.T.Cirio,J.Elder,Vitamin B1(thiamin)and dementia,J.Cereal Sci.1367(2016)21–30.

    [2]J.L.Rodriguez,N.Qizilbash,J.Lopez-Arrieta,Thiamin for alzheimer's disease,Cochrane Database Syst.Rev.272(2001),CD001498.

    [3]M.Buijssen,J.Eeuwijk,N.M.Vonk,Literature search and review related to specific preparatory work in the establishment of dietary reference values for riboflavin,EFSA Supporting Publications,11,2014,pp.245–258.

    [4]Y.S.Yoon,S.Y.Jung,X.H.Zhang,S.J.Ogino,E.L.Giovannucci,E.Y.Cho,Vitamin B2 intake and colorectal cancer risk:results from the nurses'health study and the health professionals follow–up study cohort,Int.J.Cancer 139(2016)996–1008.

    [5]P.M.Keagy,B.Borensterin,P.Ranum,M.A.Connor,K.Lorena,W.E.Hobbs,G.Hills,A.L.Bachman,W.A.Boyd,K.Kulp,Natural levels of nutrients in commercially milled wheat flours,Cereal Chem.57(1980)59–65.

    [6]P.M.Ranum,F.F.Barrett,R.J.Loewe,K.Kulp,Nutrient levels in internationally milled wheat flours,Cereal Chem.57(1980)361–366.

    [7]K.R.Davis,R.F.Cain,L.J.Peters,D.L.Tourneau,J.McGinnis,Evaluation of the nutrient composition of wheat II.Proximate analysis,thiamin,riboflavin,niacin and pyridoxine,Cereal Chem.58(1981)116–120.

    [8]F.Batifoulier,M.A.Verny,E.Chanliaud,C.Rémésy,C.Demigné,Variability of B vitamin concentrations in wheat grain,milling fractions and bread products,Eur.J.Agron.25(2006)163–169.

    [9]P.R.Shewry,F.V.Schaik,C.Ravel,G.Charmet,M.Rakszegi,Z.Bedo,J.L.Ward,Genotype and environment effects on the contents of vitamins B1,B2,B3,and B6 in wheat grain,J.Agric.Food Chem.59(2011)10564–10571.

    [10]M.T.Hamblin,E.S.Buckler,J.K.Jannink,Population genetics of genomics–based crop improvement methods,Trends Genet.27(2011)98–106.

    [11]C.S.Zhu,M.Gore,E.S.Buckler,J.M.Yu,Status and prospects of association mapping in plants,Plant Genome 1(2008)5–20.

    [12]Q.Ain,A.Rasheed,A.Anwar,T.Mahmood,M.Imtiaz,T.Mahmood,X.C.Xia,Z.H.He,U.M.Quraishi,Genome–wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan,Front.Plant Sci.6(2015)743–756.

    [13]Y.Dong,Y.Zhang,A.Rasheed,Y.G.Xiao,L.P.Fu,J.Yan,J.D.Liu,W.E.Wen,Y.Zhang,R.L.Jing,X.C.Xia,Z.H.He,Genome–wide association for stem water soluble carbohydrates in bread wheat,PLoS One 11(2016),e0164293.

    [14]M.Maccaferri,J.L.Zhang,P.bulli,Z.Abate,S.Chao,D.Cantu,E.Bossolini,X.M.Chen,M.Pumphrey,J.Dubcovsky,A genome–wide association study of resistance to stripe rust(Puccinia striiformis f.sp.tritici)in a worldwide collection of hexaploid spring wheat(Triticum aestivum L.),G3:Genes Genom.Genet.5(2015)449–465.

    [15]E.S.Lagudah,R.Appels,A.H.D.Brown,The Nor–D3 locus of Triticum tauschii:natural variation and linkage to markers in chromosome 5,Genome 34(1991)387–395.

    [16]S.C.Wang,D.B.Wong,K.Forrest,A.Allen,S.M.Chao,B.E.Huang,Characterization of polyploid wheat genomic diversity using a high–density 90,000 single nucleotide polymorphism array,Plant Biotechnol.J.12(2014)787–796.

    [17]S.Ndaw,M.Bergaentzle,W.D.Aoude,C.Hasselmann,Extraction procedures for the liquid chromatographic determination of thiamin,riboflavin and vitamin B6 in foodstuffs,Food Chem.71(2000)129–138.

    [18]F.Arella,S.Lahely,J.B.Bourguignon,C.Hasselmann,Liquid chromatographic determination of vitamins B1 and B2 in foods:a collaborative study,Food Chem.56(1996)81–86.

    [19]C.Y.Lin,F.R.Allaire,Heritability of a linear combination of traits,Theor.Appl.Genet.51(1977)1–3.

    [20]J.K.Pritchard,M.Stephens,P.Donnelly,Inference of population structure using multilocus genotype data,Genetics 155(2000)945–959.

    [21]G.Evanno,S.Regnaut,J.Goudet,Detecting the number of clusters of individuals using the software structure:a simulation study,Mol.Ecol.14(2005)2611–2620.

    [22]D.Y.Kong,Y.X.Zhu,H.L.Wu,X.D.Cheng,H.Liang,H.Q.Ling,AtTHIC,a gene involved in thiamin biosynthesis in Arabidopsis thaliana,Cell Res.18(2008)566–576.

    [23]I.Ajjawi,Y.Tsegaye,D.Shintani,Determination of the genetic,molecular,and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1,Arch.Biochem.Biophys.459(2007)107–114.

    [24]F.J.Sandoval,S.Roje,F.M.N.An,Hydrolase is fused to a riboflavin kinase homolog in plants,J.Biol.Chem.280(2005)38337–38345.

    [25]M.Kriek,F.Martins,M.R.Challand,A.Croft,P.L.Roach,Thiamine biosynthesis in Escherichia coli:identification of the intermediate and by–products derived from tyrosine,Angew.Chem.-Int.Edit.46(2007)9223–9226.

    [26]E.Settembre,T.P.Begley,S.E.Ealick,Structural biology of enzymes of the thiamin biosynthesis pathway,Curr.Opin.Struct.Biol.13(2003)739–747.

    [27]Y.Zhang,S.V.Taylor,H.J.Chiu,T.P.Begley,Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis,J.Bacteriol.179(1997)3030–3035.

    [28]G.Richter,M.Fischer,C.Krieger,S.Eberhardt,H.Luttgen,I.Gerstenschlager,A.Bacher,Biosynthesis of riboflavin:characterization of the bifunctional deaminase–reductase of Escherichia coli and Bacillus subtilis,J.Bacteriol.179(1997)2022–2028.

    [29]T.P.Begley,D.M.Downs,S.E.Ealick,F.W.McLafferty,L.A.P.Van,S.Taylor,N.Campobasso,H.J.Chiu,C.Kinsland,J.J.Reddick,J.Xi,Thiamin biosynthesis in prokaryotes,Arch.Microbiol.171(1999)293–300.

    [30]D.A.Rodionov,A.G.Vitreschak,A.A.Mironov,M.S.Gelfand,Comparative genomics of thiamin biosynthesis in prokaryotes,J.Biol.Chem.277(2002)48949–48959.

    [31]K.Nosaka,Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae,Appl.Microbiol.Biotechnol.72(2006)30–40.

    [32]P.C.Dorrestein,H.L.Zhai,S.V.Taylor,F.W.McLafferty,T.P.Begley,The biosynthesis of the thiazole phosphate moiety of thiamin(vitamin B1):the early steps catalyzed by thiazole synthase,J.Am.Chem.Soc.126(2004)3091–3096.

    [33]M.Touchon,C.Hoede,O.Tenaillon,V.Barbe,S.Baeriswyl,P.Bidet,E.Bingen,S.Bonacorsi,C.Bouvet,A.Calteau,H.Calteau,O.Clermont,S.Cruveiller,A.Danchin,M.Diard,C.Dossat,M.E.Karoui,E.Frapy,L.Garry,J.M.Ghigo,A.M.Gilles,J.Johnson,C.L.Bouguenec,M.Lescat,S.Mangenot,V.Martinez-Jehanne,I.Matic,X.Nassif,S.Oztas,M.A.Petit,C.Pichon,Z.Rouy,C.S.Ruf,D.Scheider,J.Tourret,B.Vacherie,D.Vallenet,C.Medigue,E.P.Rocha,E.Denamur,Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths,PLoS Genet.5(2009)e1000344.

    [34]W.N.Zhao,X.D.Cheng,Z.A.Huang,H.J.Fan,H.L.Wu,H.Q.Ling,Tomato LeTHIC is an Fe–requiring HMP–P synthase involved in thiamin synthesis and regulated by multiple factors,Plant Cell Physiol.52(2011)967–982.

    [35]M.Fischer,W.Romisch,B.IIIarionov,W.Eisenreich,A.Bacher,Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin,Biochem.Soc.Trans.33(2005)780–784.

    [36]J.S.Ren,M.Kotaka,M.Lockyer,H.K.Lamb,A.R.Hawkins,D.K.Stammers,GTP cyclohydrolase II structure and mechanism,J.Biol.Chem.280(2005)36912–36919.

    [37]Y.S.Koh,J.Choih,J.H.Lee,J.H.Roe,Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli,Mol Gen Genet 251(1996)591–598.

    [38]O.Oltmanns,A.Bacher,Biosynthesis of riboflavine in Saccharomyces cerevisiae:the role of genes rib 1 and rib 7,J.Bacteriol.110(1972)818–822.

    [39]H.S.Balyan,P.K.Gupta,S.Kumar,R.Dhariwal,V.Jaiswal,S.Tyagi,P.Agarwal,V.Gahlaut,S.Kumari,Genetic improvement of grain protein content and other health-related constituents of wheat grain,Plant Breed.132(2013)446–457.

    亚洲成av片中文字幕在线观看| 大码成人一级视频| 国产91精品成人一区二区三区 | 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 国产精品1区2区在线观看. | 国产在线一区二区三区精| 不卡av一区二区三区| 欧美人与性动交α欧美软件| 一区二区三区乱码不卡18| 欧美精品啪啪一区二区三区 | av免费在线观看网站| 精品福利观看| 亚洲五月色婷婷综合| 午夜日韩欧美国产| 脱女人内裤的视频| 一区二区三区激情视频| 久久久国产欧美日韩av| 欧美激情高清一区二区三区| 免费不卡黄色视频| 久久精品国产综合久久久| 国产亚洲一区二区精品| 他把我摸到了高潮在线观看 | 老司机福利观看| 色播在线永久视频| 男女午夜视频在线观看| 大陆偷拍与自拍| 精品国产乱码久久久久久小说| 久久ye,这里只有精品| 欧美精品啪啪一区二区三区 | 超色免费av| 欧美日韩亚洲国产一区二区在线观看 | 蜜桃在线观看..| 纵有疾风起免费观看全集完整版| 老司机福利观看| 人妻人人澡人人爽人人| 国产亚洲av片在线观看秒播厂| 一本一本久久a久久精品综合妖精| 最近最新中文字幕大全免费视频| 国产一区二区在线观看av| 高潮久久久久久久久久久不卡| 一边摸一边抽搐一进一出视频| 亚洲精品av麻豆狂野| 五月开心婷婷网| 亚洲男人天堂网一区| 1024香蕉在线观看| 亚洲av美国av| a级片在线免费高清观看视频| 久久毛片免费看一区二区三区| 欧美黄色片欧美黄色片| 国产欧美亚洲国产| 欧美日韩中文字幕国产精品一区二区三区 | 麻豆国产av国片精品| 操美女的视频在线观看| 色综合欧美亚洲国产小说| 丰满迷人的少妇在线观看| 黄色毛片三级朝国网站| 久热爱精品视频在线9| 精品一区二区三卡| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产 | 999精品在线视频| 久久毛片免费看一区二区三区| 亚洲国产精品一区二区三区在线| 成年女人毛片免费观看观看9 | 国产97色在线日韩免费| 亚洲精品国产av成人精品| 99久久人妻综合| www.av在线官网国产| 成人手机av| 欧美精品av麻豆av| 两性午夜刺激爽爽歪歪视频在线观看 | av在线app专区| 久久精品人人爽人人爽视色| 两人在一起打扑克的视频| 午夜91福利影院| 97在线人人人人妻| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 久久精品国产综合久久久| 日本91视频免费播放| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 欧美国产精品va在线观看不卡| 啦啦啦免费观看视频1| 69av精品久久久久久 | 不卡av一区二区三区| 国产一区有黄有色的免费视频| 亚洲精品国产精品久久久不卡| 国产有黄有色有爽视频| 欧美性长视频在线观看| 黑人操中国人逼视频| 欧美乱码精品一区二区三区| 一本久久精品| 老司机在亚洲福利影院| 999精品在线视频| 国产亚洲精品第一综合不卡| a级片在线免费高清观看视频| 国产亚洲欧美在线一区二区| 满18在线观看网站| 后天国语完整版免费观看| 少妇人妻久久综合中文| 午夜久久久在线观看| 国产免费一区二区三区四区乱码| 国产一级毛片在线| av视频免费观看在线观看| 丝袜美腿诱惑在线| 国产精品免费大片| 亚洲欧美激情在线| 成人免费观看视频高清| 一区二区av电影网| av不卡在线播放| 国产日韩欧美在线精品| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 极品人妻少妇av视频| 搡老熟女国产l中国老女人| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 新久久久久国产一级毛片| 狠狠狠狠99中文字幕| www.精华液| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 在线av久久热| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 免费日韩欧美在线观看| 99精品欧美一区二区三区四区| 亚洲人成电影观看| 国产成人a∨麻豆精品| 精品人妻1区二区| 亚洲七黄色美女视频| 国产精品免费大片| 在线观看www视频免费| 国产三级黄色录像| 欧美一级毛片孕妇| 啦啦啦啦在线视频资源| 亚洲中文av在线| 性少妇av在线| 精品少妇一区二区三区视频日本电影| 欧美午夜高清在线| 久久香蕉激情| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 日本wwww免费看| 高清欧美精品videossex| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 在线观看一区二区三区激情| 国产精品成人在线| 黑人操中国人逼视频| 巨乳人妻的诱惑在线观看| 亚洲一码二码三码区别大吗| 一级毛片电影观看| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av | 精品熟女少妇八av免费久了| 男人爽女人下面视频在线观看| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 亚洲国产精品成人久久小说| 国产欧美亚洲国产| 午夜老司机福利片| 老司机深夜福利视频在线观看 | 黄色怎么调成土黄色| 成人国产一区最新在线观看| 免费看十八禁软件| 搡老熟女国产l中国老女人| 巨乳人妻的诱惑在线观看| 亚洲av国产av综合av卡| 久久国产亚洲av麻豆专区| 亚洲成人免费av在线播放| 亚洲黑人精品在线| 热re99久久国产66热| 男人添女人高潮全过程视频| 国产成人av教育| 丝袜脚勾引网站| 在线天堂中文资源库| 可以免费在线观看a视频的电影网站| 亚洲精品第二区| 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| 免费黄频网站在线观看国产| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 黄色视频不卡| 精品欧美一区二区三区在线| 高清欧美精品videossex| 国产无遮挡羞羞视频在线观看| 亚洲成人手机| 亚洲专区中文字幕在线| 国产欧美日韩精品亚洲av| 亚洲av电影在线进入| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡| videos熟女内射| 黑丝袜美女国产一区| 99热国产这里只有精品6| 国产人伦9x9x在线观看| 欧美 亚洲 国产 日韩一| 人人妻,人人澡人人爽秒播| 亚洲国产欧美一区二区综合| 99九九在线精品视频| 他把我摸到了高潮在线观看 | 欧美国产精品一级二级三级| 一个人免费看片子| 国产国语露脸激情在线看| 一边摸一边抽搐一进一出视频| 岛国毛片在线播放| 国产精品一区二区免费欧美 | 国产片内射在线| 自线自在国产av| 一级,二级,三级黄色视频| 9191精品国产免费久久| 欧美日本中文国产一区发布| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 免费看十八禁软件| 91大片在线观看| 欧美日韩国产mv在线观看视频| 少妇人妻久久综合中文| 一个人免费在线观看的高清视频 | 日韩一卡2卡3卡4卡2021年| 国产成人a∨麻豆精品| 老熟妇仑乱视频hdxx| 人妻一区二区av| 91国产中文字幕| 国产日韩一区二区三区精品不卡| 久热爱精品视频在线9| 青春草视频在线免费观看| 大型av网站在线播放| 十分钟在线观看高清视频www| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看 | 天堂8中文在线网| 欧美97在线视频| 18禁黄网站禁片午夜丰满| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区| 王馨瑶露胸无遮挡在线观看| www.av在线官网国产| 男女国产视频网站| 美女中出高潮动态图| 三级毛片av免费| 久久人人爽人人片av| 久久中文字幕一级| 中文字幕高清在线视频| 亚洲精品粉嫩美女一区| 青青草视频在线视频观看| 日韩电影二区| 777米奇影视久久| 久久久久久久国产电影| 麻豆国产av国片精品| av免费在线观看网站| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区久久| 久久久国产精品麻豆| 久久久久久久久免费视频了| 两个人免费观看高清视频| 免费不卡黄色视频| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| www.精华液| 日本91视频免费播放| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 午夜福利免费观看在线| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 91大片在线观看| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 免费在线观看影片大全网站| 免费高清在线观看视频在线观看| 一二三四在线观看免费中文在| 香蕉丝袜av| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 久久精品久久久久久噜噜老黄| 韩国高清视频一区二区三区| 18在线观看网站| 一区二区三区四区激情视频| 精品亚洲成国产av| 免费高清在线观看日韩| 亚洲精品久久午夜乱码| 在线永久观看黄色视频| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 大片电影免费在线观看免费| 欧美精品高潮呻吟av久久| 三级毛片av免费| 亚洲国产欧美日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 亚洲五月婷婷丁香| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 午夜激情av网站| 最近最新中文字幕大全免费视频| 在线 av 中文字幕| 99国产精品一区二区蜜桃av | 久久 成人 亚洲| 1024香蕉在线观看| 91大片在线观看| 午夜福利一区二区在线看| 91麻豆av在线| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 日韩 亚洲 欧美在线| 久久精品国产亚洲av高清一级| 国产在视频线精品| 日本a在线网址| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| 精品国内亚洲2022精品成人 | 欧美 日韩 精品 国产| 欧美精品一区二区免费开放| 国产一级毛片在线| 99热国产这里只有精品6| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 桃花免费在线播放| 国产在线观看jvid| 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频 | 热99久久久久精品小说推荐| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 国产精品亚洲av一区麻豆| av有码第一页| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 丝袜美腿诱惑在线| 精品高清国产在线一区| 另类亚洲欧美激情| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频 | 老司机亚洲免费影院| 亚洲精品一二三| 久久精品成人免费网站| 国产片内射在线| 99久久人妻综合| 桃红色精品国产亚洲av| 午夜福利在线观看吧| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 俄罗斯特黄特色一大片| 高清av免费在线| 日韩一区二区三区影片| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 老熟妇仑乱视频hdxx| 男女边摸边吃奶| 亚洲精品国产av成人精品| 十八禁网站免费在线| av又黄又爽大尺度在线免费看| 热re99久久精品国产66热6| 国产伦人伦偷精品视频| 美国免费a级毛片| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 久久精品亚洲av国产电影网| 欧美激情久久久久久爽电影 | 午夜精品国产一区二区电影| 国产欧美日韩精品亚洲av| 亚洲国产看品久久| 男女边摸边吃奶| 我的亚洲天堂| 国产xxxxx性猛交| 少妇的丰满在线观看| 乱人伦中国视频| 欧美日韩亚洲综合一区二区三区_| 性色av乱码一区二区三区2| 欧美日韩国产mv在线观看视频| 亚洲av美国av| 国产精品欧美亚洲77777| 精品一品国产午夜福利视频| 色综合欧美亚洲国产小说| 中文字幕制服av| 日韩大码丰满熟妇| 午夜福利影视在线免费观看| 久久精品人人爽人人爽视色| 热re99久久国产66热| 宅男免费午夜| 中文精品一卡2卡3卡4更新| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 天堂俺去俺来也www色官网| 国产福利在线免费观看视频| 免费一级毛片在线播放高清视频 | 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 曰老女人黄片| 伊人亚洲综合成人网| 免费在线观看视频国产中文字幕亚洲 | 免费在线观看黄色视频的| 午夜两性在线视频| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 在线看a的网站| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 久久久久久久久免费视频了| 国产欧美日韩一区二区三 | 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 亚洲欧洲精品一区二区精品久久久| av在线老鸭窝| 国产成人av教育| 成人av一区二区三区在线看 | 三上悠亚av全集在线观看| 又大又爽又粗| 咕卡用的链子| 黄色视频,在线免费观看| 9191精品国产免费久久| 啦啦啦 在线观看视频| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 国产高清国产精品国产三级| 欧美精品高潮呻吟av久久| 亚洲国产欧美在线一区| 国产精品香港三级国产av潘金莲| 色综合欧美亚洲国产小说| avwww免费| 国产高清videossex| 考比视频在线观看| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 又大又爽又粗| 久热爱精品视频在线9| 亚洲七黄色美女视频| 欧美乱码精品一区二区三区| 性高湖久久久久久久久免费观看| 亚洲欧美日韩高清在线视频 | 五月开心婷婷网| 精品少妇久久久久久888优播| 免费在线观看完整版高清| 欧美精品av麻豆av| 欧美变态另类bdsm刘玥| 法律面前人人平等表现在哪些方面 | 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 啦啦啦 在线观看视频| 人人妻人人添人人爽欧美一区卜| 欧美激情 高清一区二区三区| 欧美精品av麻豆av| 考比视频在线观看| av一本久久久久| 精品人妻在线不人妻| 美女扒开内裤让男人捅视频| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 在线观看免费视频网站a站| 法律面前人人平等表现在哪些方面 | 日韩欧美免费精品| 国产精品免费视频内射| 精品熟女少妇八av免费久了| 精品国产一区二区三区四区第35| 91老司机精品| 亚洲九九香蕉| 久久人人爽人人片av| 午夜老司机福利片| 久久久精品免费免费高清| 国产av国产精品国产| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 操美女的视频在线观看| 国产一卡二卡三卡精品| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 99久久人妻综合| 免费av中文字幕在线| 国产欧美亚洲国产| 亚洲国产精品成人久久小说| 精品熟女少妇八av免费久了| 国产精品香港三级国产av潘金莲| 窝窝影院91人妻| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 国产97色在线日韩免费| 午夜福利,免费看| 午夜91福利影院| 这个男人来自地球电影免费观看| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 亚洲熟女毛片儿| 日韩人妻精品一区2区三区| a 毛片基地| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品1区2区在线观看. | 99九九在线精品视频| 大陆偷拍与自拍| 亚洲专区字幕在线| 狠狠婷婷综合久久久久久88av| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品 欧美亚洲| 另类亚洲欧美激情| 精品第一国产精品| 欧美日本中文国产一区发布| 国产1区2区3区精品| 亚洲人成77777在线视频| 美女福利国产在线| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 黄网站色视频无遮挡免费观看| 欧美日韩视频精品一区| 国产在线一区二区三区精| 高清av免费在线| 男女床上黄色一级片免费看| 国产1区2区3区精品| 黄色视频,在线免费观看| 久久青草综合色| 午夜福利视频精品| 欧美日本中文国产一区发布| 国产成人啪精品午夜网站| 日韩电影二区| 高清av免费在线| 久久天堂一区二区三区四区| 丰满迷人的少妇在线观看| 亚洲国产日韩一区二区| 大片免费播放器 马上看| 中文字幕另类日韩欧美亚洲嫩草| 美女国产高潮福利片在线看| 久久久久国内视频| 丝袜在线中文字幕| 日本撒尿小便嘘嘘汇集6| 精品一区二区三卡| 制服人妻中文乱码| 欧美日本中文国产一区发布| 99久久99久久久精品蜜桃| 欧美xxⅹ黑人| 精品少妇一区二区三区视频日本电影| 如日韩欧美国产精品一区二区三区| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 久久久精品免费免费高清| 我的亚洲天堂| 一个人免费在线观看的高清视频 | 午夜精品国产一区二区电影| 欧美黄色淫秽网站| 久久精品国产亚洲av香蕉五月 | 天天操日日干夜夜撸| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频 | 在线av久久热| 日韩三级视频一区二区三区| 97精品久久久久久久久久精品| 在线av久久热| 大香蕉久久网| 国产亚洲av高清不卡| av又黄又爽大尺度在线免费看| 性高湖久久久久久久久免费观看| 国产日韩欧美视频二区| 777米奇影视久久| 午夜福利免费观看在线| 动漫黄色视频在线观看| 美女扒开内裤让男人捅视频| 亚洲性夜色夜夜综合| 国产成人欧美| 黑人猛操日本美女一级片| 少妇裸体淫交视频免费看高清 | 亚洲美女黄色视频免费看| 成年动漫av网址| 亚洲av成人一区二区三| 男人操女人黄网站| 两个人免费观看高清视频| 无限看片的www在线观看| 日本一区二区免费在线视频| 亚洲视频免费观看视频| 欧美精品啪啪一区二区三区 | 欧美 日韩 精品 国产| 国产高清videossex|