• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of novel QTL associated with soybean isoflavone content

    2018-06-04 03:33:22RuiliPeiJingyingZhangLingTianShengruiZhangFenxiaHanShurongYanLianzhengWangBinLiJunmingSun
    The Crop Journal 2018年3期

    Ruili Pei,Jingying Zhang,Ling Tian,Shengrui Zhang,Fenxia Han,Shurong Yan,Lianzheng Wang,Bin Li*,Junming Sun*

    The National Engineering Laboratory for Crop Molecular Breeding,MOA Key Laboratory of Soybean Biology(Beijing),Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    1.Introduction

    Soybean(Glycine max L.Merrill)is one of the most important oilseed crops in the world.It provides the world's supply of vegetable protein and oil.Soybean also produces biologically active substances with potential benefit for human health,including isoflavones,soyasaponin,and lunasin[1–3].

    Isoflavones belong to a group of secondary metabolites derived from the phenylpropanoid pathway,and are mainly produced in legumes.As precursors of major phytoalexin glyceollins,isoflavones play important roles in plant–microbe interaction[4,5].Isoflavones also function as signal molecules in soybean nodulation[6,7].Isoflavones have attracted increasing attention in recent years owing to their potential benefits for human health.As biologically active substances,isoflavones reduce the risk of menopausal symptoms,breast cancer,osteoporosis,dementia,and cardiovascular diseases[8–12].In view of their important roles,studies of the biosynthesis and accumulation of isoflavones in soybean seeds have been performed[13–16].The ultimate goal of these studies is to clarify the genetic basis of isoflavone accumulation and to develop soybean cultivars with desired isoflavone contents.Given that soybean isoflavone contents are typical quantitative traits influenced by both genetic and environmental factors,identification of stable QTL for isoflavone components across environments will facilitate understanding the genetic basis of isoflavone accumulation in soybean seeds.To date,273 QTL for isoflavones have been detected in soybean,including 61 for daidzein,68 for genistin,71 for glycitein,and 73 for total isoflavones,according to the Soybase database(https://www.soybase.org/)[17–29].However,the genetic network regulating isoflavone accumulation in soybean seed is still unclear.

    We previously developed a recombinant inbred line(RIL)population including 200 lines from a cross between the soybean cultivars Luheidou 2(LHD2)and Nanhuizao(NHZ),and performed QTL mapping for isoflavones using 110 ofthese 200 lines [20].Recently,we genotyped the remaining 90 RILs using specific-locus amplified fragment sequencing(SLAF-seq),and combined the genotyping data with those of the original 110 lines to generate an integrated high-density genetic map comprising 3541 SLAF markers[30].In present study,this genetic map was used to identify novel,stable QTL for isoflavone components in the increased population,and the QTL were compared with those previously identified.

    2.Materials and methods

    2.1.Plant materials and field trials

    A total of 200 lines of a RIL population(F5:7–8)derived from a cross between the cultivars LHD2 and NHZ were planted at Changping Experimental Station in 2009,and Shunyi Experimental Stations from 2009 to 2011.Field trials were performed using a randomized complete block design with three replicates.The rows of each plot were 2.0 m in length,with 0.5 m between adjacent rows and 0.1 m between adjacent plants[20].

    2.2.Isoflavone extraction and determination in soybean seeds

    Extraction and determination of isoflavones were performed following Li et al.[20].Twelve isoflavone standards were provided by Akio Kikuchi(National Agricultural Research Center for Tohoku Region,Japan):daidzin,glycitin,genistin,malonyldaidzin, ma1ony1g1ycitin, ma1ony1genistin,acetyldaidzin,acetylglycitin,acetylgenistin, daidzein,glycitein,and genistein.Identification and quantification of isoflavone components in soybean seeds were based on the retention times and peak areas of 12 standard isoflavone solutions using high-performance liquid chromatography(HPLC),and the precise isoflavone component contents in soybean seeds were calculated following Sun et al.[31].In soybean seeds,isoflavones consist of six major components:daidzin,glycitin,genistin,malonyldaidzin,malonylglycitin,and malonylgenistin[20].Accordingly,the total isoflavone contents were calculated as the sum the contents of these six major components.

    2.3.SLAF-seq data genotyping and soybean genetic map construction

    SLAF library construction and sequencing,SLAF-seq data grouping and genotyping,and the construction of a soybean genetic map using the 200 lines are described in detail in our previous report[30].The soybean high-density genetic map,comprising 3541 SLAF markers,was used to identify additive and epistatic QTL for isoflavones in the present study.

    2.4.QTL mapping for isoflavone contents in soybean seeds

    Additive QTL for six isoflavone components were detected using the inclusive composite interval mapping(ICIM)method in QTL IciMapping 4.0 software[32],and the P-value for entering variables(PIN)was set to 0.01.The threshold of the logarithm of odds(LOD)scores was determined using 1000 permutations at the significance level of 0.05.Since QTL for isoflavone contents were affected by environments,only QTL identified in multiple environments were designated as stable QTL and analyzed in the present study.Epistatic QTL were detected using the ICIM-EPI method with LOD threshold=5.0,PIN=0.05,and Step=5 cM.

    2.5.Gene annotation in QTL intervals

    The genomic sequences corresponding to additive QTL intervals were analyzed based on the genome sequences of cultivar Williams82(Wm82.a2.v1,https://phytozome.jgi.doe.gov/),andthesesequenceswerefurtherannotated against the NR(NCBI non-redundant protein sequences)(https://blast.ncbi.nlm.nih.gov/), KOG/COG (Clusters of Orthologous Groups of proteins)(http://www.ncbi.nlm.nih.gov/COG/),and Swiss-Prot(Manually annotated and reviewed protein sequences)(http://www.ebi.ac.uk/uniprot/)databases using BlastX program in NCBI(https://blast.ncbi.nlm.nih.gov/).

    3.Results

    3.1.Phenotypic analysis of isoflavone contents in soybean seeds

    The six predominant isoflavone components(daidzin,genistin,glycitin,malonyldaidzin,malonylgenistin,and malonylglycitin)of soybean seeds in 200 lines of the RIL population were determined.As shown in Table 1,the contentsofthesix isoflavone componentsand total isoflavones exhibited broad ranges among the 200 lines across four environments,with coefficients of variation(CVs)varying from 0.16 to 0.50.Analysis of variance suggested that isoflavones are affected by both genetic and environmental factors. However, broad-sense heritability across allenvironmentsranged from 0.56 to 0.87 for the six isoflavone components and total isoflavones,suggesting that isoflavones are under mainly genetic control(Table 2).

    Table 1–Characteristics of predominant isoflavones in the 200 soybean recombinant inbred lines.

    As shown in Fig.1,the distributions of total isoflavone content were continuous and quantitative.Most isoflavone components exhibited normal distributions across the four environments,though those of some components were not normal in specific environments according to the Kolmogorov–Smirnov test(Table 1).Transgressive segregation was observed among the 200 lines(Fig.1),suggesting that both parents contribute to isoflavone content in soybean seeds.

    Table 2–Analysis of variance of predominant isoflavones in 200 soybean recombinant inbred lines.

    Fig.1–Frequency distributions of total seed isoflavone content in 200 lines in four environments.TIF_2009CP represents total seed isoflavone content in 200 lines at Changping Experimental Station in 2009.TIF_2009SY,TIF_2010SY,and TIF_2011SY represent total isoflavone contents of soybean seeds in 200 lines at Shunyi Experimental Station from 2009 to 2011.Arrows indicate total seed isoflavone contents in the two parent lines(cultivars LHD2 and NHZ).

    3.2.QTL mapping for isoflavones in soybean seeds using high-density genetic map

    A high-density genetic map comprising 3541 SLAF markers was used for QTL mapping.Based on 1000 permutations for six isoflavones and total isoflavone contents,a LOD score of 3.3 was selected as the threshold for declaring the presence of an additive QTL.Using this genetic map and the seed isoflavone contents in the 200 lines,24 stable QTL across environments were identified for isoflavone components.These QTL were mapped to 13 linkage groups(LG)(Fig.2).The phenotypic variation explained by individual QTL varied from 4.2%to 21.2%,with LOD scores ranging from 4.9 to 17.9(Table 3).The favorable alleles of 16 QTL were derived from LHD2,the parent with higher isoflavone content,whereas the favorable alleles of the remaining eight QTL were derived from NHZ(Table 3).Three genes involved in isoflavone biosynthesis(Table 3),and 13 genes encoding MYB-like transcription factors within the genomic regions corresponding to the 24 stable QTL were identified(data not shown).

    Specifically,for daidzin,two stable QTL,qD16 and qD20 explained 7.4%and 8.0%of mean phenotypic variation across environments.The favorable allele of qD20 was derived from cultivar LHD2,while the favorable allele of qD16 was derived from cultivar NHZ.For genistin,three stable QTL(qG8,qG9,and qG20)explained 4.2%–9.4%of mean phenotypic variation.The favorable alleles of all three QTL were derived from LHD2.A 4-coumarate:CoA ligase gene Gm4CL(Glyma.09G211100.1),and an isoflavone reductase gene GmIFR(Glyma.09G211500.1)were found within the genomic region corresponding to qG9.For glycitin,the favorable allele of qGL5 was derived from LHD2,and it explained 9.6%of mean phenotypic variation.For malonyldaidzin,eight stable QTL(qMD2,qMD3,qMD7,qMD13,qMD15–1,qMD15–2,qMD19,andqMD20)were identified,explaining 6.3%–11.8%of mean phenotypic variation.The favorable alleles of qMD3,qMD7,qMD15–1,and qMD20 were derived from LHD2,and the favorable alleles of qMD2,qMD13,qMD15–2,qMD19 were derived from NHZ.For malonylgenistin,four QTL(qMG14,qMG16,qMG18,and qMG20)were detected,explaining 4.7%–21.2%of mean phenotypic variation.The favorable alleles of qMG14,qMG18,and qMG20 were derived from LHD2,and the favorable allele of qMG16 was derived from NHZ.A chalcone reductase gene GmCHR(Glyma.14G005700)was identified within the genomic region corresponding to qMG14.For total isoflavone content,six stable QTL(qTIF2,qTIF7,qTIF16,qTIF18,qTIF19,and qTIF20)were detected.The mean phenotypic variation explained by individual QTL varied from 6.0%to 14.3%.The favorable alleles of qTIF2,qTIF7,qTIF18,and qTIF20 were derived from LHD2,while the favorable alleles of qTIF16 and qTIF19 were derived from NHZ.Additionally,the loci on Gm16,Gm19,and Gm20 contributed to multiple isoflavone components in soybean seeds(Fig.2).

    3.3.Epistatic effect on isoflavones in soybean seeds

    Epistatic effects on isoflavone content were also analyzed.Nine epistatic QTL were identified for isoflavones in soybean seeds,explaining 4.7%–15.6%of phenotypic variation with LOD scores ranging from 5.2 to 7.3(Table 4).Notably,the epistatic effect between the 10 cM and 85 cM on Gm09 explained phenotypic variation for both malonyldaidzin and malonylgenistin in 2011SY(Table 4),suggesting a pleiotropic effect of the epistatic QTL.

    Fig.2–Twenty-four stable QTL for isoflavone content in soybean seeds on 13 linkage groups.SLAF marker distributions are depicted on the groups based on their genetic positions in centiMorgans(cM).The 24 stable QTL for isoflavone content are shown between tightly linked SLAF markers on the right side of each linkage group.Three isoflavone biosynthesis genes are indicated within QTL intervals in red text.

    4.Discussion

    Previous studies suggested that both population size and marker density affect the accuracy and efficiency of QTL mapping[33,34].In our previous study,we suggested that increasing marker density could increase the efficiency and accuracy of QTL mapping for isoflavone content[20].In the present study,we found that more stable QTL(24 in contrast to 11)were identified for isoflavone components in soybean seeds with an increase of population size from 110 to 200,suggesting that increasing population size could improve detection efficiency for QTL mapping.Moreover,most of these(20 of the 24)corresponded to QTL found in previous studies(Table 3),suggesting the reliability of the QTL mapping in the present study.Most of favorable alleles(for 16 of the 24 QTL)were derived from cultivar LHD2,which contains a higher isoflavone content(3697 μg g?1)than cultivar NHZ(1816 μg g?1)[20].However,the eight favorable alleles derived from the parent with lower isoflavone content suggest that cultivar NHZ also harbors favorable alleles for isoflavones.

    Table 3–Descriptions of 24 stable QTL for the predominant isoflavones in soybean seeds.

    Table 4–Epistatic QTL for predominant isoflavones insoybean seeds.

    Of the 24 stable QTL,four major stable QTL(qMD20,qMG14,qTIF2,and qTIF20)explained much phenotypic variation(>10%)for isoflavones.Specifically,qMD20 and qTIF20 were mapped to the same locus on Gm20 across four environments,and these two loci explained 11.8%and 14.9%of phenotypic variation for malonyldaidzin and total isoflavone contents,respectively.The high stability and phenotypic variation explained by this locus suggest the presence of a major gene controlling isoflavone accumulation in soybean seeds.

    Four novel stable QTL were identified by comparison of stable QTL with previous QTL for isoflavones.qG8 explained 7.69%of mean phenotypic variation for genistin in 2009SY and 2010SY.qMD19 explained 7.29%of mean phenotypic variation for malonyldaidzin in 2009SY,2010SY,and 2011SY.qMG18 explained 4.68% of mean phenotypic variation for malonylgenistin in 2009SY and 2010SY.qTIF19 explained 7.21%of phenotypic variation for total isoflavones in 2010SY and 2011SY.The favorable alleles of the first two loci were derived from cultivar LHD2 and those of the second two from cultivar NHZ.The identification of novel QTL will contribute to the understanding of the genetic basis of isoflavone accumulation and regulation in soybean seeds.

    Gene annotation revealed three genes(Gm4CL,GmCHR,and GmIFR)encoding key enzymes involved in isoflavone biosynthesis.Gm4CL encodes a 4-coumarate:CoA ligase,which catalyzes the reaction of 4-coumarate and CoA to form 4-coumaroyl-CoA[35].GmCHR encodes a chalcone reductase.This enzyme catalyzes the transformation from 4-coumaroyl-CoA to isoliquiritigenin,which is the chalcone precursor of daidzin[36].In the present study,however,GmCHR was found within the genomic region corresponding to qMG14,which contributed mainly to malonylgenistin content.This finding may be explained by the close correlations between different isoflavones in soybean seeds.GmCHR might affect malonylgenistin content by regulating daidzin accumulation in soybean seeds.We also cannot exclude the possibility that gene or genes other than GmCHR within the genomic region corresponding to qMG14 conferred the major additive effect of this locus.IFR encodes an isoflavone reductase,which is a key enzyme involved in the synthesis of the phytoalexin glyceollin from daidzein [37].Itcatalyzes a NADPH-dependent reduction of 2′-hydroxyisoflavones to form 2′-hydroxyisoflavanones[38].Owing to their essential roles in isoflavone biosynthesis,these structural genes may contribute the major effects of the corresponding QTL for isoflavone content.

    Thirteen MYB-like genes were found within the genomic regions corresponding to the 24 stable QTL.Some MYB transcription factors may affect isoflavone content by regulating the expression level of structural genes involved in isoflavone biosynthesis[15,16].Therefore,these MYB-like genes may suggest candidate genes for isoflavone accumulation in soybean seeds.

    In summary,24 stable QTL were identified for isoflavone content using a high-density genetic map.Of these 24 QTL,20 have been reported previously,whereas four(qG8,qMD19,qMG18,and qTIF19)represent novel QTL for isoflavone components in soybean seeds.Three structural genes involved in isoflavone biosynthesis(Gm4CL,GmCHR,and GmIFR)and 13 MYB-like transcription factor genes were found associated with the 24 stable QTL and represent candidate genes regulating isoflavone contents in soybean seeds.The stable and novel QTL will facilitate understanding the genetic bases of isoflavone accumulation and regulation in soybean seeds,and the SLAF markers tightly linked to major QTL will be useful in marker-assisted selection for the improvement of soybean quality.

    Acknowledgments

    This work was supported by the National Key Technology R&D Program of China during the Twelfth Five-Year Plan Period of China(2014BAD11B01-x02),Beijing Science and Technology Project(Z16110000916005),National Science and Technology Major Project(2016ZX08004-003),National Key R&D Program of China (2016YFD0100504 and 2016YFD0100201),National Natural Science Foundation of China(31671716,31171576),and Agricultural Science and Technology Innovation Project of CAAS.

    [1]X.Wan,H.Liu,Y.Sun,J.L.Zhang,X.B.Chen,N.Chen,Lunasin:a promising polypeptide for the prevention and treatment of cancer,Oncol.Lett.13(2017)3997–4001.

    [2]Z.Tavassoli,M.Taghdir,B.Ranjbar,Renin inhibition by soyasaponin I:a potent native anti-hypertensive compound,J.Biomol.Struct.Dyn.36(2018)166–176.

    [3]I.Mateos-Aparicio,A.Redondo Cuenca,M.J.Villanueva-Suarez,M.A.Zapata-Revilla,Soybean,a promising health source,Nutr.Hosp.23(2008)305–312.

    [4]N.Shimada,S.Sato,T.Akashi,Y.Nakamura,S.Tabata,S.Ayabe,T.Aoki,Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus,DNA Res.14(2007)25–36.

    [5]V.V.Lozovaya,A.V.Lygin,O.V.Zernova,A.V.Ulanov,S.Li,G.L.Hartman,J.M.Widholm,Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase,Planta 225(2007)665–679.

    [6]J.L.Ferrer,M.B.Austin,C.Stewart Jr.,J.P.Noel,Structure and function of enzymes involved in the biosynthesis of phenylpropanoids,Plant Physiol.Biochem.46(2008)356–370.

    [7]E.De Rijke,L.Aardenburg,J.Van Dijk,F.Ariese,W.H.Ernst,C.Gooijer,U.A.Brinkman,Changed isoflavone levels in red clover(Trifolium pratense L.)leaves with disturbed root nodulation in response to waterlogging,J.Chem.Ecol.31(2005)1285–1298.

    [8]F.H.Sarkar,Y.Li,Soy isoflavones and cancer prevention,Cancer Investig.21(2003)744–757.

    [9]T.Cornwell,W.Cohick,I.Raskin,Dietary phytoestrogens and health,Phytochemistry 65(2004)995–1016.

    [10]R.A.Dixon,Phytoestrogens,Annu.Rev.Plant Biol.55(2004)225–261.

    [11]A.B.Moore,L.Castro,L.Yu,X.Zheng,X.Di,M.I.Sifre,G.E.Kissling,R.R.Newbold,C.D.Bortner,D.Dixon,Stimulatory and inhibitory effects of genistein on human uterine leiomyoma cell proliferation are influenced by the concentration,Hum.Reprod.22(2007)2623–2631.

    [12]X.Di,L.Yu,A.B.Moore,L.Castro,X.Zheng,T.Hermon,D.Dixon,A low concentration of genistein induces estrogen receptor-alpha and insulin-like growth factor-I receptor interactions and proliferation in uterine leiomyoma cells,Hum.Reprod.23(2008)1873–1883.

    [13]W.Jung,O.Yu,S.M.Lau,D.P.O'Keefe,J.Odell,G.Fader,B.McGonigle,Identification and expression of isoflavone synthase,the key enzyme for biosynthesis of isoflavones in legumes,Nat.Biotechnol.18(2000)208–212.

    [14]S.Dhaubhadel,B.D.McGarvey,R.Williams,M.Gijzen,Isoflavonoid biosynthesis and accumulation in developing soybean seeds,Plant Mol.Biol.53(2003)733–743.

    [15]S.S.Chu,J.Wang,Y.Zhu,S.L.Liu,X.Q.Zhou,H.R.Zhang,C.E.Wang,W.M.Yang,Z.X.Tian,H.Chen,D.Y.Yu,An R2R3-type MYB transcription factor,GmMYB29,regulates isoflavone biosynthesis in soybean,PLoS Genet.13(2017)e1006770.

    [16]J.Yi,M.R.Derynck,X.Li,P.Telmer,F.Marsolais,S.Dhaubhadel,A single-repeat MYB transcription factor,GmMYB176,regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean,Plant J.62(2010)1019–1034.

    [17]J.J.Gutierrez-Gonzalez,T.D.Vuong,R.Zhong,O.Yu,J.D.Lee,G.Shannon,M.Ellersieck,H.T.Nguyen,D.A.Sleper,Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds,Theor.Appl.Genet.123(2011)1375–1385.

    [18]J.J.Gutierrez-Gonzalez,X.Wu,J.Zhang,J.D.Lee,M.Ellersieck,J.G.Shannon,O.Yu,H.T.Nguyen,D.A.Sleper,Genetic control of soybean seed isoflavone content:importance of statistical model and epistasis in complex traits,Theor.Appl.Genet.119(2009)1069–1083.

    [19]Y.Wang,Y.P.Han,X.Zhao,Y.G.Li,W.L.Teng,D.M.Li,Y.Zhan,W.B.Li,Mapping isoflavone QTL with main,epistatic and QTL×environment effects in recombinant inbred lines of soybean,PLoS One 10(2015),e0118447.

    [20]B.Li,L.Tian,J.Y.Zhang,L.Huang,F.X.Han,S.R.Yan,L.Z.Wang,H.K.Zheng,J.M.Sun,Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing(SLAF-seq)and its application to QTL analysis for isoflavone content in Glycine max,BMC Genomics 15(2014)1086.

    [21]H.J.Zhang,J.W.Li,Y.J.Liu,W.Z.Jiang,X.L.Du,L.Li,X.W.Li,L.T.Su,Q.Y.Wang,Y.Wang,Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds,J.Genet.93(2014)331–338.

    [22]G.L.Zeng,D.M.Li,Y.P.Han,W.L.Teng,J.Wang,L.J.Qiu,W.B.Li,Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments,Theor.Appl.Genet.118(2009)1455–1463.

    [23]J.J.Gutierrez-Gonzalez,X.Wu,J.D.Gillman,J.D.Lee,R.Zhong,O.Yu,G.Shannon,M.Ellersieck,H.T.Nguyen,D.A.Sleper,Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds,BMC Plant Biol.10(2010)105.

    [24]M.A.Kassem,K.Meksem,M.J.Iqbal,V.N.Njiti,W.J.Banz,T.A.Winters,A.Wood,D.A.Lightfoot,Definition of soybean genomic regions that control seed phytoestrogen amounts,J.Biomed.Biotechnol.1(2004)52–60.

    [25]V.S.Primomo,V.Poysa,G.R.Ablett,C.J.Jackson,M.Gijzen,I.Rajcan,Mapping QTL for individual and total isoflavone content in soybean seeds,Crop Sci.45(2005)2454–2464.

    [26]T.Yoshikawa,Y.Okumoto,D.Ogata,T.Sayama,M.Teraishi,T.M.T.Toda,K.Yamada,K.Yagasaki,N.Yamada,K.Yagasaki,N.Yamada,T.Tsukiyama,T.Yamadand,T.Tanisaka,Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties,Breed.Sci.60(2010)243–254.

    [27]C.J.Smallwood,C.N.Nyinyi,D.A.Kopsell,C.E.Sams,D.R.West,P.Chen,S.K.Kantartzi,P.B.Cregan,D.L.Hyten,V.R.Pantalone,Detection and confirmation of quantitative trait loci for soybean seed isoflavones,Crop Sci.54(2014)595–606.

    [28]H.Z.Liang,Y.L.Yu,S.F.Wang,Y.Lian,T.F.Wang,Y.L.Wei,P.T.Gong,X.Y.Liu,F.X.J.,M.C.Zhang,QTL mapping of isoflavone,oil and protein contents in soybean(Glycine max L.Merr.),Agric.Sci.China 9(2010)1108–1116.

    [29]Y.P.Han,W.L.Teng,Y.Wang,X.Zhao,L.Wu,D.M.Li,W.B.Li,Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone,and protein or oil contents,Plant Breed.134(2015)300–309.

    [30]B.Li,S.X.Fan,F.K.Yu,Y.Chen,S.R.Zhang,F.X.Han,S.R.Yan,L.Z.Wang,J.M.Sun,High-resolution mapping of QTL for fatty acid composition in soybean using specific-locus amplified fragment sequencing,Theor.Appl.Genet.130(2017)1467–1479.

    [31]J.M.Sun,B.L.Sun,F.X.Han,S.R.Yan,H.Yang,K.Akio,Rapid HPLC method for determination of 12 isoflavone components in soybean seeds,Agric.Sci.China 10(2011)70–77.

    [32]H.H.Li,J.M.Ribaut,Z.L.Li,J.K.Wang,Inclusive composite interval mapping(ICIM)for digenic epistasis of quantitative traits in biparental populations,Theor.Appl.Genet.116(2008)243–260.

    [33]H.H.Li,S.Hearne,M.Banziger,Z.L.Li,J.K.Wang,Statistical properties of QTL linkage mapping in biparental genetic populations,Heredity 105(2010)257–267.

    [34]M.Stange,H.F.Utz,T.A.Schrag,A.E.Melchinger,T.Wurschum,High-density genotyping:an overkill for QTL mapping?Lessons learned from a case study in maize and simulations,Theor.Appl.Genet.126(2013)2563–2574.

    [35]A.Uhlmann,J.Ebel,Molecular cloning and expression of 4-coumarate:coenzyme A ligase,an enzyme involved in the resistance response of soybean(Glycine max L.)against pathogen attack,Plant Physiol.102(1993)1147–1156.

    [36]H.Du,Y.B.Huang,Y.X.Tang,Genetic and metabolic engineering of isoflavonoid biosynthesis,Appl.Microbiol.Biotechnol.86(2010)1293–1312.

    [37]T.L.Graham,J.E.Kim,M.Y.Graham,Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma,Mol.Plant Microbe 3(1990)157–166.

    [38]J.D.Cooper,F.Qiu,N.L.Paiva,Biotransformation of an exogenously supplied isoflavonoid by transgenic tobacco cells expressing alfalfa isoflavone reductase,Plant Cell Rep.20(2002)876–884.

    韩国精品一区二区三区| 国产日韩欧美亚洲二区| 女人精品久久久久毛片| www.av在线官网国产| 18禁动态无遮挡网站| 9色porny在线观看| 亚洲七黄色美女视频| 少妇 在线观看| 国产亚洲欧美精品永久| 99精国产麻豆久久婷婷| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 久久国产亚洲av麻豆专区| 亚洲欧美成人综合另类久久久| 色94色欧美一区二区| 日韩一区二区三区影片| 两个人看的免费小视频| 亚洲一级一片aⅴ在线观看| 男女之事视频高清在线观看 | 一级黄片播放器| 嫩草影院入口| 在现免费观看毛片| 热99国产精品久久久久久7| 99九九在线精品视频| 国产男女内射视频| 日韩不卡一区二区三区视频在线| 婷婷色麻豆天堂久久| 国产有黄有色有爽视频| 91精品三级在线观看| 热99久久久久精品小说推荐| 国产日韩欧美亚洲二区| 久久久久久人人人人人| 99热全是精品| 午夜激情av网站| 老司机影院成人| netflix在线观看网站| 天堂8中文在线网| 夫妻午夜视频| xxx大片免费视频| 久久这里只有精品19| av免费观看日本| 久久天躁狠狠躁夜夜2o2o | 成人午夜精彩视频在线观看| 国产成人系列免费观看| 男女无遮挡免费网站观看| 久久久久久久国产电影| 激情视频va一区二区三区| 曰老女人黄片| 欧美 亚洲 国产 日韩一| 水蜜桃什么品种好| 晚上一个人看的免费电影| 国产日韩欧美亚洲二区| 亚洲国产看品久久| 国产精品久久久人人做人人爽| 亚洲av在线观看美女高潮| 巨乳人妻的诱惑在线观看| 国产精品香港三级国产av潘金莲 | 欧美国产精品va在线观看不卡| 亚洲精品久久午夜乱码| 国产成人啪精品午夜网站| 极品人妻少妇av视频| 日本色播在线视频| av网站免费在线观看视频| 国产精品一区二区在线观看99| 午夜免费男女啪啪视频观看| 晚上一个人看的免费电影| 国产日韩欧美视频二区| 老司机亚洲免费影院| 欧美日韩国产mv在线观看视频| 色视频在线一区二区三区| 国产男女内射视频| 国产精品亚洲av一区麻豆 | 久久久久国产精品人妻一区二区| 少妇猛男粗大的猛烈进出视频| 国产日韩一区二区三区精品不卡| 2018国产大陆天天弄谢| 爱豆传媒免费全集在线观看| 欧美亚洲 丝袜 人妻 在线| 日韩熟女老妇一区二区性免费视频| 日韩电影二区| 91成人精品电影| 国产成人欧美| 99热全是精品| 婷婷成人精品国产| 色视频在线一区二区三区| 国产精品 欧美亚洲| 日本wwww免费看| 波多野结衣一区麻豆| 这个男人来自地球电影免费观看 | 日韩成人av中文字幕在线观看| 搡老乐熟女国产| 激情五月婷婷亚洲| 美女扒开内裤让男人捅视频| 操美女的视频在线观看| 91aial.com中文字幕在线观看| 男女边摸边吃奶| 纵有疾风起免费观看全集完整版| 中文字幕人妻丝袜制服| 免费高清在线观看日韩| 成人免费观看视频高清| a级片在线免费高清观看视频| 久久狼人影院| 亚洲第一av免费看| 国产精品麻豆人妻色哟哟久久| 亚洲av在线观看美女高潮| www.自偷自拍.com| 国产黄色视频一区二区在线观看| 色播在线永久视频| 国产99久久九九免费精品| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 搡老乐熟女国产| 看非洲黑人一级黄片| 精品免费久久久久久久清纯 | 久久影院123| 国产视频首页在线观看| 久久综合国产亚洲精品| 国产精品女同一区二区软件| 黄片播放在线免费| 黑人欧美特级aaaaaa片| 啦啦啦在线观看免费高清www| 日韩中文字幕视频在线看片| 日韩中文字幕视频在线看片| 亚洲一级一片aⅴ在线观看| 亚洲成国产人片在线观看| 中文字幕色久视频| 成人国语在线视频| 99久久精品国产亚洲精品| 成人国产av品久久久| 国产精品一区二区在线观看99| 免费高清在线观看日韩| 人体艺术视频欧美日本| 午夜福利在线免费观看网站| 国产精品.久久久| 深夜精品福利| 亚洲视频免费观看视频| 午夜福利一区二区在线看| 国产精品香港三级国产av潘金莲 | 国产深夜福利视频在线观看| 三上悠亚av全集在线观看| 999久久久国产精品视频| 久久人人97超碰香蕉20202| 国产无遮挡羞羞视频在线观看| 亚洲五月色婷婷综合| 国产亚洲av高清不卡| 纯流量卡能插随身wifi吗| 咕卡用的链子| 国产av国产精品国产| av免费观看日本| 51午夜福利影视在线观看| 色94色欧美一区二区| 亚洲国产精品999| 国产xxxxx性猛交| 女的被弄到高潮叫床怎么办| 欧美 亚洲 国产 日韩一| 午夜91福利影院| 一二三四中文在线观看免费高清| 亚洲欧洲精品一区二区精品久久久 | 国产成人一区二区在线| 人人妻,人人澡人人爽秒播 | 日韩av不卡免费在线播放| 老司机影院毛片| 赤兔流量卡办理| 久久久久久久大尺度免费视频| 麻豆乱淫一区二区| 一级a爱视频在线免费观看| 国产精品久久久久成人av| netflix在线观看网站| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 777米奇影视久久| 成人国产麻豆网| 激情五月婷婷亚洲| 欧美国产精品va在线观看不卡| 一级黄片播放器| 天堂俺去俺来也www色官网| 国产淫语在线视频| 国产伦理片在线播放av一区| 久久国产精品大桥未久av| 美女大奶头黄色视频| 亚洲美女黄色视频免费看| 亚洲免费av在线视频| svipshipincom国产片| xxxhd国产人妻xxx| 老司机影院成人| 国产无遮挡羞羞视频在线观看| 嫩草影视91久久| 欧美97在线视频| 欧美黄色片欧美黄色片| 国产精品一区二区在线观看99| 一级片免费观看大全| 最黄视频免费看| 啦啦啦在线观看免费高清www| 天堂8中文在线网| 午夜福利影视在线免费观看| 久久人人爽人人片av| 伊人久久国产一区二区| avwww免费| 在线天堂中文资源库| 国产熟女欧美一区二区| 1024视频免费在线观看| 精品国产一区二区久久| www.精华液| 人妻人人澡人人爽人人| 一区二区三区激情视频| 久久久久久久国产电影| 亚洲成人一二三区av| 波多野结衣av一区二区av| 十八禁网站网址无遮挡| 成人手机av| 女人精品久久久久毛片| 精品少妇内射三级| 九九爱精品视频在线观看| 老汉色av国产亚洲站长工具| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 好男人视频免费观看在线| 亚洲欧美激情在线| 久热这里只有精品99| 亚洲成av片中文字幕在线观看| 久久国产精品大桥未久av| 1024视频免费在线观看| 日韩伦理黄色片| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 最近中文字幕高清免费大全6| 无限看片的www在线观看| 麻豆精品久久久久久蜜桃| 亚洲伊人色综图| 国产精品久久久人人做人人爽| 国产免费现黄频在线看| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 亚洲成国产人片在线观看| 亚洲国产精品一区三区| 色播在线永久视频| 韩国av在线不卡| 伊人久久国产一区二区| 国产不卡av网站在线观看| 亚洲成色77777| 婷婷色麻豆天堂久久| 操美女的视频在线观看| 亚洲精品国产色婷婷电影| 午夜日韩欧美国产| 老司机影院成人| 在线亚洲精品国产二区图片欧美| tube8黄色片| 亚洲,欧美,日韩| 免费观看av网站的网址| 国产黄频视频在线观看| 777米奇影视久久| 日本爱情动作片www.在线观看| 老司机影院成人| 自线自在国产av| 赤兔流量卡办理| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频 | 国产一区二区激情短视频 | 王馨瑶露胸无遮挡在线观看| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边做爽爽视频免费| 免费黄频网站在线观看国产| 国产伦理片在线播放av一区| 免费观看av网站的网址| 午夜av观看不卡| 国产亚洲午夜精品一区二区久久| 大片免费播放器 马上看| 秋霞在线观看毛片| 国产精品久久久av美女十八| 久久女婷五月综合色啪小说| 青草久久国产| 一边亲一边摸免费视频| 亚洲精品在线美女| 中文字幕亚洲精品专区| 国产淫语在线视频| 90打野战视频偷拍视频| 街头女战士在线观看网站| 女人精品久久久久毛片| 桃花免费在线播放| 国产精品 欧美亚洲| 精品久久久精品久久久| 欧美成人精品欧美一级黄| 国产精品国产av在线观看| 国产免费福利视频在线观看| 国产一区二区在线观看av| 我的亚洲天堂| 777久久人妻少妇嫩草av网站| 丁香六月天网| 在线精品无人区一区二区三| 久久久亚洲精品成人影院| 各种免费的搞黄视频| 国产1区2区3区精品| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 91精品三级在线观看| 大话2 男鬼变身卡| 日本色播在线视频| 2018国产大陆天天弄谢| 美女福利国产在线| 九色亚洲精品在线播放| 悠悠久久av| av视频免费观看在线观看| 亚洲人成77777在线视频| 又大又爽又粗| 欧美人与性动交α欧美精品济南到| 亚洲免费av在线视频| 两个人看的免费小视频| 超碰成人久久| 午夜精品国产一区二区电影| 精品一品国产午夜福利视频| 日韩,欧美,国产一区二区三区| 狠狠婷婷综合久久久久久88av| 久久精品亚洲av国产电影网| 成人国语在线视频| 我的亚洲天堂| 97人妻天天添夜夜摸| 高清在线视频一区二区三区| 人体艺术视频欧美日本| 亚洲伊人久久精品综合| 国产日韩一区二区三区精品不卡| 久久 成人 亚洲| 飞空精品影院首页| 久久av网站| 亚洲美女黄色视频免费看| 久久青草综合色| 亚洲欧美激情在线| 午夜影院在线不卡| 精品免费久久久久久久清纯 | 亚洲婷婷狠狠爱综合网| 中文字幕亚洲精品专区| 亚洲精品美女久久av网站| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 久久久精品区二区三区| 尾随美女入室| 欧美日韩视频精品一区| 我的亚洲天堂| 亚洲精品在线美女| 不卡视频在线观看欧美| 一区在线观看完整版| 久久青草综合色| 久久久久久人人人人人| 亚洲中文av在线| 99香蕉大伊视频| 国产1区2区3区精品| 熟妇人妻不卡中文字幕| 美女高潮到喷水免费观看| 中文字幕人妻熟女乱码| 高清不卡的av网站| 国产精品蜜桃在线观看| 女性生殖器流出的白浆| 成人国产麻豆网| 王馨瑶露胸无遮挡在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩在线播放| 久久久久国产一级毛片高清牌| 老司机深夜福利视频在线观看 | 亚洲av电影在线进入| 国产欧美日韩综合在线一区二区| 一区二区三区四区激情视频| 国产野战对白在线观看| 欧美精品一区二区大全| 天堂8中文在线网| 韩国精品一区二区三区| 国产精品av久久久久免费| 亚洲成国产人片在线观看| 热99国产精品久久久久久7| 国产淫语在线视频| 久久天躁狠狠躁夜夜2o2o | xxx大片免费视频| 五月天丁香电影| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 国产精品人妻久久久影院| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 色94色欧美一区二区| 国产一区二区在线观看av| 日日摸夜夜添夜夜爱| 999久久久国产精品视频| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| av视频免费观看在线观看| 亚洲精品,欧美精品| 免费观看性生交大片5| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| 中文精品一卡2卡3卡4更新| 一级a爱视频在线免费观看| 国产午夜精品一二区理论片| 日韩大码丰满熟妇| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久二区二区91 | 成人午夜精彩视频在线观看| 亚洲色图 男人天堂 中文字幕| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 男的添女的下面高潮视频| 在线观看国产h片| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 午夜免费观看性视频| 最新的欧美精品一区二区| 搡老乐熟女国产| 亚洲专区中文字幕在线 | 亚洲精品久久午夜乱码| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 美女扒开内裤让男人捅视频| 国产精品国产三级国产专区5o| 欧美激情极品国产一区二区三区| 女人精品久久久久毛片| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 免费不卡黄色视频| 欧美精品亚洲一区二区| 国产探花极品一区二区| 99热网站在线观看| 黄色视频在线播放观看不卡| 国产精品国产av在线观看| 少妇被粗大猛烈的视频| 午夜福利影视在线免费观看| av在线老鸭窝| 成人毛片60女人毛片免费| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 国产一区二区 视频在线| 久久久久久久国产电影| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 亚洲熟女毛片儿| 黑丝袜美女国产一区| 欧美另类一区| 亚洲美女搞黄在线观看| 纵有疾风起免费观看全集完整版| 久久久久久久久免费视频了| 乱人伦中国视频| 90打野战视频偷拍视频| 久久ye,这里只有精品| 老熟女久久久| 中文天堂在线官网| av在线播放精品| 日韩视频在线欧美| 国产精品无大码| 在线 av 中文字幕| 99re6热这里在线精品视频| av网站在线播放免费| 久久人人97超碰香蕉20202| 欧美激情高清一区二区三区 | 老熟女久久久| 1024视频免费在线观看| 亚洲,一卡二卡三卡| 久久狼人影院| 欧美日韩福利视频一区二区| 2021少妇久久久久久久久久久| 国产精品三级大全| 免费不卡黄色视频| 久久久久精品性色| 久久毛片免费看一区二区三区| 欧美日韩成人在线一区二区| av卡一久久| 久久精品熟女亚洲av麻豆精品| 香蕉国产在线看| 啦啦啦视频在线资源免费观看| videos熟女内射| 亚洲精品日韩在线中文字幕| 久久国产亚洲av麻豆专区| 一个人免费看片子| 国产极品天堂在线| 丁香六月欧美| 精品一区二区三卡| 午夜av观看不卡| 一区二区三区乱码不卡18| 亚洲人成网站在线观看播放| 一区在线观看完整版| 久久 成人 亚洲| 秋霞伦理黄片| 久久性视频一级片| 亚洲综合精品二区| 亚洲国产日韩一区二区| 国产男女内射视频| 欧美精品高潮呻吟av久久| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 啦啦啦视频在线资源免费观看| 欧美黑人精品巨大| 亚洲欧洲国产日韩| 午夜激情av网站| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 日韩伦理黄色片| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 亚洲精品视频女| 无限看片的www在线观看| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| 日本午夜av视频| 久久久久国产精品人妻一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲 欧美一区二区三区| 在线观看免费视频网站a站| 菩萨蛮人人尽说江南好唐韦庄| 777久久人妻少妇嫩草av网站| 亚洲成人av在线免费| 黄色毛片三级朝国网站| 国产成人一区二区在线| 少妇人妻久久综合中文| 黄色 视频免费看| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 色网站视频免费| 激情五月婷婷亚洲| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 看十八女毛片水多多多| 在线观看国产h片| 国产一区有黄有色的免费视频| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 亚洲av日韩在线播放| 精品久久久精品久久久| 岛国毛片在线播放| 久久综合国产亚洲精品| 两个人免费观看高清视频| 午夜激情久久久久久久| 亚洲成人免费av在线播放| 久久这里只有精品19| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 在线观看www视频免费| 亚洲精品,欧美精品| 性色av一级| 街头女战士在线观看网站| 国产亚洲一区二区精品| 欧美日韩成人在线一区二区| 久久久精品区二区三区| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 一级,二级,三级黄色视频| 在线 av 中文字幕| av.在线天堂| 国产在视频线精品| 国产一区二区激情短视频 | 女人高潮潮喷娇喘18禁视频| 日韩精品有码人妻一区| 如何舔出高潮| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 国产精品国产三级专区第一集| 欧美精品亚洲一区二区| 国产成人精品无人区| 免费日韩欧美在线观看| 成年美女黄网站色视频大全免费| 99久久99久久久精品蜜桃| 亚洲成色77777| 精品少妇内射三级| 色94色欧美一区二区| 黄色毛片三级朝国网站| 岛国毛片在线播放| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 亚洲,欧美精品.| 国产视频首页在线观看| kizo精华| 亚洲国产精品一区三区| 亚洲成人国产一区在线观看 | 一本—道久久a久久精品蜜桃钙片| 国产乱人偷精品视频| 操美女的视频在线观看| 国产在线一区二区三区精| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 精品福利永久在线观看| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 大片电影免费在线观看免费| 国产在线一区二区三区精| 别揉我奶头~嗯~啊~动态视频 | 建设人人有责人人尽责人人享有的| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 国产有黄有色有爽视频| 毛片一级片免费看久久久久| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 赤兔流量卡办理| 欧美国产精品一级二级三级| 一区福利在线观看| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 亚洲一区二区三区欧美精品|