• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plant salt tolerance and Na+sensing and transport

    2018-06-04 03:33:22HonghongWu
    The Crop Journal 2018年3期

    Honghong Wu*

    School of Land and Food,University of Tasmania,Hobart,Tas 7001,Australia

    State Key Laboratory of Tea Plant Biology and Utilization,Anhui Agricultural University,Hefei 230036,Anhui,China Department of Botany and Plant Sciences,University of California,Riverside,CA 92521,USA

    1.Introduction

    Sodium constitutes the sixth most abundant element on earth[1],and sodium salts dominate in many saline soils of the world[2].The current progressive increase in soil salinization may result in a~30%loss of the arable land within the next 25 years[3].To meet the projected food demand of 9.3 billion people by 2050,global agricultural production must be increased by 60%from its 2005–2007 levels[4].This urgent need requires a large effort to improve agricultural production.One feasible way to cope with this challenge is to breed robustly salt-tolerant crops.Understanding the mechanisms underlying plant salt tolerance would be of benefit for breeding such crops and mitigating future food shortages.

    Na+is generally not essential for plants.The similarity of the hydrated ionic radii of Na+and K+leads to Na+toxicity in plants under salt stress[5].Accumulation of high Na+in the cytosol can not only cause K+deficiency and thus disrupt various enzymatic processes,but also impose an energetic burden on the cell owing to the requirement of organic solute synthesis to compensate for the export of Na+for osmotic adjustment[6].More than 50 enzymes are activated by K+,which cannot be substituted with Na+[7].Also,oxidative stress is always accompanied by salt stress in plants[8].Thus,understanding how Na+is sensed and transported in plants under saline conditions could help researchers or breeders breed crops with robust salt tolerance.

    The present review is focused mainly on how plants sense Na+and control its transport under salt stress.The molecular identity of transporters and channels involved in Na+transport and its molecular regulation in response to salt stress are discussed.

    2.Na+as an issue

    Our earth is a salty planet[9,10].Saline soils cover 3.1%(397 million ha)of the total land area of the world[11].High concentrations of salts in soils account for large decreases in the yields of a wide variety of crops worldwide and result in annual losses in the billions of dollars[7,12].For example,soil salinity developed through shallow water-tables costs the farming economy in Australia about$300 million per year[13].

    The onset of salinity stress on plants can be divided into two phases:osmotic phase(rapid response to osmotic pressure)and then ionic phase(ionic toxicity from accumulated Na+)[6,14].In terms of salinity stress tolerance,plants can be divided into halophytes and glycophytes.Most crop species are glycophytes.Many glycophytes are particularly intolerant to salt,being inhibited by NaCl concentrations around 25–50 mmol L?1[15].Soil solutions with ECe(Electrical Conductivity of a saturated soil Extract)higherthan 4 dS m?1(corresponding to roughly 40 mmol L?1NaCl)are regarded as saline[6].Salinity stress can reduce germination rate[14,16],survival rate[16,17],growth[17],biomass/yield[14,16,18],leaf area[19],and leaf chlorophyll content[20,21].It can impact photosynthesis-associated traits and reduce stomatal conductance and net CO2assimilation rate[20].It can not only cause Na+accumulation in plants but also induce root[22,23]and mesophyll K+loss[24–26].

    3.Na+as a nutrient

    Given that Na+is one of the most soluble minerals and is easily accessible to plants to increase osmotic potential,absorb water,and sustain turgor,uptake of Na+is desirable,although excess Na+may become toxic to plants[27].Na+influx into cells against an electrochemical gradient is mediated mainly by non-selective cation channels and the sodium transporter HKT1[28].Low to moderate Na+concentrations are commonly found to be benign and even beneficial,and can even stimulate growth of many plant species when they are K+-deprived[29].This effect may be due to the replacement by Na+of K+in the vacuole,making more potassium available to the cytosol[30–32].For example,halophyte Salicornia europaea showed stimulated growth under 200 mmol L?1NaCl compared to the non-saline condition[33].Thus,to better improve salt tolerance in glycophytes,researchers have looked to the mechanisms used by halophytes to use Na+as a nutrient or prevent Na+accumulation in the cell cytosol[32,34–36].For example,Shabala et al.[36]suggested that it will be possible in the near future to transform the trichomes of crop species to epidermal bladder cells,which are used in halophytes for storage of excess Na+.The various strategies used by halophytes and glycophytes in response to salt stress are compared in Fig.1.

    4.Na+concentration in plant cell cytosol:some inconsistent results

    Fig.1–Different strategies of halophytes and glycophytes in response to salt stress.The thicknesses of lines represent the proposed contributions.

    To date,the role of the concentration of Na+in the cell cytosol in plant salt tolerance is debated.Some researchers claim ~30 mmol L?1as a threshold of cytosolic Na+concentration[6,7],while others suggest a range between 50 and 200 mmol L?1[37].Carden et al.[38]found that Na+concentration in cytosol ranged between~10 and 30 mmol L?1in salt-stressed barley root cortical cells.Anil et al.[39]found the cytosolic Na+concentration to range from~5to~12 mmol L?1in rice suspension cells under control conditions,whether they were derived from salt-tolerant or-sensitive varieties.Halperin and Lynch[40]measured the Na+concentration in Arabidopsis root hairs at lower than 65 mmol L?1under salt stress.Na+concentration in the cell cytosol in halophytes under saline conditions is proposed to range between 60 and 200 mmol L?1[41].Differences in plant species' ability to tolerate Na+in the cytosol and sensitivities of measurement methods may partially account for these disparate findings.

    5.Na+sensing in plants

    5.1.Possible salt sensors for perception of Na+

    Unlike in animal cells,no specific salt sensors have been identified in plant cells to date.Thus,our knowledge of how plant perceive salt stress and thus encode the corresponding signals remains limited.Cramer et al.[42]found that Ca2+can mitigate the loss of membrane integrity and minimize cytosolic K+leakage and proposed that displacement of Ca2+by Na+from the root cell plasmalemma is a primary response to salt stress.However,Kinraide[43]claimed that the Ca2+-displacement hypothesis is often of minor importance to salt stress response.SOS1 (saltoverly sensitive 1)Na+/H+antiporters[44],histidine kinases[45],and AHK1/ATHK1[46]have also been suggested to be potential salt sensors or osmosensors,though clear evidence is still lacking.Shabala et al.[47]suggested some putative salt stress sensors/proteins involved in early signaling events,including exchangers and transporters have Na+-binding proteins similar to mammalian cell Na+sensors,SOS1 Na+/H+antiporters,NCX Na+/Ca2+exchangers,NSCC/NADPH oxidase tandem,mechanosensory channels and transporters,cyclic nucleotide receptors,purino-receptors,annexins,and H+-ATPase/GORK tandem.Na+-activated K+channels in animal tissues are able to translate changes in Na+levels into K+fluxes[48],triggering signaling cascades.The binding of salt stress-induced increases of cyclic nucleotides to their receptors,e.g.CNGCs,can activate this CNGC Ca2+-permeable channels,and thus the increase of cyclic nucleotides could be translated into a massive cytosolic Ca2+uptake,which can affect Ca2+signaling[47].Similarly,sensing of salt-induced eATP(extracellular ATP)by plasma membrane purinoceptors can be translated into other signaling events,such as ROS(reactive oxygen species)and cytosolic Ca2+signature[49].Annexin is involved in ROS-induced cytosolic Ca2+elevation under salt stress[50]and is suggested to be a key component in root cell adaption to salt stress[51].K+acts as an intrinsic uncoupler of plasma membrane H+-ATPase,and its binding to the cytoplasmic phosphorylation domain site involving Asp617amino acid residue induces dephosphorylation of plasma membrane H+-ATPase[52].Thus,if a GORK channel is located near the H+-ATPase(H+-ATPase/GORK tandem),the depolarization-activated GORK channel-mediated K+efflux(early salt-stress signaling event[53,54])can result in reduced cytosolic K+and thus may prompt activation of H+-ATPase to restore plasma membrane potential,allowing modifying/affecting salt-induced K+efflux signaling events.

    5.2.Root meristem zone:a tissue harboring salt sensors?

    The root meristem is located at the very tip of the root.Root morphological change is always observed in root nutrient foraging[55].This observation suggests that roots can perceive changes in environmental factors,such as nutrient distribution and salinity level.In most cases,the root is the first plant organ that encounters salinity.Thus,Na+enters first into roots and is then transported to shoots.Wu et al.[56]found that salt-tolerant bread wheat varieties had significantly higher cytosolic Na+in the root meristem zone than salt-sensitive varieties,although no difference in vacuolar Na+fluorescence intensity was found in the root meristem zone.This finding suggests that salt-tolerant wheats could have more ability to buffer or tolerate increased Na+in the cell cytosol in root meristem zone than salt-sensitive wheats.Further,by removal of the root meristem zone from salttolerant wheat varieties,Na+distribution in mesophyll cells was altered and a salt-sensitive phenotype resulted[57].Taken together,these findings suggest that the root meristem zone can act as a salt stress sensor,or at least a tissue that harbors salt stress-sensor components.

    6.Regulation of Na+transport in plants under salt stress

    6.1.The importance of Na+exclusion in plant salt tolerance

    The importance of Na+exclusion in protecting plants against salinity stress is widely accepted.Under salt stress,net Na+accumulation in plant cells is determined by the ionexchange activity of Na+influx and efflux.Na+influx occurs mainly through ion channels such as the high-affinity K+transporter HKT and non-selective cation channels(NSCC),and Na+efflux is known to be mediated by SOS1,a Na+/H+antiporter.In the presence of elevated levels of external Na+,under saline conditions,Na+efflux from plant cells is an active process[58].To date,SOS1,expressed mainly in the root apex in Arabidopsis[59],is the only transporter that has been characterized in Na+export from the cytosol to the apoplast.Cuin et al.[60]showed that among eight tested varieties,the most salt-tolerant wheat variety Kharchia 65 had the strongest root Na+exclusion ability.Over expression of SOS1 can also enhance salt tolerance in transgenic plants[61,62].Loss of SOS1 function resulted in a hyper-saltsensitive phenotype in the halophytic Arabidopsis relative Thellungiella salsuginea[63].This finding further confirmed the important role of the SOS1 Na+/H+antiporter in Na+exclusion and overall plant salt tolerance.Moreover,to date,studies showing the important role of Na+exclusion in overall salt tolerance have been based mostly on shoot/leaf or even whole-plant Na+content[64–69].Whether this restricted Na+accumulation in shoot/leaves is achieved mainly by root Na+export or shoot Na+exclusion,or by both of these processes with tight regulation/coordination at different growth stages and time scales,however,has remained unclarified.

    6.2.The importance of vacuolar Na+sequestration in plant salt tolerance

    SOS1-mediated Na+export from cytosol to apoplast(against an Na+gradient)is an energy-consuming process.Given that most of the cell volume is occupied by vacuole and most metabolism occurs in the cytoplasm,one way for plants to alleviate Na+toxicity in the cytosol is to store Na+in the vacuole.Vacuolar Na+sequestration is acommon and important mechanism in plant salt tolerance,and is mediated by Na+/H+antiporters[70–72].Prevention of cytoplasmic Na+elevation,maintenance of the cytosolic K+/Na+ratio,and control of vacuolar osmotic potential in plants under salt stress can be achieved by,or is associated with,vacuolar Na+sequestration[73].To date,the best-known transporter for vacuolar Na+sequestration is the NHX1 Na+,K+/H+exchanger.Overexpression of NHX1,a Na+,K+/H+exchanger,improves salt tolerance in many species including Arabidopsis[70],tomato[74],rice[75],and tobacco[76],showing the importance of vacuolar Na+sequestration in plant overall salt tolerance.Significantly more Na+in excised leaves accumulated in tolerant than in sensitive barley genotypes,suggesting the important role of vacuolar Na+sequestration in overall salt tolerance[77].Also,salt-tolerant wheat varieties showed significantly higher vacuolar Na+fluorescence intensity in mature root cells than did sensitive varieties[56,60].Under overexpression of OsNHX1,transgenic rice cells survived better under saline condition and showed significantly higher growth rate and total Na+content than the wild type(WT)[78].Taken together,these findings show clearly that vacuolar Na+sequestration is an important trait contributing to plant overall salt tolerance.

    After sequestration of Na+in vacuoles,another important concern is to prevent Na+leakage from vacuole to cytosol.Loss of control of this step could result in futile Na+cycling between vacuole and cytosol,imposing a high energy burden on the plant.FV(fast-activating)and SV(slow-activating)channels are tonoplast Na+and K+-permeable channels that control Na+leakage from vacuole to cytosol.Negative control of FV and SV channel activity has been shown in the saltstressed halophyte quinoa to reduce such leakage[79],suggesting that efficient control of Na+leakage from vacuole to cytosol could be an important mechanism in plant overall salt stress tolerance.

    6.3.Control of xylem Na+loading and unloading

    Roots absorb ions and then transfer them to shoots via xylem loading,so that control of xylem Na+loading is important in plant overall salt tolerance.To date,SOS1 Na+/H+antiporter[58,80,81],CCC co-transporter[82],and SKOR channel(if xylem loading of Na+is passive)[83]have been shown to be involved in xylem Na+loading.Shi et al.[59]suggested that SOS1 plays a role in xylem Na+loading in Arabidopsis under mild salt stress.Yadav et al.[84]showed that enhanced xylem Na+loading and higher overall salt tolerance was achieved in tobacco by overexpression of SbSOS1.Recently,a reduction in overall net xylem Na+loading and accumulation in the shoot and thus improved salt tolerance were observed in wheat Nax(locus for Na+exclusion)lines following downregulation of SOS1-like Na+/H+antiporter[85].Besides SOS1,a CCC cotransporter that is preferentially expressed at the xylem/symplast boundary has also been suggested to play a role in xylem Na+loading[82].With respect to Na+transport in xylem,besides Na+loading into xylem,Na+unloading from xylem is another important mechanism.HKT transporters play a main role in this process.Sunarpi et al.[86]showed that the AtHKT1 transporter located on the plasma membrane in xylem parenchyma cells in leaves played a role in Na+unloading from xylem vessels to parenchyma cells.Huang et al.[87]suggested that TmHKT7-A2,which is associated with Nax1 locus,could control xylem Na+unloading in roots and sheaths.Also,Byrt et al.[65]showed that HKT1;5(HKT8)is strongly associated with Nax2 locus in durum wheat and its orthologous locus Kna1 in bread wheat removes Na+from xylem in roots and leads to a high K+/Na+ratio in leaves.Jaime-Perez et al.[88]showed that the SlHKT1;2 Na+-selective transporter plays an important role in Na+unloading from xylem in tomato shoots and thus modulates its Na+homeostasis under salinity.Fig.2 presents a schematic diagram of the control of xylem Na+loading and unloading.

    6.4.Na+recirculation from shoot to root via phloem

    Na+recirculation from shoots to roots has been suggested as an efficient way to protect leaf cells from Na+toxicity[89].Because leaf vacuolar Na+sequestration ability is poor,Na+recirculation from shoots to roots via phloem sap is probably the main mechanism involved in prevention of Na+delivery to leaf cells in most salt-sensitive plants[90].Apart from shoot growth rate,the rate of recirculation of Na+to the roots via phloem has been suggested as an important factor affecting Na+concentrations in shoots[91].In several species,such as lupine,clover,sweet pepper,and maize,recirculation of Na+to roots via phloem played a role in overall salt tolerance[7].Berthomieu et al.[90]showed that expression of the AtHKT1 gene was restricted to phloem tissues in all organs in Arabidopsis,and that the AtHKT1 gene was involved in Na+recirculation from shoots to roots probably by mediating Na+loading into phloem sap in the shoots and unloading it in roots.However,in Arabidopsis,a role of AtHKT1 in control of both Na+accumulation in roots and retrieval of Na+from xylem,without involvement in root influx or recirculation in the phloem,was suggested by Davenport et al.[91].Ren et al.[92]showed that HKT-type transporter encoded by SKC1(shoot K+concentration 1)gene might be involved in the recirculation of Na+by unloading it from the xylem in rice.Kobayashi et al.[93]foundthatan OsHKT1;5Na+selective transporter associated with the SKC1 locus is localized in cells adjacent to the xylem in roots,and is involved in mediating Na+exclusion in phloem to protect young leaf blades of rice under salt stress.

    Fig. 2 – Control of xylem Na+ loading and unloading.

    6.5.Na+secretion

    In halophytic plants,ion secretion by specialized salt glands is a well-known mechanism for regulating mineral content.Under high-salinity conditions,these specialized cells can serve as a peripheral Na+storage organ,mitigate the elevation of cytosolic Na+,and thus improve survival[94].Salt glands secrete both Na+and K+in Rhodes grass,but the ability to secrete Na+is greater than K+[95].Special salt glands in Aeluropus littoralis excreted salts consisting mostly of sodium chloride[96].Chen et al.[97]found that when Avicennia marina plants were transferred to increasingly strong saline solutions,increased numbers of salt glands in leaves were found and rates of salt secretion greatly increased.Agarie et al.[94]showed that epidermal bladder cells in the common ice plant(Mesembryanthemum crystallinum)contribute to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues.Bonales-Alatorre et al.[79]found that old leaves in quinoa had significantly higher Na+concentration in leaf sap than young leaves under salt stress,whether or not the leaves were brushed to remove bladder cells.

    7.Transporters and channels involved in Na+transport in plants under salt stress

    7.1.Na+transporters

    In contrast to HKT transporters subfamily 2 members,which show superior K+conductance,all members of HKT transporter subfamily 1 have a serine at the first pore loop(for the motif S-G-G-G)and show preferential Na+conductance.For example,Nax1 and Nax2 QTL(quantitative trait locus)in durum wheat are respectively linked to HKT1;4 and HKT1;5 transporters[66],and Kna1 in bread wheat is linked to an HKT1;5 transporter[65].The role of HKT1:X transporters in Na+unloading and recirculation in salt stressed plants was mentioned in Section 6.3 and 6.4.For example,Kobayashi et al.[93]found that the OsHKT1;5 Na+selective transporter,which is associated with the SKC1 locus,is localized in cells adjacent to the xylem in roots,and is involved in mediating Na+exclusion in phloem to protect young leaf blades of rice under salt stress.

    As mentioned earlier,vacuolar Na+sequestration is an important mechanism in plant salt tolerance.In 1999,Apse et al.[70]showed that transgenic plants overexpressing AtNHX1 had markedly increased salt stress tolerance and biomass.NHX1,a Na+,K+/H+exchanger,plays a crucial role not only in Na+accumulation in vacuoles but in pH regulation and K+homeostasis,regulating processes from vesicle trafficking and cell expansion to plant development[1,98,99].Most of the NHX family members(AtNHX1,AtNHX2,AtNHX3,AtNHX4,ItNHX1,ItNHX2,and OsNHX1)are located on the tonoplast;AtNHX7/SOS1 and AtNHX8,and other NHXs(AtNHX5,AtNHX6,and LeNHX2)are located on the plasma membrane and the endomembrane system,respectively [100].The intracellular NHX transporters compose subclass 1 of the cation/proton antiporter(CPA)family.To date,most members of the CPA family have been identified as Na+/H+antiporters,buta few are K+/H+antiporters,including CHX13,CHX17,CHX20,and CHX23 in the CPA2 family[101].

    Besides vacuolar Na+sequestration,another important pathway for controlling Na+distribution in plant cells is Na+exclusion/export.To date,SOS1 Na+/H+antiporter is the only reported antiporter responsible for Na+export from plant cells[102,103].SOS1 activity is regulated by SOS2,a serine/threonine protein kinase(CIPK24)and SOS3,a myristoylated calcium-binding protein(CBL4)[104–106].SOS3 recruits SOS2 to the plasma membrane,and then this CBL-CIPK complex activates SOS1 by phosphorylation,dramatically increasing Na+/H+exchange activity[58].Moreover,the existence of an ATP-driven Na+transport mediated by a Na+-ATPase at the plasma membrane has been shown in lower plants,such as the marine alga Heterosigma akashiwo[107]and the moss Physcomitrella patens[108].

    7.2.Na+channels

    NSCCs are a large family of channels that lack selectivity for cations.They are typically permeable to a wide range of monovalent cations[109]and are located on both the plasma membrane and the tonoplast.They can be divided into voltage-dependent NSCCs(depolarization-activated,hyperpolarization-activated),voltage-independent NSCCs,ROS-activated NSCCs,amino acid-activated NSCCs,cyclic nucleotidegated NSCCs,etc.Electrophysiological studies suggest that Na+influx across the plasma membrane occurs via NSCC/VIC in root cortical cells[10,58,110].Maathuis and Sanders[111]found that cyclic nucleotide-regulated VIC(voltage-independent cation channels)channels showed no selectivity among monovalent cations in Arabidopsis root cells.Channels and transporters involved in Na+transport in plants under salt stress are summarized in Fig.3.

    7.3.Molecular regulation of Na+transporters/channels in response to salt stress

    To date,SOS1 is the only known anti-transporter responsible for Na+export from cytosol to apoplast.Usually,expression of the SOS1 gene is upregulated in salt stressed plants[63,102,112].The functional activity of SOS1 mediated Na+export could be influenced by SOS2[104],SOS3[106],the assembly of SOS2-SOS3 complex[113],and H+-ATPase,which can increase H+efflux to energize Na+efflux through SOS1 antiporters[114].SOS1 activity could also be influenced by ROS or ROS signaling-associated components.SOS1 mRNA stability is increased in Arabidopsis under H2O2treatment,and NADPH oxidase is also involved in the upregulation of SOS1 mRNA stability[115].Also,SOS1 interacts with RCD1(radical-induced cell death),a regulator of oxidative stress responses,and functions in oxidative stress tolerance in Arabidopsis[116].Reduced ROS production and increased SOS1 expression was found in pao1pao5(polyamine oxidase,PAO)Arabidopsis mutants than in the WT under salt stress[117].

    As with SOS1,overexpression of NHX1 to increase plant salt tolerance has been shown in many plant species[61,62,70].Although the role of AtNHX1 in K+accumulation in the vacuole was discovered in recent years[98,99,118],this finding cannot completely rule out the involvement of NHX1 in vacuolar Na+sequestration,especially under high salinity[81,119].Usually,the NHX1 gene is upregulated in saltstressed plants,including Arabidopsis[120],barley[121],and alfalfa[122].However,a clear decrease in the transcript level of NHX1 in wheat roots was observed under salt stress,while almost no change in the NHX1 transcript level was found in leaves[123].Also,in contrast to the successfully improved salt stress tolerance in Arabidopsis[70],tomato[74],rice[75],and tobacco[76],overall salt tolerance was not enhanced in Arabidopsis[61]and barley[124]by expression of the NHX1 Na+/H+exchanger gene.These conflicting results raise the questions of the importance of tissue specificity in plant saltstress tolerance.

    Fig.3–Na+transport in plants under salinity stress.

    NHX1 is known to be fuelled by an H+gradient across the tonoplast that is maintained by vacuolar H+-ATPase and vacuolar PPase[125].Expressing a halophyte vacuolar H+-ATPase subunit c1(SaVHAc1)in rice plants resulted in higher chlorophyll content and yield than in its WT[126].Overexpression of vacuolar PPase AVP1 improved salt tolerance in transgenic Arabidopsis relative to the WT,showing a healthy growth of transgenic Arabidopsis in the presence of 250 mmol L?1NaCl compared with the WT,which died after 10 days[127].These results suggest that manipulating vacuolar H+-ATPase and PPase could allow regulating NHX1 activity and eventually plant overall salt tolerance.Other known factors in the regulation of NHX1 activity are SOS2[128]and CaM15[129].Also,CBL10 can interact with SOS2 to protect Arabidopsis shoots from salt stress[130].Tang et al.[131]showed that PtCBL10A and PtCBL10B interact with PtSOS2 in the vacuolar membrane to regulate shoot salt tolerance in poplar.Thus,CBL10 is also proposed to regulate NHX1 activity[132].Two recent reviews[81,133]have also focused on molecular regulation of Na+transporters/channels in response to salt stress.

    8.Conclusion

    Although plant salt tolerance at the level of Na+transport is well characterized,the initial plant perception of salt stress and its transduction to subsequent signaling cascades is still obscure.In this review,some suggested putative salt stress sensors have been described.The root meristem zone as a tissue harboring salt stress-sensing components has been proposed.The importance of Na+exclusion and vacuolar Na+sequestration in plant salt tolerance has been highlighted.The molecular regulation of Na+transporters/channels in response to salt stress has been discussed.Although over-accumulation of Na+is toxic to plants,low levels of Na+can stimulate plant growth especially under K+deprivation.Inconsistent cytosolic Na+concentrations reported in the literature may be attributed to the diversity of plant species or the sensitivities of measurement methods.

    Acknowledgments

    I thank Prof.Sergey Shabala,Associate Prof.Meixue Zhou,and Dr.Lana Shabala from University of Tasmania,Australia for their help in the preparation of the manuscript.I thank Prof.James C.Nelson from Kansas State University for his proofreading of the manuscript.This work was supported by a Ph.D.scholarship provided by University of Tasmania(185466S9A),Australia and the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization at Anhui Agricultural University(SKLTOF20170112).

    [1]M.P.Rodríguez-Rosales,F.J.Gálvez,R.Huertas,M.N.Aranda,M.Baghour,O.Cagnac,K.Venema,Plant NHX cation/proton antiporters,Plant Signal.Behav.4(2009)265–276.

    [2]E.Tavakkoli,P.Rengasamy,G.K.McDonald,High concentrations of Na+and Cl?ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress,J.Exp.Bot.61(2010)4449–4459.

    [3]W.Wang,B.Vinocur,A.Altman,Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance,Planta 218(2003)1–14.

    [4]M.K.van Ittersum,L.G.J.van Bussel,J.Wolf,P.Grassini,J.van Wart,N.Guilpart,L.Claessens,H.de Groot,K.Wiebe,D.Mason-D'Croz,H.Yang,H.Boogaard,P.A.J.van Oort,M.P.van Loon,K.Saito,O.Adimo,S.Adjei-Nsiah,A.Agali,A.Bala,R.Chikowo,K.Kaizzi,M.Kouressy,J.H.J.R.Makoi,K.Ouattara,K.Tesfaye,K.G.Cassman,Can sub-Saharan Africa feed itself?Proc.Natl.Acad.Sci.U.S.A.113(2016)14964–14969.

    [5]E.Blumwald,Sodium transport and salt tolerance in plants,Curr.Opin.Plant Biol.12(2000)431–434.

    [6]R.Munns,M.Tester,Mechanisms of salinity tolerance,Annu.Rev.Plant Biol.59(2008)651–681.

    [7]M.Tester,R.Davenport,Na+tolerance and Na+transport in higher plants,Ann.Bot.91(2003)503–527.

    [8]G.Miller,N.Suzuki,S.Ciftci-Yilmaz,R.Mittler,Reactive oxygen species homeostasis and signalling during drought and salinity stresses,Plant Cell Environ.33(2010)453–467.

    [9]T.J.Flowers,Improving crop salt tolerance,J.Exp.Bot.55(2004)307–319.

    [10]J.L.Zhang,T.J.Flowers,S.M.Wang,Mechanisms of sodium uptake by roots of higher plants,Plant Soil 326(2010)45–60.

    [11]R.Setia,P.Gottschalk,P.Smith,P.Marschner,J.Baldock,D.Setia,J.Smith,Soil salinity decreases global soil organic carbon stocks,Sci.Total Environ.465(2013)267–272.

    [12]M.Qadir,E.Quillérou,V.Nangia,G.Murtaza,M.Singh,R.J.Thomas,P.Drechsel,A.D.Noble,Economics of salt-induced land degradation and restoration,Nat.Resour.Forum 38(2014)282–295.

    [13]P.Rengasamy,Transient salinity and subsoil constraints to dryland farming in Australian sodic soils:an overview,Aust.J.Exp.Agric.42(2002)351–361.

    [14]R.Munns,R.A.James,A.L?uchli,Approaches to increasing the salt tolerance of wheat and other cereals,J.Exp.Bot.57(2006)1025–1043.

    [15]R.Haro,M.A.Ba?uelos,F.J.Quintero,F.Rubio,A.Rodríguez-Navarro,Genetic basis of sodium exclusion and sodium tolerance in yeast.A model for plants,Physiol.Plant.89(1993)868–874.

    [16]R.Munns,R.A.James,Screening methods for salinity tolerance:a case study with tetraploid wheat,Plant Soil 253(2003)201–218.

    [17]A.R.Yeo,T.J.Flowers,Salinity resistance in rice(Oryza sativa L.)and a pyramiding approach to breeding varieties for saline soils,Funct.Plant Biol.13(1986)161–173.

    [18]T.A.Cuin,Y.Tian,S.A.Betts,?.Chalmandrier,S.Shabala,Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions,Funct.Plant Biol.36(2009)1110–1119.

    [19]T.D.Colmer,R.Munns,T.J.Flowers,Improving salt tolerance of wheat and barley:future prospects,Aust.J.Exp.Agric.45(2005)1425–1443.

    [20]R.A.James,A.R.Rivelli,R.Munns,S.Von Caemmerer,Factors affecting CO2assimilation,leaf injury and growth in salt-stressed durum wheat,Funct.Plant Biol.29(2002)1393–1403.

    [21]T.A.Cuin,M.Zhou,D.Parsons,S.Shabala,Genetic behaviour of physiological traits conferring cytosolic K+/Na+homeostasis in wheat,Plant Biol.14(2012)438–446.

    [22]Z.Chen,I.Newman,M.Zhou,N.Mendham,G.Zhang,S.Shabala,Screening plants for salt tolerance by measuring K+flux:a case study for barley,Plant Cell Environ.28(2005)1230–1246.

    [23]T.A.Cuin,S.A.Betts,R.Chalmandrier,S.Shabala,A root's ability to retain K+correlates with salt tolerance in wheat,J.Exp.Bot.59(2008)2697–2706.

    [24]H.Wu,L.Shabala,K.Barry,M.Zhou,S.Shabala,Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley,Physiol.Plant.149(2013)515–527.

    [25]H.Wu,L.Shabala,M.Zhou,S.Shabala,Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll:implications for salinity stress tolerance,Plant Cell Physiol.55(2014)1749–1762.

    [26]H.Wu,M.Zhu,L.Shabala,M.Zhou,S.Shabala,K+retention in leaf mesophyll,an overlooked component of salinity tolerance mechanism:a case study for barley,J.Integr.Plant Biol.57(2015)171–185.

    [27]J.M.Pardo,F.J.Quintero,Plants and sodium ions:keeping company with the enemy,Genome Biol.3(2002)(Reviews1017.1–1017.4).

    [28]J.M.Ward,K.D.Hirschi,H.Sze,Plants pass the salt,Trends Plant Sci.8(2003)200–201.

    [29]L.M.Schulze,D.T.Britto,M.Li,H.J.Kronzucker,A pharmacological analysis of high-affinity sodium transport in barley(Hordeum vulgare L.):a24Na+/42K+study,J.Exp.Bot.63(2012)2479–2489.

    [30]P.M?ser,B.Eckelman,R.Vaidyanathan,T.Horie,D.J.Fairbairn,M.Kubo,M.Yamagami,K.Yamaguchi,M.Nishimura,N.Uozumi,Altered shoot/root Na+distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+transporter AtHKT1,FEBS Lett.531(2002)157–161.

    [31]A.Rodríguez-Navarro,F.Rubio,High-affinity potassium and sodium transport systems in plants,J.Exp.Bot.57(2006)1149–1160.

    [32]T.J.Flowers,T.D.Colmer,Salinity tolerance in halophytes,New Phytol.179(2008)945–963.

    [33]S.Lv,L.Nie,P.Fan,X.Wang,D.Jiang,X.Chen,Y.Li,Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea,Acta Physiol.Plant.34(2012)503–513.

    [34]T.J.Flowers,H.K.Galal,L.Bromham,Evolution of halophytes:multiple origins of salt tolerance in land plants,Funct.Plant Biol.37(2010)604–612.

    [35]C.J.Ruan,J.A.T.da Silva,S.Mopper,Q.Pei,S.Lutts,Halophyte improvement for a salinized world,Crit.Rev.Plant Sci.29(2010)329–359.

    [36]S.Shabala,J.Bose,R.Hedrich,Salt bladders:do they matter?Trends Plant Sci.19(2014)687–691.

    [37]H.J.Kronzucker,D.T.Britto,Sodium transport in plants:a critical review,New Phytol.189(2011)54–81.

    [38]D.E.Carden,D.J.Walker,T.J.Flowers,A.J.Miller,Single-cell measurements of the contributions of cytosolic Na+and K+to salt tolerance,Plant Physiol.131(2003)676–683.

    [39]V.S.Anil,H.Krishnamurthy,M.K.Mathew,Limiting cytosolic Na+confers salt tolerance to rice cells in culture:a two photon microscopy study of SBFI-loaded cells,Physiol.Plant.129(2007)607–621.

    [40]S.J.Halperin,J.P.Lynch,Effects of salinity on cytosolic Na+and K+in root hairs of Arabidopsis thaliana:in vivo measurements using the fluorescent dyes SBFI and PBFI,J.Exp.Bot.54(2003)2035–2043.

    [41]T.J.Flowers,R.Munns,T.D.Colmer,Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes,Ann.Bot.115(2015)419–431.

    [42]G.R.Cramer,A.L?uchli,V.S.Polito,Displacement of Ca2+by Na+from the plasmalemma of root cells:a primary response to salt stress?Plant Physiol.79(1985)207–211.

    [43]T.B.Kinraide,Interactions among Ca2+,Na+and K+in salinity toxicity:quantitative resolution of multiple toxic and ameliorative effects,J.Exp.Bot.50(1999)1495–1505.

    [44]J.K.Zhu,Regulation of ion homeostasis under salt stress,Curr.Opin.Plant Biol.6(2003)441–445.

    [45]K.Marin,I.Suzuki,K.Yamaguchi,K.Ribbeck,H.Yamamoto,Y.Kanesaki,M.Hagemann,N.Murata,Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp.PCC 6803,Proc.Natl.Acad.Sci.U.S.A.100(2003)9061–9066.

    [46]L.S.P.Tran,T.Urao,F.Qin,K.Maruyama,T.Kakimoto,K.Shinozaki,K.Yamaguchi-Shinozaki,Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid,drought,and salt stress in Arabidopsis,Proc.Natl.Acad.Sci.U.S.A.104(2007)20623–20628.

    [47]S.Shabala,H.Wu,J.Bose,Salt stress sensing and early signalling events in plant roots:current knowledge and hypothesis,Plant Sci.(2015)109–119.

    [48]S.J.Thomson,A.Hansen,M.C.Sanguinetti,Identification of the intracellular Na+sensor in Slo2.1 potassium channels,J.Biol.Chem.290(2015)14528–14535.

    [49]J.Sun,X.Zhang,S.Deng,C.Zhang,M.Wang,M.Ding,R.Zhao,X.Shen,X.Zhou,C.Lu,S.Chen,Extracellular ATP signaling is mediated by H2O2and cytosolic Ca2+in the salt response of Populus euphratica cells,PLoS One 7(2012),e53136..

    [50]J.Davies,Annexin–mediated calcium signalling in plants,Plants 3(2014)128–140.

    [51]A.Laohavisit,S.L.Richards,L.Shabala,C.Chen,R.D.D.R.Colaco,S.M.Swarbreck,E.Shaw,A.Dark,S.Shabala,Z.Shang,J.M.Davies,Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1,Plant Physiol.163(2013)253–262.

    [52]M.J.Buch-Pedersen,E.L.Rudashevskaya,T.S.Berner,K.Venema,M.G.Palmgren,Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase,J.Biol.Chem.281(2006)38285–38292.

    [53]V.Demidchik,D.Straltsova,S.S.Medvedev,G.A.Pozhvanov,A.Sokolik,V.Yurin,Stress-induced electrolyte leakage:the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment,J.Exp.Bot.65(2014)1259–1270.

    [54]S.Shabala,Signalling by potassium:another second messenger to add to the list?J.Exp.Bot.68(2017)4003–4007.

    [55]R.F.H.Giehl,N.von Wiren,Root nutrient foraging,Plant Physiol.166(2014)509–517.

    [56]H.Wu,L.Shabala,X.Liu,E.Azzarello,M.Zhou,C.Pandolfi,Z.H.Chen,J.Bose,S.Mancuso,S.Shabala,Linking salinity stress tolerance with tissue-specific Na+sequestration in wheat roots,Front.Plant Sci.6(2015)71.

    [57]H.Wu,Tissue Specificity of Cytosolic K+Retention,Na+Extrusion,and Vacuolar Na+Sequestration Traits in the Context of Differential Salinity Stress Tolerance in Barley and Wheat(Ph.D.Dissertation)University of Tasmania,Australia,2015https://eprints.utas.edu.au/23053/.

    [58]M.P.Apse,E.Blumwald,Na+transport in plants,FEBS Lett.581(2007)2247–2254.

    [59]H.Shi,F.J.Quintero,J.M.Pardo,J.K.Zhu,The putative plasma membrane Na+/H+antiporter SOS1 controls longdistance Na+transport in plants,Plant Cell 14(2002)465–477.

    [60]T.A.Cuin,J.BOSE,G.Stefano,D.JHA,M.Tester,S.Mancuso,S.Shabala,Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat:in planta quantification methods,Plant Cell Environ.34(2011)947–961.

    [61]Q.Yang,Z.Z.Chen,X.F.Zhou,H.B.Yin,X.Li,X.F.Xin,X.H.Hong,J.K.Zhu,Z.Gong,Overexpression of SOS(salt overly sensitive)genes increases salt tolerance in transgenic Arabidopsis,Mol.Plant 2(2009)22–31.

    [62]Y.Yue,M.Zhang,J.Zhang,L.Duan,Z.Li,SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ratio,J.Plant Physiol.169(2012)255–261.

    [63]D.H.Oh,E.Leidi,Q.Zhang,S.-M.Hwang,Y.Li,F.J.Quintero,X.Jiang,M.P.D'Urzo,S.Y.Lee,Y.Zhao,J.D.Bahk,R.A.Bressan,D.J.Yun,J.M.Pardo,H.J.Bohnert,Loss of halophytism by interference with SOS1 expression,Plant Physiol.151(2009)210–222.

    [64]G.N.Al-Karaki,Growth,water use efficiency,and sodium and potassium acquisition by tomato cultivars grown under salt stress,J.Plant Nutr.23(2000)1–8.

    [65]C.S.Byrt,J.D.Platten,W.Spielmeyer,R.A.James,E.S.Lagudah,E.S.Dennis,M.Tester,R.Munns,HKT1;5-like cation transporters linked to Na+exclusion loci in wheat,Nax2 and Kna1,Plant Physiol.143(2007)1918–1928.

    [66]R.A.James,C.Blake,C.S.Byrt,R.Munns,Major genes for Na+exclusion,Nax1 and Nax2(wheat HKT1;4 and HKT1;5),decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions,J.Exp.Bot.62(2011)2939–2947.

    [67]I.S.M?ller,M.Tester,Salinity tolerance of Arabidopsis:a good model for cereals?Trends Plant Sci.12(2007)534–540.

    [68]R.Munns,R.A.James,B.Xu,A.Athman,S.J.Conn,C.Jordans,C.S.Byrt,R.A.Hare,S.D.Tyerman,M.Tester,D.Plett,M.Gilliham,Wheat grain yield on saline soils is improved by an ancestral Na+transporter gene,Nat.Biotechnol.30(2012)360–364.

    [69]S.J.Roy,W.Huang,X.J.Wang,A.Evrard,S.M.Schm?ckel,Z.U.Zafar,M.Tester,A novel protein kinase involved in Na+exclusion revealed from positional cloning,Plant Cell Environ.36(2013)553–568.

    [70]M.P.Apse,G.S.Aharon,W.A.Snedden,E.Blumwald,Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis,Science 285(1999)1256–1258.

    [71]M.M.F.Mansour,K.H.A.Salama,M.M.Al-Mutawa,Transport proteins and salt tolerance in plants,Plant Sci.164(2003)891–900.

    [72]A.Rahnama,K.Poustini,R.Tavakkol-Afshari,A.Ahmadi,H.Alizadeh,Growth properties and ion distribution in different tissues of bread wheat genotypes(Triticum aestivum L.)differing in salt tolerance,J.Agron.Crop Sci.197(2011)21–30.

    [73]F.J.M.Maathuis,A.Amtmann,K+nutrition and Na+toxicity:the basis of cellular K+/Na+ratios,Ann.Bot.84(1999)123–133.

    [74]H.X.Zhang,E.Blumwald,Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit,Nat.Biotechnol.19(2001)765–768.

    [75]H.Chen,R.An,J.H.Tang,X.H.Cui,F.S.Hao,J.Chen,X.C.Wang,Over-expression of a vacuolar Na+/H+antiporter gene improves salt tolerance in an upland rice,Mol.Breed.19(2007)215–225.

    [76]S.Gouiaa,H.Khoudi,E.O.Leidi,J.M.Pardo,K.Masmoudi,Expression of wheat Na+/H+antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance,Plant Mol.Biol.79(2012)137–155.

    [77]S.Shabala,S.Shabala,T.A.Cuin,J.Pang,W.Percey,Z.Chen,S.Conn,C.Eing,L.H.Wegner,Xylem ionic relations and salinity tolerance in barley,Plant J.61(2010)839–853.

    [78]A.Fukuda,A.Nakamura,A.Tagiri,H.Tanaka,A.Miyao,H.Hirochika,Y.Tanaka,Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice,Plant Cell Physiol.45(2004)146–159.

    [79]E.Bonales-Alatorre,S.Shabala,Z.H.Chen,I.Pottosin,Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte,quinoa,Plant Physiol.162(2013)940–952.

    [80]S.Shabala,Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops,Ann.Bot.112(2013)1209–1221.

    [81]F.J.M.Maathuis,Sodium in plants:perception,signalling,and regulation of sodium fluxes,J.Exp.Bot.65(2014)849–858.

    [82]J.M.Colmenero-Flores,G.Martínez,G.Gamba,N.Vázquez,D.J.Iglesias,J.Brumós,M.Talón,Identification and functional characterization of cation-chloride cotransporters in plants,Plant J.50(2007)278–292.

    [83]L.H.Wegner,A.H.De Boer,Two inward K+channels in the xylem parenchyma cells of barley roots are regulated by G-protein modulators through a membrane-delimited pathway,Planta 203(1997)506–516.

    [84]N.Yadav,P.Shukla,A.Jha,P.K.Agarwal,B.Jha,The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco,BMC Plant Biol.12(2012)188.

    [85]M.Zhu,L.Shabala,T.A.Cuin,X.Huang,M.Zhou,R.Munns,S.Shabala,Nax loci affect SOS1-like Na+/H+exchanger expression and activity in wheat,J.Exp.Bot.67(2016)835–844.

    [86]T.Horie Sunarpi,J.Motoda,M.Kubo,H.Yang,K.Yoda,R.Horie,W.Y.Chan,H.Y.Leung,K.Hattori,M.Konomi,M.Osumi,M.Yamagami,J.I.Schroeder,N.Uozumi,Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+unloading from xylem vessels to xylem parenchyma cells,Plant J.44(2005)928–938.

    [87]S.Huang,W.Spielmeyer,E.S.Lagudah,R.A.James,J.D.Platten,E.S.Dennis,R.Munns,A sodium transporter(HKT7)is a candidate for Nax1,a gene for salt tolerance in durum wheat,Plant Physiol.142(2006)1718–1727.

    [88]N.Jaime-Pérez,B.Pineda,B.García-Sogo,A.Atares,A.Athman,C.S.Byrt,R.Olías,M.J.Asins,M.Gilliham,V.Moreno,A.Belver,The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity,Plant Cell Environ.40(2017)658–671.

    [89]X.Kong,Z.Luo,H.Dong,A.E.Eneji,W.Li,Effects of nonuniform root zone salinity on water use,Na+recirculation,and Na+and H+flux in cotton,J.Exp.Bot.63(2012)2105–2116.

    [90]P.Berthomieu,G.Conéjéro,A.Nublat,W.J.Brackenbury,C.Lambert,C.Savio,N.Uozumi,S.Oiki,K.Yamada,F.Cellier,F.Gosti,T.Simonneau,P.A.Essah,M.Tester,A.A.Véry,H.Sentenac,F.Casse,Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance,EMBO J.22(2003)2004–2014.

    [91]R.J.Davenport,A.Mu?oz-Mayor,D.Jha,P.A.Essah,A.Rus,M.Tester,The Na+transporter AtHKT1;1 controls retrieval of Na+from the xylem in Arabidopsis,Plant Cell Environ.30(2007)497–507.

    [92]Z.H.Ren,J.P.Gao,L.G.Li,X.L.Cai,W.Huang,D.Y.Chao,M.Z.Zhu,Z.Y.Wang,S.Luan,H.X,A rice quantitative trait locus for salt tolerance encodes a sodium transporter,Nat.Genet.37(2005)1141–1146.

    [93]N.I.Kobayashi,N.Yamaji,H.Yamamoto,K.Okubo,H.Ueno,A.Costa,K.Tanoi,H.Matsumura,M.Fujii-Kashino,T.Horiuchi,M.Al Nayef,S.Shabala,G.An,J.F.Ma,T.Horie,OsHKT1;5 mediates Na+exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice,Plant J.91(2017)657–670.

    [94]S.Agarie,T.Shimoda,Y.Shimizu,K.Baumann,H.Sunagawa,A.Kondo,O.Ueno,T.Nakahara,A.Nose,J.C.Cushman,Salt tolerance,salt accumulation,and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum,J.Exp.Bot.58(2007)1957–1967.

    [95]H.Kobayashi,Y.Masaoka,Y.Takahashi,Y.Ide,S.Sato,Ability of salt glands in Rhodes grass(Chloris gayana Kunth)to secrete Na+and K+,Soil Sci.Plant Nutr.53(2007)764–771.

    [96]Z.Barhoumi,W.Djebali,A.Smaoui,W.Cha?bi,C.Abdelly,Contribution of NaCl excretion to salt resistance of Aeluropus littoralis(Willd)Parl,J.Plant Physiol.164(2007)842–850.

    [97]W.Chen,Z.L.He,X.E.Yang,S.Mishra,P.J.Stoffella,Chlorine nutrition of higher plants:progress and perspectives,J.Plant Nutr.33(2010)943–952.

    [98]E.O.Leidi,V.Barragán,L.Rubio,A.El-Hamdaoui,M.T.Ruiz,B.Cubero,J.A.Fernández,R.A.Bressan,P.M.Hasegawa,F.J.Quintero,J.M.Pardo,The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato,Plant J.61(2010)495–506.

    [99]E.Bassil,H.Tajima,Y.C.Liang,M.A.Ohto,K.Ushijima,R.Nakano,T.Esumi,A.Coku,M.Belmonte,E.Blumwald,The Arabidopsis Na+/H+antiporters NHX1 and NHX2 control vacuolar pH and K+homeostasis to regulate growth,flower development,and reproduction,Plant Cell 23(2011)3482–3497.

    [100]M.Gierth,P.M?ser,Potassium transporters in plantsinvolvement in K+acquisition,redistribution and homeostasis,FEBS Lett.581(2007)2348–2356.

    [101]Y.Wang,W.H.Wu,Potassium transport and signaling in higher plants,Annu.Rev.Plant Biol.64(2013)451–476.

    [102]H.Shi,M.Ishitani,C.Kim,J.K.Zhu,The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter,Proc.Natl.Acad.Sci.U.S.A.97(2000)6896–6901.

    [103]S.Shabala,L.Shabala,E.Van Volkenburgh,I.Newman,Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves,J.Exp.Bot.56(2005)1369–1378.

    [104]J.Liu,M.Ishitani,U.Halfter,C.S.Kim,J.K.Zhu,The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance,Proc.Natl.Acad.Sci.U.S.A.97(2000)3730–3734.

    [105]S.Luan,W.Lan,S.C.Lee,Potassium nutrition,sodium toxicity,and calcium signaling:connections through the CBL-CIPK network,Curr.Opin.Plant Biol.12(2009)339–346.

    [106]U.Halfter,M.Ishitani,J.K.Zhu,The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3,Proc.Natl.Acad.Sci.U.S.A.97(2000)3735–3740.

    [107]M.Shono,M.Wada,Y.Hara,T.Fujii,Molecular cloning of Na+-ATPase cDNA from a marine alga,Heterosigma akashiwo,Biochim.Biophys.Acta Biomembr.1511(2001)193–199.

    [108]C.Lunde,D.P.Drew,A.K.Jacobs,M.Tester,Exclusion of Na+via sodium ATPase(PpENA1)ensures normal growth of Physcomitrella patens under moderate salt stress,Plant Physiol.144(2007)1786–1796.

    [109]V.Demidchik,F.J.M.Maathuis,Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development,New Phytol.175(2007)387–404.

    [110]V.Demidchik,M.Tester,Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots,Plant Physiol.128(2002)379–387.

    [111]F.J.Maathuis,D.Sanders,Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides,Plant Physiol.127(2001)1617–1625.

    [112]R.Quan,J.Wang,D.Yang,H.Zhang,Z.Zhang,R.Huang,EIN3 and SOS2 synergistically modulate plant salt tolerance,Sci.Rep.7(2017),44637..

    [113]D.Gong,Y.Guo,K.S.Schumaker,J.K.Zhu,The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis,Plant Physiol.134(2004)919–926.

    [114]J.Bose,A.Rodrigo-Moreno,D.Lai,Y.Xie,W.Shen,S.Shabala,Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species,Atriplex lentiformis and Chenopodium quinoa,Ann.Bot.115(2015)481–494.

    [115]J.S.Chung,J.K.Zhu,R.A.Bressan,P.M.Hasegawa,H.Shi,Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis,Plant J.53(2008)554–565.

    [116]S.Katiyar-Agarwal,J.J.Zhu,K.Kim,M.Agarwal,X.Fu,A.Huang,J.J.Zhu,The plasma membrane Na+/H+antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis,Proc.Natl.Acad.Sci.U.S.A.103(2006)18816–18821.

    [117]G.H.M.Sagor,S.Zhang,S.Kojima,S.Simm,T.Berberich,T.Kusano,Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression,Front.Plant Sci.7(2016)214.

    [118]V.Barragan,E.O.Leidi,Z.Andres,L.Rubio,A.De Luca,J.A.Fernandez,B.Cubero,J.M.Pardo,Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis,Plant Cell 24(2012)1127–1142.

    [119]X.Liu,S.Cai,G.Wang,F.Wang,F.Dong,M.Mak,P.Holford,J.Ji,A.Salih,M.Zhou,S.Shabala,Z.H.Chen,Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+and Na+in Arabidopsis root cell,Plant Growth Regul.82(2017)333–351.

    [120]R.A.Gaxiola,R.Rao,A.Sherman,P.Grisafi,S.L.Alper,G.R.Fink,The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast,Proc.Natl.Acad.Sci.U.S.A.96(1999)1480–1485.

    [121]G.Adem,S.J.Roy,M.Zhou,J.P.Bowman,S.Shabala,Evaluating contribution of ionic,osmotic and oxidative stress components towards salinity tolerance in barley,BMC Plant Biol.14(2014)113.

    [122]D.Sandhu,M.V.Cornacchione,J.F.S.Ferreira,D.L.Suarez,Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes,Sci.Rep.7(2017),42958..

    [123]D.J.Mullan,T.D.Colmer,M.G.Francki,Arabidopsis-ricewheat gene orthologues for Na+transport and transcript analysis in wheat-L.elongatum aneuploids under salt stress,Mol.Gen.Genomics.277(2007)199–212.

    [124]G.D.Adem,S.J.Roy,D.C.Plett,M.Zhou,J.P.Bowman,S.Shabala,Expressing AtNHX1 in barley(Hordium vulgare L.)does not improve plant performance under saline conditions,Plant Growth Regul.77(2015)289–297.

    [125]P.Silva,H.Gerós,Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+exchange,Plant Signal.Behav.4(2009)718–726.

    [126]N.Baisakh,M.V.Ramanarao,K.Rajasekaran,P.Subudhi,J.Janda,D.Galbraith,C.Vanier,A.Pereira,Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora L?isel,Plant Biotechnol.J.10(2012)453–464.

    [127]R.A.Gaxiola,J.Li,S.Undurraga,L.M.Dang,G.J.Allen,S.L.Alper,G.R.Fink,Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump,Proc.Natl.Acad.Sci.U.S.A.98(2001)11444–11449.

    [128]Q.S.Qiu,Y.Guo,F.J.Quintero,J.M.Pardo,K.S.Schumaker,J.K.Zhu,Regulation of vacuolar Na+/H+exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive(SOS)pathway,J.Biol.Chem.279(2004)207–215.

    [129]T.Yamaguchi,G.S.Aharon,J.B.Sottosanto,E.Blumwald,Vacuolar Na+/H+antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-and pH-dependent manner,Proc.Natl.Acad.Sci.U.S.A.102(2005)16107–16112.

    [130]R.Quan,H.Lin,I.Mendoza,Y.Zhang,W.Cao,Y.Yang,M.Shang,S.Chen,J.M.Pardo,Y.Guo,SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress,Plant Cell 19(2007)1415–1431.

    [131]R.J.Tang,Y.Yang,L.Yang,H.Liu,C.T.Wang,M.M.Yu,X.S.Gao,H.X.Zhang,Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane,Plant Cell Environ.37(2014)573–588.

    [132]B.G.Kim,R.Waadt,Y.H.Cheong,G.K.Pandey,J.R.Dominguez-Solis,S.Schültke,S.C.Lee,J.Kudla,S.Luan,The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis,Plant J.52(2007)473–484.

    [133]D.V.M.Assaha,A.Ueda,H.Saneoka,R.Al-Yahyai,M.W.Yaish,The role of Na+and K+transporters in salt stress adaptation in glycophytes,Front.Physiol.8(2017)509.

    多毛熟女@视频| 久久久久国产一级毛片高清牌| www.999成人在线观看| 少妇 在线观看| 久久人人爽av亚洲精品天堂| 国产麻豆69| 国产麻豆成人av免费视频| 免费av毛片视频| www.www免费av| 亚洲 欧美 日韩 在线 免费| 久久久久久久久中文| 精品午夜福利视频在线观看一区| 久久国产乱子伦精品免费另类| 欧美 亚洲 国产 日韩一| x7x7x7水蜜桃| 在线天堂中文资源库| 午夜免费成人在线视频| 激情在线观看视频在线高清| 高潮久久久久久久久久久不卡| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美98| 两个人视频免费观看高清| 国产成人欧美| 波多野结衣巨乳人妻| 国产激情欧美一区二区| 久久人人爽av亚洲精品天堂| 搡老妇女老女人老熟妇| 人人妻,人人澡人人爽秒播| 成年版毛片免费区| 精品国内亚洲2022精品成人| 十分钟在线观看高清视频www| 国产高清有码在线观看视频 | 久久久久九九精品影院| 欧美激情 高清一区二区三区| 亚洲一区二区三区色噜噜| 中文字幕最新亚洲高清| 亚洲人成电影观看| 99精品欧美一区二区三区四区| 伊人久久大香线蕉亚洲五| 少妇熟女aⅴ在线视频| 久久午夜综合久久蜜桃| 久9热在线精品视频| 一个人免费在线观看的高清视频| 男女下面进入的视频免费午夜 | 精品国产一区二区久久| 狠狠狠狠99中文字幕| 日韩欧美三级三区| 丝袜在线中文字幕| 美国免费a级毛片| 精品久久久久久久久久免费视频| 91av网站免费观看| 男女午夜视频在线观看| 岛国视频午夜一区免费看| 1024香蕉在线观看| 18禁观看日本| 激情在线观看视频在线高清| 搞女人的毛片| 精品久久久精品久久久| 亚洲午夜理论影院| 国内久久婷婷六月综合欲色啪| 在线av久久热| 热99re8久久精品国产| 国产区一区二久久| 两人在一起打扑克的视频| 啪啪无遮挡十八禁网站| 999精品在线视频| 精品久久久久久久人妻蜜臀av | 一边摸一边抽搐一进一小说| 久久久久久久午夜电影| 免费高清在线观看日韩| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利免费观看在线| 欧美日本亚洲视频在线播放| 亚洲精品一区av在线观看| 国产av在哪里看| 午夜两性在线视频| 天天一区二区日本电影三级 | 午夜免费观看网址| 日韩欧美一区二区三区在线观看| 日韩欧美一区视频在线观看| 99re在线观看精品视频| 男女下面进入的视频免费午夜 | 又大又爽又粗| 长腿黑丝高跟| videosex国产| 国产亚洲欧美在线一区二区| 天天躁夜夜躁狠狠躁躁| 久久国产精品影院| 老司机深夜福利视频在线观看| 91大片在线观看| 亚洲欧美精品综合久久99| 国产精品美女特级片免费视频播放器 | 在线免费观看的www视频| 亚洲va日本ⅴa欧美va伊人久久| 国内精品久久久久精免费| 老司机福利观看| 免费在线观看黄色视频的| 免费人成视频x8x8入口观看| 视频区欧美日本亚洲| 他把我摸到了高潮在线观看| 9热在线视频观看99| 午夜日韩欧美国产| 91老司机精品| 亚洲男人的天堂狠狠| e午夜精品久久久久久久| 一区在线观看完整版| 免费搜索国产男女视频| 亚洲精品一区av在线观看| 国产视频一区二区在线看| 咕卡用的链子| 国产欧美日韩一区二区精品| 欧美激情极品国产一区二区三区| 女人高潮潮喷娇喘18禁视频| 动漫黄色视频在线观看| av免费在线观看网站| 欧美中文日本在线观看视频| 在线观看免费午夜福利视频| 女警被强在线播放| 日本vs欧美在线观看视频| 91精品三级在线观看| 亚洲国产毛片av蜜桃av| 9191精品国产免费久久| 国产精品98久久久久久宅男小说| 黄色成人免费大全| 日本黄色视频三级网站网址| 亚洲色图av天堂| 一级毛片女人18水好多| 黄片播放在线免费| 波多野结衣巨乳人妻| 免费在线观看视频国产中文字幕亚洲| 久久精品国产综合久久久| 亚洲五月婷婷丁香| 免费看美女性在线毛片视频| 亚洲中文av在线| 欧美黄色片欧美黄色片| 十八禁网站免费在线| 久久久久久国产a免费观看| 天天一区二区日本电影三级 | 国产精品国产高清国产av| 日本三级黄在线观看| 大码成人一级视频| 成人三级做爰电影| aaaaa片日本免费| 国产精品秋霞免费鲁丝片| 国产激情久久老熟女| 国产99久久九九免费精品| 少妇熟女aⅴ在线视频| 国产精品乱码一区二三区的特点 | 欧美性长视频在线观看| 亚洲国产欧美网| 亚洲午夜精品一区,二区,三区| 黄色 视频免费看| 亚洲色图av天堂| 日本三级黄在线观看| 精品国产一区二区久久| 国产成人一区二区三区免费视频网站| 在线观看免费午夜福利视频| 欧美日韩福利视频一区二区| 欧美日韩一级在线毛片| 麻豆国产av国片精品| 99在线视频只有这里精品首页| 别揉我奶头~嗯~啊~动态视频| 日韩有码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久久久成人av| 午夜精品久久久久久毛片777| 日韩高清综合在线| 1024视频免费在线观看| 夜夜爽天天搞| 精品免费久久久久久久清纯| 日本免费a在线| 久久人妻福利社区极品人妻图片| 午夜福利免费观看在线| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品久久二区二区免费| 中文字幕高清在线视频| 精品福利观看| 97碰自拍视频| 免费在线观看影片大全网站| 国产精品亚洲一级av第二区| 最近最新中文字幕大全电影3 | 99国产精品一区二区蜜桃av| tocl精华| 男人的好看免费观看在线视频 | 欧美日本视频| 精品国产国语对白av| 精品久久久久久久久久免费视频| 免费在线观看日本一区| 国产精品 欧美亚洲| aaaaa片日本免费| 校园春色视频在线观看| 国产成人av激情在线播放| 美国免费a级毛片| 麻豆成人av在线观看| xxx96com| 韩国av一区二区三区四区| 亚洲电影在线观看av| 成人av一区二区三区在线看| 国产成人欧美| 亚洲自拍偷在线| 亚洲成人久久性| 美女大奶头视频| 19禁男女啪啪无遮挡网站| 在线观看午夜福利视频| 两人在一起打扑克的视频| 国产精品电影一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲专区字幕在线| 国产精品一区二区在线不卡| svipshipincom国产片| 中文字幕高清在线视频| 亚洲精品在线美女| 亚洲国产欧美日韩在线播放| 动漫黄色视频在线观看| www.自偷自拍.com| 欧美日本亚洲视频在线播放| 久久亚洲精品不卡| 免费在线观看完整版高清| 国产精品九九99| 51午夜福利影视在线观看| 国产精品久久久久久人妻精品电影| 天堂√8在线中文| 天天添夜夜摸| 后天国语完整版免费观看| 免费在线观看黄色视频的| 欧美日韩一级在线毛片| 国产区一区二久久| 熟女少妇亚洲综合色aaa.| 国产av一区在线观看免费| 成人18禁高潮啪啪吃奶动态图| 久久久久久久久免费视频了| 中文字幕久久专区| 亚洲成国产人片在线观看| 亚洲av电影不卡..在线观看| 日本三级黄在线观看| 国产高清videossex| 国产精品电影一区二区三区| 亚洲一区二区三区不卡视频| 中文字幕精品免费在线观看视频| 激情在线观看视频在线高清| 麻豆成人av在线观看| 国产精品综合久久久久久久免费 | 欧美日韩精品网址| 丝袜在线中文字幕| av欧美777| 免费高清在线观看日韩| 免费看十八禁软件| 久久精品成人免费网站| 亚洲五月天丁香| 国产精品久久久久久人妻精品电影| 午夜精品在线福利| 亚洲成av人片免费观看| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉国产精品| 亚洲精品久久国产高清桃花| 国产精品 国内视频| 三级毛片av免费| 国产精品一区二区免费欧美| 又紧又爽又黄一区二区| 国产xxxxx性猛交| av在线天堂中文字幕| 91国产中文字幕| 男女下面插进去视频免费观看| 午夜福利在线观看吧| 丝袜人妻中文字幕| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| 99国产精品99久久久久| 免费在线观看影片大全网站| 国产精品久久久人人做人人爽| 国产一区二区三区在线臀色熟女| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 中文字幕最新亚洲高清| 一本大道久久a久久精品| 国产午夜福利久久久久久| 久久精品91蜜桃| 嫩草影视91久久| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 精品一区二区三区视频在线观看免费| 在线永久观看黄色视频| а√天堂www在线а√下载| 后天国语完整版免费观看| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 国产一区二区在线av高清观看| 大型av网站在线播放| 在线观看免费午夜福利视频| 免费久久久久久久精品成人欧美视频| 精品国产乱子伦一区二区三区| 久久精品亚洲精品国产色婷小说| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片 | 一区二区三区高清视频在线| 99国产极品粉嫩在线观看| 日本 av在线| 叶爱在线成人免费视频播放| 国产成人影院久久av| 免费不卡黄色视频| 久久热在线av| 亚洲最大成人中文| 日本免费一区二区三区高清不卡 | 非洲黑人性xxxx精品又粗又长| 国产激情久久老熟女| 色综合婷婷激情| 又紧又爽又黄一区二区| 波多野结衣高清无吗| 18禁国产床啪视频网站| 制服丝袜大香蕉在线| 亚洲成av人片免费观看| 色综合欧美亚洲国产小说| 黄色毛片三级朝国网站| 少妇 在线观看| 无遮挡黄片免费观看| 国产成年人精品一区二区| 少妇裸体淫交视频免费看高清 | x7x7x7水蜜桃| 久久影院123| 国产99白浆流出| 天堂动漫精品| av视频在线观看入口| bbb黄色大片| 多毛熟女@视频| 无限看片的www在线观看| 国产又爽黄色视频| 亚洲国产精品成人综合色| 日本三级黄在线观看| www.自偷自拍.com| 男女下面插进去视频免费观看| 成人三级做爰电影| 国产亚洲精品av在线| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 中文亚洲av片在线观看爽| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 国内精品久久久久久久电影| 久久影院123| 国产99白浆流出| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 国产精品亚洲美女久久久| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看| 国产aⅴ精品一区二区三区波| 久久精品亚洲熟妇少妇任你| 色综合亚洲欧美另类图片| 大型av网站在线播放| 男人的好看免费观看在线视频 | 久久人人97超碰香蕉20202| 香蕉丝袜av| 成人亚洲精品av一区二区| 欧美亚洲日本最大视频资源| 极品教师在线免费播放| 日韩三级视频一区二区三区| 麻豆av在线久日| www.熟女人妻精品国产| 日韩免费av在线播放| 国产精品av久久久久免费| 欧美国产日韩亚洲一区| 老汉色∧v一级毛片| 久久精品人人爽人人爽视色| 精品久久久久久成人av| 国产一级毛片七仙女欲春2 | 亚洲三区欧美一区| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| ponron亚洲| 亚洲精品中文字幕一二三四区| 欧美另类亚洲清纯唯美| 亚洲精品国产区一区二| 变态另类丝袜制服| 欧美黄色淫秽网站| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看 | 国产精品一区二区精品视频观看| 免费少妇av软件| 极品教师在线免费播放| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 美女午夜性视频免费| 亚洲av熟女| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片 | 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 欧美日本视频| 国产三级在线视频| 日本免费a在线| 老司机午夜福利在线观看视频| 无限看片的www在线观看| 波多野结衣av一区二区av| 制服丝袜大香蕉在线| 老司机福利观看| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 麻豆av在线久日| 国产高清videossex| 亚洲熟女毛片儿| 99热只有精品国产| 两性夫妻黄色片| 脱女人内裤的视频| 一区二区三区高清视频在线| 亚洲精品美女久久av网站| 久久香蕉激情| 亚洲欧美日韩高清在线视频| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀| 好男人在线观看高清免费视频 | 欧美一级毛片孕妇| 日韩精品中文字幕看吧| 黄色女人牲交| 欧美成人一区二区免费高清观看 | 久久草成人影院| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 校园春色视频在线观看| 在线av久久热| 亚洲熟女毛片儿| 亚洲av电影在线进入| 亚洲第一电影网av| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 一个人观看的视频www高清免费观看 | 麻豆一二三区av精品| 美女免费视频网站| 成年人黄色毛片网站| 亚洲自偷自拍图片 自拍| 国产成年人精品一区二区| 久久久国产成人精品二区| 久久久久久免费高清国产稀缺| 男女之事视频高清在线观看| 脱女人内裤的视频| 亚洲欧美日韩无卡精品| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 亚洲人成电影观看| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 日韩免费av在线播放| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 激情视频va一区二区三区| 国产黄a三级三级三级人| 性欧美人与动物交配| 一区二区三区激情视频| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久| 亚洲 国产 在线| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 国产不卡一卡二| 男人的好看免费观看在线视频 | 丰满的人妻完整版| 女人精品久久久久毛片| 欧美一区二区精品小视频在线| 国产精品 国内视频| 国产1区2区3区精品| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 亚洲国产精品999在线| 亚洲五月天丁香| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 91精品三级在线观看| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 91麻豆av在线| 丝袜在线中文字幕| 大型av网站在线播放| 国产成人免费无遮挡视频| 黄色女人牲交| e午夜精品久久久久久久| 精品国产亚洲在线| av视频在线观看入口| 热re99久久国产66热| 亚洲成人国产一区在线观看| 大码成人一级视频| 国产精品影院久久| 久9热在线精品视频| 亚洲欧美激情在线| 免费人成视频x8x8入口观看| 国产伦一二天堂av在线观看| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 神马国产精品三级电影在线观看 | 国产熟女xx| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 午夜福利一区二区在线看| 色av中文字幕| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 国语自产精品视频在线第100页| 99国产综合亚洲精品| 在线国产一区二区在线| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3 | 黑人操中国人逼视频| 久久精品影院6| 国产精品永久免费网站| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | www.www免费av| 国产乱人伦免费视频| 满18在线观看网站| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 日韩欧美国产在线观看| 国产精品香港三级国产av潘金莲| 亚洲免费av在线视频| 99国产极品粉嫩在线观看| 女警被强在线播放| 国产一区二区三区视频了| 最近最新免费中文字幕在线| 一本综合久久免费| 亚洲中文av在线| 91老司机精品| 国产欧美日韩一区二区三| 一进一出抽搐动态| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 麻豆成人av在线观看| av超薄肉色丝袜交足视频| 少妇熟女aⅴ在线视频| 精品免费久久久久久久清纯| 国产熟女xx| 亚洲av电影在线进入| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 最好的美女福利视频网| 国产欧美日韩综合在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产精华一区二区三区| 亚洲精品在线美女| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 91精品国产国语对白视频| 深夜精品福利| 国产精品 欧美亚洲| 亚洲国产精品999在线| 精品国产一区二区久久| 黄色 视频免费看| 黄片大片在线免费观看| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 成人永久免费在线观看视频| 成人免费观看视频高清| 91老司机精品| av视频免费观看在线观看| 亚洲avbb在线观看| 免费少妇av软件| 十分钟在线观看高清视频www| 日韩精品青青久久久久久| av福利片在线| 久久久久久免费高清国产稀缺| 久久亚洲真实| 天天一区二区日本电影三级 | 人妻久久中文字幕网| 男女午夜视频在线观看| 操出白浆在线播放| 亚洲中文字幕一区二区三区有码在线看 | 国产成人免费无遮挡视频| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 日韩欧美三级三区| 国内久久婷婷六月综合欲色啪| 久久国产精品男人的天堂亚洲| 免费在线观看亚洲国产| 午夜精品国产一区二区电影| 午夜免费激情av| 久久国产精品影院| 啪啪无遮挡十八禁网站| 欧美国产精品va在线观看不卡| 国产精品av久久久久免费| 热re99久久国产66热| 日韩三级视频一区二区三区| 国产aⅴ精品一区二区三区波| 在线观看免费视频网站a站|