• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping a leaf senescence gene els1 by BSR-Seq in common wheat

    2018-06-04 03:33:22MiomioLiBeieiLiGunghoGuoYongxingChenJingzhongXiePingLuQiuhongWuDeyunZhngHuizhiZhngJinYngPnpnZhngYnZhngZhiyongLiu
    The Crop Journal 2018年3期

    Miomio Li,Beiei Li,Gungho Guo,Yongxing Chen,Jingzhong Xie,Ping Lu,Qiuhong Wu,Deyun Zhng,Huizhi Zhng,Jin Yng,Pnpn Zhng,Yn Zhng,Zhiyong Liu,*

    aCollege of Agronomy&Biotechnology,China Agricultural University,Beijing 100193,China

    bState Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    cUniversity of Chinese Academy of Sciences,Beijing 100049,China

    dCollege of Horticulture,China Agricultural University,Beijing 100193,China

    1.Introduction

    Leaf senescence,an orderly regulated and active process,is the last stage of leaf development.During this process,plant organs,and cells undergo a sequence of complex changes in cellular physiology and biochemistry,and nutrients are redistributed to the sink tissues,such as developing fruits and seeds[1,2].Crops with delayed leaf senescence or stay green maintain extended periods of photosynthetic competence and have higher seed weights and grain yields[3,4].However,premature senescence of functional leaves during grain-filling results in reduced yield and quality,on account of disrupted physiological function in leaves due to reducing transport of photosynthetic products from leaves to seeds and a shortened period for grain filling[5].

    The onset and progression of senescence can be modulated by a variety of environmental signals including drought,nutrient limitation,light,and various plant hormones.Drought stress decreases crop yields by inducing abscisic acid(ABA)and premature leaf senescence in barley[6].A delay in leaf senescence results in delayed N remobilisation and a negative impact on protein deposition in the grain,thus reducing grain quality[7].H2S suppresses chlorophyll degradation of detached Arabidopsis leaves in dark-induced leaf senescence[8].Plant hormones play key roles in response to senescence.ABA can induce expression of several senescence-associated genes(SAG)in Arabidopsis thaliana[9].Exogenous ethylene enhances visible leaf yellowing and several ethylene biosynthesis genes are upregulated in senescing leaves in Arabidopsis[10].The Arabidopsis JA-insensitive mutant,coronatine insensitive 1(coi1),fails to display JA-dependent senescence[11].

    Many endogenous factors involved in leaf senescence have been identified and characterized in Arabidopsis,rice,maize,sorghum,and cotton[12–16].Most of the characterized senescence-associated genesare transcription factors,including WRKY,NAC,MADS,MYB,bZIP,and bHLH family members,indicating that leaf senescence is regulated by complex transcriptional regulatory networks[2,12].For example,OsMYC2 acts as a positive regulator of leaf senescence by direct or indirect regulation of SAGs in rice[17];RPK1 plays an important role in ABA-dependent leaf senescence in Arabidopsis[18];miRNA was also found to be involved in early leaf senescence.Overexpression of miR164 represses EIN3-induced early-senescence phenotypes in the model plant Arabidopsis[19].Stay-green QTL were detected in chromosomes 3 and 4 by genotyping-by-sequencing(GBS)technology explained 8%–24%of the phenotypic variation in sorghum,which could be exploited to improve grain yield in molecular breeding programs[20].Five stay-green QTL were significantly correlated with yield in maize.QTL-linked markers can help accelerate development of delayed leaf senescence in maize varieties through molecular marker-assisted selection[21].

    In comparison with studies in other species,research on leaf senescence in wheat is relatively backward.Wang et al.[22]reported a wheat stay-green mutant,tasg1,with delayed senescence.The wheat high grain protein content gene GPCB1 originating from wild emmer and encoding NAC transcription factor NAM-B1 is associated with early leaf senescence[23].Under favorable growing conditions,the yield contribution of the stay-green trait in wheat results from increased ear fertility and number of grains.In a more restrictive scenario,it favors an increase in grain mass by longer filling time at the end of the life cycle[24].

    Wheat has a large genome(~17 Gb)that is about eight times larger than that of maize and 40 times larger than that of rice.The large genome size and presence of highly repetitive DNA sequences(80–90%)makes fine mapping of target genes,a necessary step for gene cloning,a formidable challenge[25].BSR-Seq,a method that combines bulked segregant analysis(BSA)and RNA-Seq has been used as a mapping strategy that offers the promise of rapid discovery of novel genes and genetic markers linked to target genes[26].The advantages of this approach are high-throughput and cost-effectiveness in analyzing large genomes,such as,hexaploid maize and wheat[26,27].Using BSR-Seq analysis the maize brown midrib 2(bm2)gene was mapped to a small region of chromosome 1 containing a putative methylenetetrahydrofolate reductase(MTHFR)gene[28].Wheat stripe rust resistance genes YrZH22 and YrMM58 were rapidly mapped on chromosomes 4BL[29]and 2AS[30],respectively,by combining BSR-Seq with comparative genomics analysis.Stripe rust resistance gene Yr15 was also rapidly mapped to a 0.77 cM chromosomal interval in chromosome 1BS in hexaploid wheat by applying BSR-Seq analysis[27].

    In this study we performed a genetic analysis of early leaf senescence wheat line M114 using a segregating F3family and its F3:4progenies as well as a newly developed F2mapping population.BSR-Seq strategy was used to develop a linkage map of early leaf senescence gene els1.

    2.Materials and methods

    2.1.Plant materials and mapping population

    An early leaf senescence segregating F3family was identified in a breeding population from cross ZK 331/Xiangmai 99171//2*Luomai 30.The three parental lines had normal phenotype,and their F3:4progenies were subjected to phenotypic analysis.From the F4progenies,a homozygous early leaf senescence line M114 was selected to make cross with a normal line W301.The F1plants,F2segregating population of the cross M114/W301 were evaluated for early leaf senescence/normal phenotypes and used for genetic mapping.All the plants were grown at the field of Gaoyi Experimental Station in Shijiazhuang,Hebei province.

    2.2.BSR-Seq analysis

    Leaf tissue samples were collected from 35 early leaf senescent plants and 40 normal F4plants during the midflowering stage.These samples were frozen in liquid nitrogen and stored at?80 °C until used for total RNA extraction.Total RNA was extracted from tissues,then quantity and quality assessed.Two sequencing libraries were constructed using an Illumina RNA-Seq sample preparation kit and sequenced on an Illumina HiSeq4000 pair end sequencing platform.Raw RNA-Seq reads were trimmed to remove lowquality nucleotides using software Trimmomatic v0.32[31].Trimmed reads were aligned to the Chinese Spring reference sequence published by International Wheat Genome Sequencing Consortium(IWGSC)(http://www.wheatgenome.org/)using software STAR v2.4.0j[32].SNP and InDel calling was analyzed using software GATK v3.2-2 module“Haplotype Caller”[33].

    2.3.DNA extraction

    Genomic DNA was extracted by the CTAB method.The quality and quantity of the DNA were verified using 1.0%agarose gels and a Nanodrop 2000 spectrophotomer.Eight homozygous early leaf senescent and fifteen homozygous normal leaf plants from the F3:4progenies were used to construct two DNA bulks for SNP and markers validation.

    2.4.Development and verification of molecular markers

    After aligning trimmed reads and SNP-calling SNPs associated with early leaf senescence were identified by BSR-Seq analysis and selected for molecular marker development and validation.Specific PCR primers were designed from flanking sequences of selected SNPs using Primer 6.0 software.

    Wheat microsatellite markers(Xgwm,Xwmc,Xbarc,Xcfa,and Xcfd series)mapped on chromosome 2B were chosen for polymorphism detection.Information on these markers is reported on the Grain Genes database(http://wheat.pw.usda.gov/).

    2.5.Statistical analysis and genetic linkage map construction

    Chi-squared(χ2)tests were performed to determine the goodness-of-fit of observed and expected segregation ratios using SPSS 20.0.Linkage analysis of polymorphic molecular markers and the gene was conducted using Mapmaker 3.0 software and LOD score threshold of 3.0.The genetic map was constructed with the software Mapdraw V2.1[34].

    3.Results

    3.1.Phenotypic and genetic analysis of early leaf senescence

    In our breeding population,we identified an F3family that segregated in a 3 normal:1 early leaf senescent ratio and segregation at a single locus was confirmed by progeny tests(Table 1).Early leaf senescence in line homozygous F3:4line M114 began on bottom leaves at the tillering stage(Fig.1-A,B)and became very evident by the booting stage with lower leaves gradually drying from bottom leaves.In contrast,a representative normal line F3:4(W301)remained green and healthy.The F1plants of the cross M114/W301 were normal indicating recessive inheritance of the early senescence phenotype.The F2population of M114/W301 segregated in a 3:1 ratio(Table 1).These results suggest that early leaf senescence of M114 is conferred by a single recessive gene,provisionally designated els1.

    3.2.BSR-Seq analysis

    Applying BSR-Seq,the homozygous early leaf senescence and homozygous normal bulks produced 53,781,214 and 56,288,977 raw read pairs,respectively.<1%of the raw read pairs were filtered after quality control.Trimmed reads were aligned to the Chinese Spring reference sequences.In total,76.74%and 85.30%of the filtered read pairs were uniquely mapped in the homozygous early leaf senescent and homozygous normal bulks,respectively.Subsequent SNP calling identified 151,928 high-quality variants(SNPs and InDels)between the two bulks.Eighty SNPs were associated with the Els1 locus at a cut off of allele frequency difference(AFD)>0.8 and Fisher's exact test P-value <1e?10.The highest frequency SNPs(34/80)associated with the locus was identified on chromosome 2B(Fig.2).

    Fig.2–Distribution of candidate SNPs associated with the els1 on wheat chromosomes.

    3.3.Candidate SNPs validation and genetic mapping of els1

    The Els1-associated SNPs on chromosome 2B were validated for polymorphisms between the M114 and W301 parents and between homozygous normal and homozygous early leaf senescent plant DNA bulks.Four SNP markers,WGGB302,WGGB303,WGGB304,and WGGB305(Table 2)showed clear polymorphism between the parental lines and DNA bulks and shown to be linked to Els1 locus after genotyping the segregating population(Fig.3).

    Seventy six publically available SSR primer pairs on chromosome 2B were screened for polymorphism between the parental lines as well as homozygous normal and homozygous early leaf senescent plant DNA bulks.Only Xbarc91 was polymorphic between the parental as well as the bulk DNAs(Fig.4,Table 2).New SSR markers were developed using Chinese Spring 2B reference sequences near to the SNP markers linked to Els1.Two SSR markers,WGGB306 and WGGB307(Table 2)were polymorphic between the parental lines and DNA bulks(Fig.4,Table 2).

    Four SNP markers,WGGB302,WGGB303,WGGB304,and WGGB305,and three SSR markers Xbarc91,WGGB306,and WGGB307 linked with Els1 were then genotyped in the 45 F3:4families and 127 homozygous early leaf senescence F2plants of the cross M114/W301.WGGB305 and WGGB307 were located 0.3 cM and 6.7 cM distal to Els1,respectively.WGGB303,WGGB304 and WGGB306 were located 1.2 cM proximal and Xbarc91 a further 0.6 cM from Els1.WGGB302 co-segregated with Els1(Fig.5).

    3.4.Gene annotation

    Genetic mapping results showed that Els1 was mapped within a 1.5 cM genetic interval between markers WGGB303 and WGGB305,corresponding to a 9.2 Mb physical genomic region in Chinese Spring chromosome 2BS.Sixty-nine putative genes were annotated in this physical genomic region(Table S1).Among them,two cytochrome P450,one NB-ARC-domain protein,one leucine-rich receptor-like protein kinase family protein,one transducin/WD40 repeat-like superfamily protein and one WRKY transcription factor were identified.

    4.Discussion

    Stay-green is a physiological mechanism that delays leaf senescence has attracted the attention of plant breeders as a means of increasing grain yield[35].Early leaf senescence limits crop productivity by restricting growth,which is important for plant development and especially for crop yield.Stay-green has been studied in several crops and leaf senescence-associated genes have been identified and cloned in a number of plant species,including Arabidopsis thaliana[2],barley[6],maize[14],and rice[17].Several stay-green QTL identified in sorghum,maize and rice were correlated with grain yield[20,21,36].There are few reports on early leaf senescence in wheat.In the present study,we confirmed an early leaf senescence phenotype in F4line M114.Leaf senescence was expressed from the tillering stage and lower leaves showed dry necrotic symptoms during reproductive phase.Genetic analysis revealed that the senescent phenotype was controlled by a recessive gene,which we named els1.Since all of the three parental lines had normal phenotype,the early leaf senescence trait identified in the F3segregating family should be a hidden deleterious locus in one of the original parents.However,identification of Els1 gene could benefit our understanding of the leaf growth and developmental process in wheat and provide a functional gene for molecular manipulation in producing wheat varieties with stay green phenotype.

    Hybrid necrosis in wheat was also described by progressive chlorosis and necrosis of plant leaf and sheath tissues,which results in gradual premature death of leaves,tillers or plants,or loss of productivity in certain F1wheat hybrids[37].The degree of necrosis in F1hybrids was classified into three level,weak-hybrids produce normal seeds,moderate-hybrids produce premature seeds,and severe or strong-hybrids produce no seed[38].Hybrid necrosis is genetically controlled by two complementary dominant genes Ne1 and Ne2 located onchromosomes 5BL and 2BS,respectively[39].It has reported Ne2m has a very close relationship with leaf rust resistance gene Lr13 and they maybe the same gene[40].In this study,early leaf senescence phenotype in F4line M114 began on bottom leaves at the tillering stage and became very evident by the booting stage with lower leaves gradually drying from bottom leaves.This feature is somewhat similar with moderate hybrid necrosis(Ne2m).The mapping region of Els1 gene is close to Ne2/Lr13 locus in chromosome 2BS[40].However,further works need to be conducted to prove weather Els1 and Ne2/Lr13 are the same gene.

    Table 2–SNP and SSR markers linked to Els1 locus developed from BSR-Seq and comparative genomics analysis.

    Fig.3–Sanger sequencing profiles of four SNP markers tightly linked to Els1 locus in homozygous normal,heterozygous normal,and homozygous early leaf senescent plants.

    In the present research,we took advantage of an available F3segregating population for early leaf senescence from a breeding program and 80 SNPs were associated with Els1 by BSR-Seq analysis.The high percentage of the SNPs(42.5%)on chromosome 2B enabled us to rapidly map Els1 on chromosome 2BS.Four SNP markers,WGGB302,WGGB303,WGGB304,and WGGB305,were tightly linked to Els1 and the gene was placed in a 1.5 cM genetic interval between WGGB303 and WGGB305,corresponding to a 9.2 Mb physical sequence.Marker WGGB302 co-segregating with Els1 could serve as a starting point for map-based cloning.

    Only one polymorphic SSR marker,Xbarc91,was polymorphic among 76 publicly available SSR primer pairs on chromosome 2BS.The low percentage of polymorphic SSR markers detected in the study was at least in part due to the mapping population being F3:4family that originated from a single F2plant,Families segregating for a specific trait in breeding program canbeused for genetic analysis and mapping purposes.However,the narrow genetic background in a single heterozygous plant from an advanced generation hybrid can present difficulties for obtaining polymorphic markers linked to the trait.BSR-Seq offers one way of detecting SNPs or InDels for mapping in the target genomic.

    Fig.4–PCR amplification patterns of three polymorphic SSR markers tightly linked to Els1.The arrows show polymorphic DNA fragments between normal and early leaf senescent lines.Lanes 1 and 2 are normal line W301 and early leaf senescence line M114.Lanes 3–6 represent homozygous normal F3families.Lanes 7–10 represent homozygous early leaf senescence F3 families.Lanes 11–14 represent heterozygous F3families.M,DNA ladder.

    Fig.5–Genetic linkage map of Els1 on wheat chromosome 2BS.

    Gene annotation of the corresponding 9.2 Mb genomic region in Chinese Spring revealed two cytochrome P450, one NB-ARC domain protein, one leucine-rich receptor-like protein kinase,one transduction/WD40 repeat-like superfamily protein and one WRKY transcription factor in the mapping interval(Table S1).Cytochrome P450 monooxygenase CYP89A9 as being responsible for nonfluorescent dioxobilin-type chlorophyll catabolites accumulation is involved in the formation of major chlorophyll catabolites during leaf senescence[41].In Arabidopsis,ORE9,a 693 amino acid polypeptide containing 18 leucine-rich repeats functions in limiting leaf longevity by removing,through ubiquitin-dependent proteolysis,target proteins that are required to delay programmed leaf senescence[42].Protein kinases and autophagy-related gene also were reported to play an important role in leaf senescence[43].In Arabidopsis,WD40 protein played important roles in development and also during stress signalling[44].The plant specific WRKY transcription factor family,especially WRKY4,WRKY6,WRKY11,and WRKY53 have been suggested to play an important role in leaf senescence[45].In particular,NB-ARC domain protein usually triggers R-gene mediated pathogen recognition with programing cell death that is a typical feature of necrosis,leaf rust resistance and leaf senescence[46].The coincidence of hybrid necrosis gene Ne2,leaf rust resistance gene Lr13 and early senescence gene Els1 in this genomic region may provide interesting information to understand the relationship between cell death and leaf development in wheat.

    5.Conclusions

    We identified early leaf senescent F4line M114 in wheat a breeding program.Genetic analysis indicated that the early leaf senescence is controlled by a single recessive allele designated els1.By applying BSR-Seq analysis,seven polymorphic markers tightly linked to els1 were developed.Ultimately,els1was mapped in a 1.5 cM genetic interval flanked by markers WGGB303 and WGGB305.The co-segregating marker WGGB302 provides a starting point for map-based cloning of Els1.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2018.01.004.

    Acknowledgments

    This work was financially supported by the National Key Research and Development Program of China(2017YFD0101004)and Science and Technology Service Network Initiative of Chinese Academy of Sciences(KFJ-STSZDTP-024).

    [1]B.F.Quirino,Y.S.Noh,E.Himelblau,R.M.Amasino,Molecular aspects of leaf senescence,Trends Plant Sci.5(2000)278–282.

    [2]V.Buchanan-Wollaston,T.Page,E.Harrison,E.Breeze,P.O.Lim,H.G.Nam,J.F.Lin,S.H.Wu,J.Swidzinski,K.Ishizaki,C.J.Leaver,Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis,Plant J.42(2005)567–585.

    [3]G.Spano,N.D.Fonzo,C.Perrotta,C.Platani,G.Ronga,D.W.Lawlor,J.A.Napier,P.R.Shewry,Physiological characterization of‘stay green'mutants in durum wheat,J.Exp.Bot.54(2003)1415–1420.

    [4] A.K. Borrell, E.J. van Oosterom, J.E. Mullet, B. George-Jaeggli,D.R.Jordan,P.E.Klein,G.L.Hammer,Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns,New Phytol.203(2014)817–830.

    [5] H.R. Woo, H.J. Kim, H.G. Nam, P.O. Lim, Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general,J.Cell Sci.126(2013)4823–4833.

    [6]S.A.Hosseini,M.R.Hajirezaei,C.Seiler,N.Sreenivasulu,N.von Wirén,A potential role of flag leaf potassium in conferring tolerance to drought-induced leaf senescence in barley,Front.Plant Sci.7(2016)206–217.

    [7]D.Zhao,A.P.Derkx,D.C.Liu,P.Buchner,M.J.Hawkesford,Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat,Plant Biol.17(2015)904–913.

    [8] B. Wei, W. Zhang, J. Chao, T. Zhang, T. Zhao, G. Noctor, Y. Liu,Y.Han,Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis,Sci.Rep.7(2017)2615.

    [9]Y.Zhao,Z.L.Chan,J.H.Gao,L.Xing,M.J.Cao,C.M.Yu,Y.L.Hu,J.You,H.T.Shi,Y.F.Zhu,Y.H.Gong,Z.X.Mu,H.Q.Wang,X.Deng,P.C.Wang,R.A.Bressan,J.K.Zhu,ABA receptor PYL9 promotes drought resistance and leaf senescence,Proc.Natl.Acad.Sci.U.S.A.113(2016)1949–1954.

    [10]E.V.D.Graaff,R.Schwacke,A.Schneider,M.Desimone,U.Flügge,R.Kunze,Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence,Plant Physiol.141(2006)776–792.

    [11]Y.H.He,H.Fukushige,D.F.Hildebrand,S.S.Gan,Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence,Plant Physiol.128(2002)876–884.

    [12]V.Buchanan-Wollaston,S.Earl,E.Harrison,E.Mathas,S.Navabpour,T.Page,D.Pink,The molecular analysis of leaf senescence-a genomics approach,Plant Biotechnol.J.1(2003)3–22.

    [13]H.J.Kim,S.H.Hong,Y.W.Kim,L.H.Lee,J.H.Jun,B.K.Phee,T.Rupak,H.Jeong,Y.Lee,B.S.Hong,H.G.Nam,H.R.Woo,P.O.Lim,Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE 2-mediated leaf senescence signalling in Arabidopsis,J.Exp.Bot.65(2014)4023–4036.

    [14]P.He,M.Osaki,M.Takebe,T.Shinano,J.Wasaki,Endogenous hormones and expression of senescence-related genes in different senescent types of maize,J.Exp.Bot.56(2005)1117–1128.

    [15]X.Y.Wu,W.J.Hu,H.Luo,Y.Xia,Y.Zhao,L.D.Wang,L.M.Zhang,J.C.Luo,H.C.Jing,Transcriptome profiling of developmental leaf senescence in sorghum(Sorghum bicolor),Plant Mol.Biol.92(2016)555–580.

    [16]S.T.Shah,C.Y.Pang,S.L.Fan,M.Z.Song,S.M.Arain,S.X.Yu,Isolation and expression profiling of GhNAC transcription factor genes in cotton(Gossypium hirsutum L.)during leaf senescence and in response to stresses,Gene 531(2013)220–234.

    [17]Y.Uji,K.Akimitsu,K.Gomi,Identification of OsMYC2-regulated senescence-associated genes in rice,Planta 245(2017)1241–1246.

    [18]I.C.Lee,S.W.Hong,S.S.Whang,P.O.Lim,H.G.Nam,J.C.Koo,Age-dependent action of an ABA-inducible receptor kinase,RPK1,as a positive regulator of senescence in Arabidopsis leaves,Plant Cell Physiol.52(2011)651–662.

    [19]Z.H.Li,J.Y.Peng,X.Wen,H.W.Guo,Ethylene-insensitive 3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis,Plant Cell 25(2013)3311–3328.

    [20]S.Sukumaran,X.Li,X.R.Li,C.S.Zhu,G.H.Bai,R.Perumal,M.R.Tuinstra,P.V.V.Prasad,S.E.Mitchell,T.T.Tesso,J.M.Yu,QTL mapping for grain yield,flowering time,and stay-green traits in sorghum with genotyping-by-sequencing markers,Crop Sci.56(2016)1429–1442.

    [21]Y.Zhang,X.Li,N.Zhang,X.L.Wang,Y.Zhang,Y.L.Ding,B.K.Kuai,X.Q.Huang,Mapping and validation of the quantitative trait loci for leaf stay-green-associated parameters in maize,Plant Breed.136(2017)188–196.

    [22]W.Q.Wang,Q.Q.Hao,F.X.Tian,Q.X.Li,W.Wang,The stay-green phenotype of wheat mutant tasg1 is associated with altered cytokinin metabolism,Plant Cell Rep.35(2016)585–599.

    [23]C.Uauy,A.Distelfeld,T.Fahima,A.Blechl,J.Dubcovsky,A NAC gene regulating senescence improves grain protein,zinc,and iron content in wheat,Science 314(2006)1298–1301.

    [24]H.D.Luche,J.A.G.Silva,R.Nornberg,M.C.Hawerroth,S.F.D.Silveira,V.D.Caetano,R.L.Santos,R.G.Figueiredo,L.C.Maia,A.C.Oliveira,Stay-green character and its contribution in Brazilian wheats,Cienc.Rural 47(2017),e20160583..

    [25]P.Zhang,J.P.Fellers,B.Friebe,B.S.Gill,Sequence composition,organization,and evolution of the core Triticeae genome,Plant J.40(2004)500–511.

    [26]S.Z.Liu,C.T.Yeh,H.M.Tang,D.Nettleton,P.S.Schnable,Gene mapping via bulked segregant RNA-Seq(BSR-Seq),PLoS One 7(2012),e36406..

    [27]R.H.Ramirez-Gonzalez,V.Segovia,N.Bird,P.Fenwick,S.Holdgate,S.Berry,P.Jack,M.Caccamo,C.Uauy,RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat,Plant Biotechnol.J.13(2015)613–624.

    [28]H.M.Tang,S.Z.Liu,S.Hill-Skinner,W.Wu,D.Reed,C.T.Yeh,D.Nettleton,P.S.Schnable,The maize brown midrib 2(bm2)gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation,Plant J.77(2014)380–392.

    [29]Y.Wang,J.Z.Xie,H.Z.Zhang,B.M.Guo,S.Z.Ning,Y.X.Chen,P.Lu,Q.H.Wu,M.M.Li,D.Y.Zhang,G.H.Guo,Y.Zhang,D.C.Liu,S.K.Zou,J.W.Tang,H.Zhao,X.X.Wang,J.Li,W.Y.Yang,T.J.Cao,Z.Y.Liu,Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq(BSR-Seq)and comparative genomics analyses,Theor.Appl.Genet.130(2017)2191–2201.

    [30]Y.Wang,H.Z.Zhang,J.Z.Xie,B.M.Guo,Y.X.Chen,H.Y.Zhang,P.Lu,Q.H.Wu,M.M.Li,D.Y.Zhang,G.H.Guo,J.Yang,P.P.Zhang,Y.Zhang,X.X.Wang,H.Zhao,T.J.Cao,Z.Y.Liu,Mapping stripe rust resistance genes by BSR-Seq:YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17,Crop J.6(2018)91–98.

    [31]A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:a flexible trimmer for Illumina sequence data,Bioinformatics 30(2014)2114–2120.

    [32]A.Dobin,C.A.Davis,F.Schlesinger,J.Drenkow,C.Zaleski,S.Jha,P.Batut,M.Chaisson,T.R.Gingeras,STAR:ultrafast universal RNA-seq aligner,Bioinformatics 29(2013)15–21.

    [33]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The genome analysis toolkit:a mapreduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [34]R.H.Liu,J.L.Meng,MapDraw:a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data,Hereditas 25(2003)317–321.

    [35]H.Thomas,H.Ougham,The stay-green trait,J.Exp.Bot.65(2014)3889–3900.

    [36]J.H.Lim,N.C.Paek,Quantitative trait locus mapping and candidate gene analysis for functional stay-green trait in rice,Plant Breed.Biotechnol.3(2015)95–107.

    [37]R.M.Caldwell,L.E.Compton,Complementary lethal genes in wheat causing a progressive lethal necrosis of seedlings,J.Hered.34(1943)67–70.

    [38]R.P.Singh,I.Singh,R.K.Chowdhury,Hybrid necrosis in bread wheat,III:Wheat Inf.Serv.,74,1992,pp.22–24.

    [39] C.C. Chu, J.D. Faris, T.L. Friesen, S.S. Xu, Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers,Theor.Appl.Genet.112(2006)1374–1381.

    [40]P.Zhang,C.W.hiebert,R.A.McIntosh,B.D.McCallum,J.B.Thomas, S. Hoxha, D. Singh, U. Bansal, The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS, Theor. Appl. Genet. 129 (2016)485–493.

    [41]B.Christ,I.Süssenbacher,S.Moser,N.Bichsel,A.Egert,T.Müller,B.Kr?utler,S.H?rtensteiner,Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis,Plant Cell 25(2013)1868–1880.

    [42]H.R.Woo,K.M.Chung,J.H.Park,S.A.Oh,T.Ahn,S.H.Hong,S.K.Jang,H.G.Nam,ORE9,an F-box protein that regulates leaf senescence in Arabidopsis,Plant Cell 13(2001)1779–1790.

    [43]C.J.Zhou,Z.H.Cai,Y.F.Guo,S.S.Gan,An Arabidopsis mitogenactivated protein kinase cascade,MKK9-MPK6,plays a role in leaf senescence,Plant Physiol.150(2009)167–177.

    [44]E.W.Gachomo,J.C.Jimenez-Lopez,L.J.Baptiste,S.O.Kotchoni,GIGANTUS1(GTS1),a member of Transducin/WD40 protein superfamily,controls seed germination,growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana,BMC Plant Biol.14(2014)37.

    [45]Y.Miao,T.Laun,P.Zimmermann,U.Zentgraf,Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis,Plant Mol.Biol.55(2004)853–867.

    [46]K.Bomblies,D.Weigel,Hybrid necrosis:autoimmunity as a potential gene-flow barrier in plant species,Nat.Rev.Genet.8(2007)382–393.

    精品久久久久久久久久久久久| 免费观看人在逋| 亚洲美女视频黄频| 一a级毛片在线观看| 午夜视频精品福利| 全区人妻精品视频| 一级黄色大片毛片| 亚洲中文字幕日韩| 亚洲精品中文字幕在线视频| 老汉色∧v一级毛片| 日韩免费av在线播放| 亚洲成人免费电影在线观看| 日韩中文字幕欧美一区二区| 免费在线观看影片大全网站| 人妻夜夜爽99麻豆av| 老熟妇仑乱视频hdxx| 久久久久久免费高清国产稀缺| 亚洲专区国产一区二区| av福利片在线观看| 欧美成人午夜精品| 妹子高潮喷水视频| 日本黄大片高清| 悠悠久久av| 亚洲 国产 在线| 日韩欧美国产一区二区入口| 国产av在哪里看| 免费看a级黄色片| 亚洲国产精品sss在线观看| 久久人人精品亚洲av| 精品久久久久久,| 色噜噜av男人的天堂激情| 国产97色在线日韩免费| 搡老妇女老女人老熟妇| 母亲3免费完整高清在线观看| 高清毛片免费观看视频网站| 后天国语完整版免费观看| 一进一出抽搐动态| 无人区码免费观看不卡| 美女 人体艺术 gogo| 欧美3d第一页| 伦理电影免费视频| 亚洲 欧美一区二区三区| 亚洲欧美日韩高清在线视频| 久久 成人 亚洲| 色综合婷婷激情| 欧美 亚洲 国产 日韩一| 亚洲av五月六月丁香网| 老汉色∧v一级毛片| 老汉色∧v一级毛片| 免费在线观看影片大全网站| 少妇粗大呻吟视频| 男人舔奶头视频| 女人高潮潮喷娇喘18禁视频| 欧美+亚洲+日韩+国产| 国产av在哪里看| 国产精品久久久av美女十八| 国产精品久久久av美女十八| 亚洲成人国产一区在线观看| 一二三四社区在线视频社区8| 淫秽高清视频在线观看| 精品久久久久久久毛片微露脸| 色在线成人网| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久人人做人人爽| 国产高清视频在线观看网站| 亚洲人成77777在线视频| 午夜福利在线观看吧| 日韩av在线大香蕉| 免费观看人在逋| 国产精品久久视频播放| 麻豆成人午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 久久久国产成人免费| 一级片免费观看大全| 亚洲精华国产精华精| 久久中文字幕人妻熟女| videosex国产| 91麻豆精品激情在线观看国产| 在线视频色国产色| 亚洲 国产 在线| 欧美又色又爽又黄视频| 国内少妇人妻偷人精品xxx网站 | 日韩 欧美 亚洲 中文字幕| 亚洲成人久久性| 999久久久国产精品视频| 一级黄色大片毛片| 999久久久国产精品视频| 五月伊人婷婷丁香| 国产av一区二区精品久久| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 亚洲黑人精品在线| 国产又色又爽无遮挡免费看| 国产亚洲精品久久久久久毛片| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久人妻精品电影| 一级片免费观看大全| 高清毛片免费观看视频网站| 日本一区二区免费在线视频| 午夜成年电影在线免费观看| 亚洲av日韩精品久久久久久密| 宅男免费午夜| 久久中文看片网| 欧美性猛交黑人性爽| 亚洲七黄色美女视频| 男插女下体视频免费在线播放| 亚洲成人久久爱视频| 级片在线观看| 久久久久性生活片| 久久久久国产一级毛片高清牌| 黄色丝袜av网址大全| 日韩欧美在线乱码| 国产精品一区二区三区四区免费观看 | 中国美女看黄片| 在线观看午夜福利视频| 俺也久久电影网| 无人区码免费观看不卡| 成熟少妇高潮喷水视频| 午夜精品一区二区三区免费看| 香蕉久久夜色| 一二三四在线观看免费中文在| 大型黄色视频在线免费观看| 欧美日本亚洲视频在线播放| 久久久久久久久久黄片| 久久香蕉国产精品| 欧美成人性av电影在线观看| 嫁个100分男人电影在线观看| 女警被强在线播放| 国产成人啪精品午夜网站| 国产成人精品久久二区二区免费| 成人高潮视频无遮挡免费网站| 999久久久精品免费观看国产| 99国产极品粉嫩在线观看| 免费av毛片视频| 亚洲精品粉嫩美女一区| 男女之事视频高清在线观看| 一个人观看的视频www高清免费观看 | 国产精品亚洲一级av第二区| 久久久久亚洲av毛片大全| 久久精品夜夜夜夜夜久久蜜豆 | 国产真实乱freesex| 婷婷丁香在线五月| 亚洲 欧美一区二区三区| 天天一区二区日本电影三级| 黄色 视频免费看| av在线播放免费不卡| a级毛片a级免费在线| 欧美成人一区二区免费高清观看 | 在线观看免费日韩欧美大片| 久久这里只有精品19| 蜜桃久久精品国产亚洲av| 黄色毛片三级朝国网站| 欧美精品亚洲一区二区| 国产三级在线视频| 国产私拍福利视频在线观看| 露出奶头的视频| 亚洲国产欧美一区二区综合| 欧美色欧美亚洲另类二区| 最新美女视频免费是黄的| 国产午夜精品论理片| 久久婷婷成人综合色麻豆| 午夜a级毛片| 黄色视频,在线免费观看| 亚洲成av人片免费观看| 国产精品久久电影中文字幕| 真人做人爱边吃奶动态| 久久国产精品影院| 亚洲美女黄片视频| 九色成人免费人妻av| 精品久久久久久久末码| 亚洲免费av在线视频| 啦啦啦观看免费观看视频高清| 一二三四在线观看免费中文在| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 最近最新免费中文字幕在线| 欧美3d第一页| 亚洲精品av麻豆狂野| 一级黄色大片毛片| 国产在线观看jvid| 亚洲人成77777在线视频| 青草久久国产| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 变态另类成人亚洲欧美熟女| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 最近最新免费中文字幕在线| 免费看日本二区| 免费观看精品视频网站| 777久久人妻少妇嫩草av网站| 欧美+亚洲+日韩+国产| www.999成人在线观看| 久久亚洲真实| 久久久国产成人精品二区| 欧美最黄视频在线播放免费| 黄色成人免费大全| 午夜福利欧美成人| 视频区欧美日本亚洲| 久久九九热精品免费| 色尼玛亚洲综合影院| 国产午夜精品论理片| 一进一出抽搐gif免费好疼| 99久久精品热视频| 久久中文字幕一级| 无人区码免费观看不卡| 中文字幕久久专区| 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| 国产一区二区在线av高清观看| 午夜福利在线观看吧| 老司机午夜福利在线观看视频| 亚洲国产欧美网| 欧美一区二区精品小视频在线| 亚洲激情在线av| 国产高清有码在线观看视频 | avwww免费| 老汉色av国产亚洲站长工具| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9| 看黄色毛片网站| 亚洲电影在线观看av| 国产成人系列免费观看| 久久人人精品亚洲av| 18禁国产床啪视频网站| 久久99热这里只有精品18| 亚洲欧美一区二区三区黑人| aaaaa片日本免费| 波多野结衣巨乳人妻| 日韩欧美 国产精品| 99re在线观看精品视频| 欧美性猛交╳xxx乱大交人| 日韩有码中文字幕| 男女那种视频在线观看| 国产精品一区二区精品视频观看| 国产在线观看jvid| av在线天堂中文字幕| 午夜老司机福利片| 99久久99久久久精品蜜桃| 老司机靠b影院| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黑人精品巨大| 啪啪无遮挡十八禁网站| 特大巨黑吊av在线直播| 熟妇人妻久久中文字幕3abv| 亚洲国产高清在线一区二区三| 久久人人精品亚洲av| 午夜福利免费观看在线| 午夜老司机福利片| 精品高清国产在线一区| www.自偷自拍.com| 一个人免费在线观看的高清视频| 午夜精品久久久久久毛片777| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 精品欧美一区二区三区在线| 少妇熟女aⅴ在线视频| 欧美日本亚洲视频在线播放| 日韩欧美三级三区| 男插女下体视频免费在线播放| 九色国产91popny在线| 成人特级黄色片久久久久久久| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 中文亚洲av片在线观看爽| 美女黄网站色视频| 成年人黄色毛片网站| 日本一本二区三区精品| 老司机在亚洲福利影院| www日本黄色视频网| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 亚洲av五月六月丁香网| 在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 国产v大片淫在线免费观看| 在线十欧美十亚洲十日本专区| 美女免费视频网站| 国产午夜精品久久久久久| 1024手机看黄色片| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| 国产午夜精品久久久久久| 热99re8久久精品国产| 色综合婷婷激情| 亚洲精品在线观看二区| 嫩草影院精品99| 国产亚洲欧美98| 91九色精品人成在线观看| 村上凉子中文字幕在线| 一个人免费在线观看的高清视频| 成年免费大片在线观看| 成人永久免费在线观看视频| 午夜影院日韩av| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 色老头精品视频在线观看| av在线播放免费不卡| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 老熟妇仑乱视频hdxx| 中文字幕熟女人妻在线| 亚洲一区高清亚洲精品| 国产免费男女视频| 亚洲片人在线观看| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 不卡一级毛片| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 日韩欧美在线乱码| 成人国产一区最新在线观看| 午夜福利免费观看在线| 又爽又黄无遮挡网站| 亚洲色图av天堂| 精品乱码久久久久久99久播| 在线观看日韩欧美| 在线观看舔阴道视频| 欧美日韩乱码在线| 狂野欧美白嫩少妇大欣赏| 麻豆一二三区av精品| av中文乱码字幕在线| 免费观看人在逋| √禁漫天堂资源中文www| 一区二区三区激情视频| 国产一区二区在线av高清观看| 桃色一区二区三区在线观看| 欧美精品啪啪一区二区三区| 久久99热这里只有精品18| 一本一本综合久久| 国产激情偷乱视频一区二区| ponron亚洲| 欧美日韩乱码在线| 午夜成年电影在线免费观看| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 免费高清视频大片| 国产亚洲欧美98| 变态另类成人亚洲欧美熟女| 色综合亚洲欧美另类图片| 亚洲无线在线观看| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 久久天堂一区二区三区四区| 好男人在线观看高清免费视频| 91在线观看av| 亚洲美女视频黄频| 1024手机看黄色片| 香蕉久久夜色| 丁香欧美五月| 午夜福利在线观看吧| 国内精品久久久久精免费| 国产三级中文精品| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 欧美高清成人免费视频www| 国产一区二区在线观看日韩 | 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 黄色 视频免费看| 欧美性猛交╳xxx乱大交人| 久久草成人影院| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 超碰成人久久| 亚洲片人在线观看| 制服诱惑二区| 男男h啪啪无遮挡| 国产一区在线观看成人免费| 又大又爽又粗| 欧美最黄视频在线播放免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲人成网站高清观看| 在线观看www视频免费| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| 很黄的视频免费| 欧美高清成人免费视频www| 草草在线视频免费看| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 十八禁人妻一区二区| 男女那种视频在线观看| 亚洲精品在线观看二区| www.www免费av| 日韩欧美在线乱码| 99久久精品热视频| 久久香蕉激情| 欧美激情久久久久久爽电影| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 国产不卡一卡二| 欧美日韩一级在线毛片| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 色在线成人网| 国产真实乱freesex| 国产精品99久久99久久久不卡| 久久久久久久午夜电影| 国产精品 欧美亚洲| 日本五十路高清| 欧美成狂野欧美在线观看| 欧美不卡视频在线免费观看 | 精品一区二区三区av网在线观看| 欧美在线黄色| 非洲黑人性xxxx精品又粗又长| 在线观看www视频免费| 91av网站免费观看| 日日爽夜夜爽网站| 久久99热这里只有精品18| www国产在线视频色| 伊人久久大香线蕉亚洲五| 久久久久九九精品影院| 搡老熟女国产l中国老女人| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线| 日韩三级视频一区二区三区| 成人国语在线视频| 日韩欧美 国产精品| www.www免费av| 女人爽到高潮嗷嗷叫在线视频| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 欧美色视频一区免费| 国产精品国产高清国产av| 成熟少妇高潮喷水视频| 欧美日韩瑟瑟在线播放| 麻豆国产97在线/欧美 | 久久香蕉精品热| 69av精品久久久久久| 国产午夜精品论理片| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 女警被强在线播放| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 国产亚洲精品av在线| 1024香蕉在线观看| 精品日产1卡2卡| av天堂在线播放| 亚洲欧美日韩高清专用| 麻豆成人av在线观看| 在线观看美女被高潮喷水网站 | 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 亚洲精品久久国产高清桃花| 又黄又爽又免费观看的视频| 舔av片在线| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 99久久精品国产亚洲精品| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 看黄色毛片网站| 日韩三级视频一区二区三区| 两个人看的免费小视频| 亚洲美女视频黄频| 99久久综合精品五月天人人| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 亚洲精品一卡2卡三卡4卡5卡| cao死你这个sao货| 国产免费男女视频| 九九热线精品视视频播放| 午夜精品一区二区三区免费看| 国产精品久久久久久精品电影| 亚洲第一欧美日韩一区二区三区| 成人国产一区最新在线观看| 后天国语完整版免费观看| 久久国产精品影院| 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 一个人免费在线观看的高清视频| 精品国内亚洲2022精品成人| 少妇被粗大的猛进出69影院| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 国产成人av教育| 免费在线观看影片大全网站| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 国产黄色小视频在线观看| 在线观看舔阴道视频| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 88av欧美| 制服人妻中文乱码| 国产精品av视频在线免费观看| 我要搜黄色片| 高潮久久久久久久久久久不卡| 少妇人妻一区二区三区视频| 国产97色在线日韩免费| 久久精品人妻少妇| 欧美日韩一级在线毛片| 亚洲成人久久性| 最近在线观看免费完整版| 妹子高潮喷水视频| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 国产成人影院久久av| 色老头精品视频在线观看| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 久久久国产精品麻豆| 日韩大尺度精品在线看网址| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 午夜福利成人在线免费观看| 国产真人三级小视频在线观看| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 免费看日本二区| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 国产成人系列免费观看| 亚洲欧美精品综合久久99| 亚洲欧美日韩无卡精品| 少妇的丰满在线观看| 国产三级在线视频| 国产69精品久久久久777片 | 无遮挡黄片免费观看| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 色综合亚洲欧美另类图片| 亚洲色图 男人天堂 中文字幕| 看片在线看免费视频| 啦啦啦免费观看视频1| cao死你这个sao货| 一本精品99久久精品77| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲一区中文字幕在线| av超薄肉色丝袜交足视频| 精品不卡国产一区二区三区| 在线观看免费日韩欧美大片| 日本黄大片高清| 久99久视频精品免费| www.自偷自拍.com| 欧美色欧美亚洲另类二区| 亚洲成人精品中文字幕电影| 精品午夜福利视频在线观看一区| 久久亚洲精品不卡| 日韩欧美国产在线观看| 亚洲18禁久久av| 亚洲av中文字字幕乱码综合| 日韩三级视频一区二区三区| 免费一级毛片在线播放高清视频| 91成年电影在线观看| 色综合婷婷激情| 久久久久久久午夜电影| 国产成人精品久久二区二区免费| 一区二区三区高清视频在线| 69av精品久久久久久| 777久久人妻少妇嫩草av网站| 99riav亚洲国产免费| 999久久久精品免费观看国产| 99精品久久久久人妻精品| www.自偷自拍.com| 又爽又黄无遮挡网站| 美女大奶头视频| 校园春色视频在线观看| 久久99热这里只有精品18| 精品久久久久久久久久免费视频| 麻豆国产97在线/欧美 | 一二三四在线观看免费中文在| 亚洲五月婷婷丁香| 亚洲 国产 在线| 久久草成人影院| 国产精品久久久久久精品电影| 50天的宝宝边吃奶边哭怎么回事| 国产午夜精品久久久久久| 国产伦在线观看视频一区| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| av福利片在线| 999久久久精品免费观看国产| 午夜精品久久久久久毛片777| 日韩欧美国产一区二区入口| 久久草成人影院| 免费av毛片视频| 国产探花在线观看一区二区| 久久人妻福利社区极品人妻图片|