• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Localization Algorithm of Indoor Wi-Fi Access Points Based on Signal Strength Relative Relationship and Region Division

    2018-06-01 11:12:15WenyanLiuXiangyangLuoYiminLiuJianqiangLiuMinghaoLiuandYunShi
    Computers Materials&Continua 2018年4期

    Wenyan Liu, Xiangyang Luo, , Yimin Liu, Jianqiang Liu, Minghao Liu and Yun Q. Shi

    1 Introduction

    With the rapid development of wireless networks, Wi-Fi is used more and more widely in recent years. Many places have Wi-Fi APs, such as hotels, restaurants, cafes, schools and enterprises. However, new security issues [Wang, Zheng, Chen et al. (2017); Zhou, Cai,Xiao et al. (2017); Wu, Zapevalova, Chen et al. (2018)] are arose while Wi-Fi bring great convenience to people’s daily life. For example, some unruly elements use malicious Wi-Fi to push phishing advertisements and even illegally collect and steal user information. In some special departments and places that prohibit coverage of wireless signals, someone used illegal Wi-Fi and information hiding technology [Ma, Luo, Li et al. (2018); Zhang,Qin, Zhang et al. (2018)] to pass out the hidden information. Therefore, it is significant to carry out the research on the precise localization technology of indoor Wi-Fi APs for the purpose of protecting user privacy and doing a good job of security and confidentiality inspection.

    Existing indoor Wi-Fi access points localization methods are mainly divided into two categories: one is based on location fingerprints, and the other is based on distance measurement.

    The basic principle of the localization method based on location fingerprint [Yuan, Li, Wu et al. (2017)] is to abstract and formalize the description of the target indoor environment’s characteristics. The RSS of each AP in different locations is used to describe the location information of the AP in the localization environment. These RSS are collected to form a location fingerprint database. Finally, the real-time measurement RSS value of the user is matched with the location fingerprint in the location fingerprint database, and the location with the best similarity is selected as the estimation location. In Koo et al. [Koo and Cha(2012)], a method called Serendipity is proposed, which collects fingerprint information by using a common smart phone and locates the AP location through dissimilarity analysis based on multi-dimensional scaling technology. In a room with 6 APs and an area of 35 m×50 m, the localization error is about 6.8 meters. In a room with 9 APs and an area of 27 m×37 m, the localization error is about 3.5 meters. In Cho et al. [Cho, Ji, Lee et el. (2012)],the influence of device diversity on fingerprint database is studied for the difference of RSS of heterogeneous devices Wi-Fi, and the localization error is reduced to less than 3 meters.The localization method based on location fingerprint needs to establish a location fingerprint library for a given indoor environment in advance, which is not suitable for inspection of a new region without a fingerprint library. When the environment is changed,the previously established location fingerprint library will no longer applicable.

    To locate the target AP, this paper calculates the distance between the detection source and the target AP by analyzing the relationship of the specific physical quantities, such as time,angle, the signal strength and the distance during signal propagation, following the basic principle of the localization method based on distance measurement. For example, in Liu et al. [Liu, Darabi, Banerjee et al. (2007)], the distance between the detection source and the target AP is calculated by using the propagation time of the Wi-Fi signal, and then the location of the target AP is determined by the three circle intersection localization method.However, the algorithm requires strict clock synchronization between all detection sources and the target AP, the cost of the hardware is larger. In Shen et al. [Shen, Zetik and Thoma(2008)], the distance difference between the detection source and the target AP is calculated by using the time difference that the Wi-Fi signal arriving at different detection sources, and then the location of the target AP is determined by the hyperbolic localization method. However, the algorithm needs to ensure time synchronization of all the detection sources and hardware higher cost. In Xu et al. [Xu, Ma and Law (2008)], the location of the target AP is determined by geometric analysis by measuring the angle between two or more reference points to the target AP. However, this algorithm requires the antenna array to measure the arrival angle of the received Wi-Fi signal and it caused higher hardware costs.

    Besides above three algorithms based on Wi-Fi signal arrival time, arrival time difference and arrival angle, the localization algorithm of Wi-Fi access points based on RSS ranging is also belong to the localization method based on distance measurement. The algorithm converts the received RSS into distance using the path loss model of Wi-Fi signal propagation, and then uses the localization algorithm to obtain the location of the target AP. In Koo et al. [Koo and Cha (2010)], when the path loss exponent and transmit power of signal propagation are unknown, the exponential relationship between RSS and distance is determined by linear approximation. Then the location of AP is estimated by using multipoint localization method, and the highest localization accuracy reaches 5 meters. In Varzandian et al. [Varzandian, Zakeri and Ozgoli (2013)], a non-monotonic function model of RSS and distance is proposed. Combined with modified triangulation algorithm, the location of AP is estimated using RSS, relative distance and direction information.Compared with the localization algorithms that based on location fingerprints, signal arrival time and signal arrival angle, the localization algorithm of Wi-Fi access points based on RSS ranging needs lower hardware cost and is simpler to operate, therefore, it is more widely used. However, a larger localization error is resulted due to the actual environmentsensitive parameters are included in the path loss model used in the algorithm.

    In order to overcome the shortcomings of the above existing methods, this paper proposes an indoor Wi-Fi access points localization algorithm based on the signal strength relative relationship and region division. The proposed algorithm divides the region according to the length and width of the room in which the target Wi-Fi AP is located. The next candidate region is determined by comparing the relative sizes of RSS values at each reference points, the location coordinate of the target Wi-Fi AP is obtained until the candidate region is reduced below the accuracy threshold. This method can reduce the workload and the hardware cost and improving the localization accuracy of Wi-Fi AP.

    The rest of this paper is organized as follows. Section II briefly analyzes the principles of Wi-Fi access points localization algorithms based on RSS ranging. The proposed indoor Wi-Fi access points localization algorithm based on the signal strength relative relationship and region division is elaborated in details in Section III, including the basic idea of the algorithm, the main steps and algorithm analysis. The experimental results are given in Section IV. Finally, this paper is concluded in Section V.

    2 Structure principle introduction and analysis of Wi-Fi access points localization algorithm based on RSS ranging

    The localization algorithm of Wi-Fi access points based on RSS ranging converted the received RSS into a distance according to the relationship model between RSS and distance.One of the most common RSS and distance relationship models in indoor environments is the path loss model [Rappaport (2002)]:

    whereis the received signal strength that at distancefrom the target AP, and the unit is.is the received signal strength that at distancefrom the target AP(usually is 1 meter),is the path loss exponent,is a random variable of Gauss distribution that is usually ignored when the amount of data collected is large.

    After obtaining the distance from each detection points to the target AP by formula (1), the localization algorithm is used to obtain the location of the target AP.

    In Le et al. [Le, Liu and Hedley (2012)], the method of the least squares is used for localization, the localization result of the target AP is calculated as follows:

    whereis the location of the target AP,is the location ofdetection sources, andis the distance between the detection source and the target AP. In a 50 m×35 m office region, the localization accuracy of the algorithm is 50% to 2.5 meters, and more than 80% to 4.5 meters.

    In Awad et al. [Awad, Al-Refai and Al-Qerem (2017)], particle swarm optimization (PSO)algorithm is used for localization, the potential location of a target AP is simulated using random particles. The objective function is as follows:

    whereis the number of detection points,is the distance between particleand detection points, andis the distance between detection pointsand the target AP. The location of the particle that minimizes the objective function is the final localization result of the target AP. In 50 m×50 m of the experimental region, the number of particles is 20 and the number of samples is 60, the localization accuracy of the algorithm is about 1.5 meters.

    However, since the loss of Wi-Fi signals propagating in space can be affected by the transmission power, obstacles etc. Making andin the formula (1) vary with localization environment. In addition, the signal by multipath, scatter and NLOS and other factors interference, resulting in the same distance from the AP at different detection points on the RSS there is a big change, and even the same detection point of RSS at different time will produce greater volatility. The large error of the distance calculated in the localization algorithm of Wi-Fi access points based on RSS ranging outcomes a lower localization accuracy of such algorithms.

    3 The proposed algorithm

    Aiming to solve the problem pointed in Section 2 that the localization algorithm of existing Wi-Fi access points based on RSS ranging is susceptible to indoor environment interference and result in a lower localization accuracy. The localization algorithm of indoor Wi-Fi access points based on signal strength relative relationship and region division is proposed in this paper.

    3.1 Main steps and basic ideas of proposed algorithm

    The proposed algorithm is based on the idea of successive approximation. Firstly, the room where the target AP is located is used as the initial candidate region, and the coordinate system is constructed according to the length and width of the room. At the geometric center of the candidate region, the region is divided into four regions along the length and width directions of the room. Select a number of reference points for the dichotomy method on the region division line, the RSS values from the reference points to the target AP are measured respectively in different directions of the reference points. By comparing the measured signal strength relative relationship, the region with the largest relative value of signal strength determine as the next candidate region. The above process is repeated until the size of candidate region is reduced to below the accuracy threshold, and the coordinate of the center point of the region is used as the final localization result.

    Algorithm details are shown in Fig. 1.

    Figure 1: The flow diagram of the proposed algorithm

    The main steps of the algorithm are as follows:

    Algorithm input: accuracy threshold.

    Algorithm output: the coordinates of the target AP.

    Step 1: Lock the SSID (Service Set Identifier) of the target AP

    Use a detection device with a wireless network card to scan nearby Wi-Fi signals to obtain a list of AP information, including AP’s SSID, RSS, MAC (Media Access Control) etc.Lock the target AP according to the SSID.

    Step 2: Determine the room where the target AP is located

    Walking randomly in the possible rooms where the target AP exists, and the RSS from the reference points to the target AP are obtained by the detecting device. According to the change of the RSS values, the room with the largest RSS value is determined as the room in which the target AP exists.

    Step 3: Build a two-dimensional coordinate system

    By measuring the lengthand widthof the room (or the number of room floor tiles), a two-dimensional coordinate system is constructed along the length and width of the room with one of the corner of the room as the origin of the coordinates. The room is regarded as the initial candidate region.

    Step 4: Divide the candidate region

    The center point of the candidate regionwhere the target AP is located (denotes the number of times of division, andis the entire room when) is the origin of division,and the horizontal and vertical dividing lines are used along the length and width of the room, and the region is divided into four regions.

    Step 5: Collect and compare the signal strength

    Determine the three reference points with dichotomy method in the horizontal dividing line(vertical dividing line), RSS from different reference points to the target AP in different directions is measured with the signal collection device. The larger direction of each reference point RSS is obtained by comparison, and the larger RSS value is recorded as the relative value of the signal strength at the reference point.

    Step 6: Determine the next candidate region

    If the largest relative value of the signal strength is at the center of the candidate region,one or more reference points need to be determined with dichotomy method in the direction of the largest value on the vertical dividing line. Relative value of signal strength of each reference point is obtained, and the region where the largest relative value of the signal strength refers to as the next candidate regionis determined. Otherwise, the region has the largest relative value of the signal strength obtained in Step 5 is chosen as the next candidate region.

    Step 7: Judge whether the set localization accuracy threshold is reached

    It is judged whether the current candidate regionreaches the localization accuracy threshold, that is to see whether(is half the length of the candidate region) and(is half the width of the candidate region) are less thansimultaneously. If yes, the center point coordinateof the current candidate region is output as the localization result of the target AP. Otherwise, Step 4 is performed.

    In above steps, Step 5 and Step 6 are key aspects of the algorithm. These two steps are elaborated in detail respectively in following sections.

    3.2 Collect and compare signal strength

    The algorithm proposed in the paper determines the location of the target AP bytimes region division. The next candidate region is determined through the signal strength collection and comparison in each divided candidate region. The process of the first, second to times region division is shown as follows.

    Figure 2: The diagram of the proposed algorithm

    In Fig. 2, the red dot and the black dot both denote the reference points. The red dot denotes the region center point. The green arrow denotes the direction of signal strength collection.The green dot denotes the output the location of target AP.

    As shown in Fig. 2, the candidate region is divided into 4 regions by the horizontal and vertical dividing lines respectively, the center of the candidate region is the original point.In the order of quadrants I to IV, they are named asdenotes the region of thequadrant in thetimes (i=1,2,3,...n)division.,anddenote the selected reference points,denotes the center point of the candidate region,and its coordinate is,anddenote the width and the length of thecandidate region respectively. The signal strength information collected at each reference point is denoted by a triples, wheredenotes the location of the reference point anddenotes the RSS value of the fromreference point to target AP when thereference point signal collection device towards the upper region, anddenotes the RSS value of the fromreference point to target AP when thereference point signal collection device towards the lower region. Then the RSS of the two regions is compared, and the relative value of the signal strength atthe reference point is obtained, that is, the value of the.

    Take the first times division as an example, as shown in Fig. 3. The coordinate of A1is, whereis half ofandis half of. As shown in Fig. 3, the signal collection device towards the upper region at point, as shown in Fig. 3is obtained, then,is obtained when the signal collection device towards the lower region at point. The signal strength triples of reference pointis, the relative value of signal strengthat the pointis obtained by comparing the measured signal strength values of the two regions, and can be obtainedandsimilarly.

    Figure 3: The diagram of signal strength collection process

    It is worth mentioning that the signal collection device used in Fig. 3(a)is a modified directional antenna as shown in Fig. 4, the black arrows denote the signal direction. As shown in Fig. 4(a), compared with the traditional signal collection device, the modified signal collection device can shield the signal of the direction outside the open face, making the measured RSS value more accurate.

    Figure 4: The diagram of the signal collection device

    3.3 Determine the next candidate region

    By comparing the relative value of signal strength of each reference point to determine the next candidate region, there are following three cases:

    (1) Ifis at pointor, the region to whichpoints is the next candidate region.(2) Ifis at pointand the largest value is, then it needs to be divided by using dichotomy method on the vertical dividing line aboveto obtain thereference point.If the largest value is, the vertical dividing line belowis divided by using the dichotomy method to obtainreference point. The RSS of the target AP is measured respectively in the left direction and the right direction of, then the relative value of signal strength can be obtained. Wheredenotes the signal strength measured when the signal collection device towards the right region at thereference point, anddenotes the signal strength measured when the signal collection device towards the left region, the region pointed tois determined as the next candidate region. Similarly,can be obtained.

    (3) If the above two cases are still unable to determine the next candidate region, then useor as the center point, in its two sides divided by dichotomy method, get two reference points and collecting signal strength, and comparing the collected RSS value to determine the candidate region, the region pointed to byis the next candidate region.The coordinates of the center points of the second division region are as shown in formula(4):

    where. The center point ofin Fig. 2(2), in the second times divided first quadrant, the coordinate A2of the center point is obtained according to the formula (4)

    Thetimes region division, the coordinates of the center point as shown in formula (5):

    where, the final localization result is the location of the target AP.The localization algorithm based on the signal strength relative relationship and region division. Using a few times the division and a small amount of reference points for the localization region to determine the final location of the target AP by comparing RSS values collected several times.

    3.4 Algorithm analysis

    The existing localization methods of Wi-Fi access points based on RSS ranging convert RSS to distance and obtain the target AP localization. This paper proposes an indoor Wi-Fi access points localization algorithm based on the signal strength relative relationship and region division. Successive approximation principle is adopted to overcome the problem of low localization accuracy based on RSS ranging method caused by the interference with the indoor environment. This section mainly analyzes the proposed algorithm from three aspects of localization accuracy, anti-interference and localization efficiency.

    (1) Localization accuracy analysis

    The main rule of the algorithm proposed in this paper is that the RSS value of the measurement is negatively correlated with the distance of the target AP. When the location of target AP is determined according to the signal strength relative relation, because of the influence of indoor environment, there may be a contradiction with the above rules, which leads to the judgment error of next candidate region and makes the localization error increase.

    In this paper, the localization error of the proposed algorithm is mainly composed of two

    wheredenotes the largest distance between the location of the output target AP and the actual target AP location under the condition that the region where the target AP is located reaches the localization accuracy threshold after the limited division. The size of the room is different, the value ofis different, when, the error is largest, its value ismeters.

    The accuracy thresholddepends on the minimum distance between two reference points that can detect the differences of signal strength. For example, For example, a reference point is selected every 0.2 meters from 8.4 meters straight line to measure the signal strength value. The red square denotes the continuous reference point with the same signal strength as shown in Fig. 5. It can be seen from the Figure that there are at most three continuous signal strengths of the reference points is the same, that is, it cannot determine the direction of the target AP according to the signal strength relative relationship within arange of 0.6 meters, so the range ofvalue ismeters.

    Figure 5: The diagram of signal strength and distance

    denotes the localization error when the rule of the algorithm is not satisfied, and an example is illustrated in Fig. 6.

    Figure 6: The diagram of region judgment error

    Among them, both the black points and the red point all denote the reference points, the red point also denotes the region center point, and the black rough line denotes the obstacle.When the A, B and C reference points are measured the RSS in different directions with the signal collection device, in theory, due to B is closer to the target AP, the largest relative value of the signal strength should be at point B. However, due to the influence of obstacles,RSS received by B is decreased, which is lower than that relative value of signal strength at point C. Therefore, the next candidate region is judged to be the second quadrant not the first quadrant, which leads to the increase of the localization error, the largest error ismeters, so the range of final localization error is

    (2) Anti-interference analysis

    The existing the localization algorithm of Wi-Fi access points based on RSS Ranging use a signal collection device without directional antenna when measuring RSS. The device does not have the function of shielding signals in other directions, it will receives Wi-Fi signals from all directions, making a greater degree of interference with the finally measured RSS as shown in Fig. 4(a). The algorithm proposed in the paper, the direction of the target AP is determined by the signal strength value and a modified directional antenna, the device is shown in Fig. 4(b). The device only receives signals in a specific direction, and shields other direction signals, thereby enhancing the anti-interference ability, so that the final received RSS is less interference.

    The test experiments are carried out in the general indoor environment in this paper. The experimental results show that the average difference between the RSS measured by a directional antenna and the RSS measured by the non-directional antenna is about 10dBm.Due to the 180 degree difference between the two directions of measuring RSS in the region division, environmental factors and measurement error do not affect the correctness of the results of the target AP. Therefore, the algorithm proposed in this paper is better than existing Wi-Fi access points localization algorithms based on RSS ranging in antiinterference.

    (3) Localization efficiency analysis

    The algorithm proposed in this paper is more localization efficient than the existing Wi-Fi access points localization algorithm based on RSS ranging. The path loss modelis used in the existing localization algorithm of Wi-Fi access points based on RSS ranging. The path loss exponent γin the formula is related to environmental factors. The algorithm needs to measure RSS and dijfrom Nreference points to Mknown APs atN reference points, where dijrepresents the distance from thereference point to the j- th known AP. Then the path loss exponentγis calculated by the measured both RSS anddijare substituted into the path loss formula. Therefore, to improve the accuracy of the final localization result, a large number of reference points must be selected. However, the algorithm proposed in this paper adopts the method of region division, which only needs to measure RSS from reference points to target AP at a small number of reference points, so it is more efficient.

    Through the analysis of the above three aspects, we can see that the algorithm proposed in this paper is more accurate than the existing Wi-Fi AP localization algorithm based on RSS ranging.

    4 Expressions experimental results and analysis

    In order to verify the effectiveness and feasibility of the proposed algorithm, the localization experiment is carried out several times in the actual environment. The comparison experiment are carried out on the algorithms of RSS ranging based on the least squares [Le, Liu and Hedley (2012)], the RSS ranging algorithm based on particle swarm optimization [Awad, Al-Refai and Al-Qerem (2017)] and the proposed algorithm respectively.

    4.1 Experimental settings

    The experiment randomly selected 5 AP locations from 3 differently-structured (including room environment and room size) rooms as shown in Fig. 7, and the size of each room is shown in Tab. 1. There are 8 different types of Wi-Fi APs in each location, including fixed APs (such as routers) as shown in Tab. 2 and portable APs (such as mobile phones) as shown in Tab. 3. A total of 360 experiments are carried out. The localization device used in the experiment mainly has a modified signal acquisition device and 8 different types of Wi-Fi APs.

    Figure 7: The diagram of room structure

    Table 1: Room structure

    Table 2: Wi-Fi access point types (1)

    Table 3: Wi-Fi access point types (2)

    In the case that the localization accuracy threshold is set to 1 meter, the following three types of experiments are carried out to verify the factors affect the accuracy of the localization algorithms:

    (1) Experiment on the influence of room structure on location algorithms.

    (2) Experiment on the influence of Wi-Fi access point types on localization algorithms.

    (3) Experiment on the influence of AP numbers on localization algorithms.

    4.2 Experiment on the influence of room structure on localization algorithms

    The experiments in this section mainly are carried out in 3 different room structures as shown in Fig. 7. The experiments are conducted using the same Wi-Fi AP at 15 target locations in 3 rooms of A, B and C respectively. The number of reference points, the actual coordinates of the APs, the coordinates of the output APs, and the localization error are shown in Tabs. 4-6.

    Table 4: Test result of A room structure

    Table 5: Test result of B room structure

    Table 6: Test result of C room structure

    As can be seen from Tabs. 4-6, the highest localization error in room A is 0.35 meters at location 1, the lowest localization error is 0.16 meters at location 4, and the average localization error is 0.26 meters. The highest localization error in room B is 0.31 meters at location 1, the lowest localization error is 0.16 meters at location 3 and the average localization error is 0.25 meters. The highest localization error in C room is 0.51 meters at location 3, the lowest localization error is 0.26 meters at location 5, and the average localization error is 0.38 meters.

    The experimental results show that the required number of reference points is different for rooms of different sizes. If the room size is same and the location of the target AP is different, the required number of reference points is not necessarily the same. In addition,the room size will slightly affect the localization accuracy. The localization error range of the 120 experiments is 0.16~0.51 meters, and the average localization error is 0.30 meters.

    In the 3 rooms of A, B and C shown in Fig. 7, the RSS ranging algorithm based on the least squares [Le, Liu and Hedley (2012)], the RSS ranging algorithm based on particle swarm optimization [Awad, Al-Refai and Al-Qerem (2017)] and the localization algorithm proposed in this paper are used to Wi-Fi AP localization experiments on 15 selected target AP locations respectively, the experimental results are shown in Fig. 8.

    Figure 8: Influence of room structure on three algorithms

    Among them, the horizontal axis denotes 3 types of localization algorithms and 3 different structures of the room. The longitudinal axis denotes the 5 AP locations arbitrarily selected in each room. The vertical axis denotes the localization error. As can be seen from the Figure that the localization error of the proposed localization algorithm in A, B and C rooms is significantly lower than the RSS ranging localization algorithm based on the least squares and the RSS ranging localization algorithm based on particle swarm optimization.The result of the localization algorithm proposed in this paper is less affected by the room structure, while the other two localization algorithms are greatly affected by the room structure.

    4.3 Experiment on the influence of Wi-Fi access point types on localization algorithms

    The power of different Wi-Fi AP types may be different. Therefore, 4 different types of fixed Wi-Fi APs and 4 different types of portable Wi-Fi APs are used respectively in the experiment, as shown in Tab. 2 and Tab. 3

    The above 8 different types of Wi-Fi APs are placed in the 5 target locations selected in 3 rooms of A, B and C, respectively. And a total of 120 experiments are carried out. Take the experiment when the target AP is placed at location 2 in the B room as an example, as shown in Fig. 9. The Figure shows that the reference points selected for the 4 region divisions in the positioning process and the next candidate region for each division. For example, the reference points selected for the first times region division areA1, B1and C1,and the next candidate region is II Quadrant.

    Figure 9: The process of experiment when the target AP is placed at location 2 in the B room

    In the above figure, the room is 17 meters long and 10 meters wide. The coordinate system is constructed along the length and breadth of the room. The red dots denote the center location of each times division candidate region. The green dot denotes the output target AP location. The vertical black arrows denote the direction of the measured signal strength.The region pointed by the white arrow is an enlarged view of the arrow tail region.

    Taking the target AP is placed at location 2 in the B room, using the 2 different types of Wi-Fi AP in Tabs. 2 and 3, respectively as an example, the signal strength triples collected are shown in Tab. 7.

    Table 7: Data collected for target AP at location 2 in room B

    ?

    As can be seen from the data in Tab. 5, different types of Wi-Fi APs affect RSS values at the same location, the RSS measured by the fixed Wi-Fi AP is significantly different from the RSS measured by the portable Wi-Fi AP, the RSS measured by different types of fixed Wi-Fi APs (or portable Wi-Fi APs) have little difference. In addition, the proposed algorithm is based on the geometric center of the last candidate region as the localization result, the location of the AP in the above experiment is all at location 2. Therefore, the localization error of multiple experiments should be the same when the selection of each candidate region is correct. The localization error of all the experiments in the above table is 0.29 meters, indicating the accuracy of localization results. This shows that although different types of transmitter will affect the RSS values, it does not affect the localization accuracy of the proposed algorithm.

    The impact of different types of Wi-Fi APs on localization error is analyzed respectively using the RSS ranging algorithm based on least squares [Le, Liu and Hedley (2012)], the RSS ranging algorithm based on particle swarm optimization [Awad, Al-Refai and Al-Qerem (2017)] and the localization algorithm proposed in this paper. 8 types of Wi-Fi APs were used at 5 AP locations in 3 rooms during the experiments. Taking C room as an example, the experimental result is shown in Fig. 10.

    Figure 10: Influence of Wi-Fi AP Types on three algorithms

    Among them, the horizontal axis denotes 3 localization algorithms and 8 Wi-Fi AP types,the longitudinal axis denotes the 5 AP locations arbitrarily selected in the C room, the vertical axis denotes the localization error. As can be seen from the Figure that the localization algorithm proposed in this paper is obviously lower than the RSS ranging localization algorithm based on the least squares and the RSS ranging localization algorithm based on particle swarm optimization, and the proposed algorithm is not affected by the types of Wi-Fi AP, while the other two algorithms are greatly affected by the types of Wi-Fi AP.

    4.4 Experiment on the influence of AP numbers on localization algorithms

    The algorithm proposed in this paper is not only applicable to the indoor environment with only one AP, but also is suitable for the environment with multiple APs. When there is only one AP in the room, the RSS is measured from reference points to the target AP at the reference points. The amplitude of the change is small, making the measured RSS value is relatively stable. When there are multiple APs in the room, the RSS is measured from reference points to the target AP at the reference points, the amplitude of the change is relatively large, and making the measured RSS value is not stable. Different numbers of APs are set up in 3 rooms of A, B and C respectively for experiments. Taking C room as an example, when the number of APs is different, the RSS results of the target AP measured at 1 meter, 3 meters and 5 meters respectively are shown in Tab. 8. Where Antenna 1 indicates measure using a directional antenna, Antenna 2 indicates measure using a nondirectional antenna. It can be seen from the table that the number of APs will have an impact on the measured RSS value and its range of amplitudes.

    Table 8: Measured data for different AP numbers

    The impact of the number of APs on localization error is analyzed respectively using the RSS ranging algorithm based on least squares [Le, Liu and Hedley (2012)], the RSS ranging algorithm based on particle swarm optimization [Awad, Al-Refai and Al-Qerem(2017)] and the localization algorithm proposed in this paper. The experimental results are shown in Fig. 11.

    Figure 11: Influence of AP numbers on three algorithms

    Among them, the horizontal axis denotes the number of APs (from 1-8), the longitudinal axis denotes the 5 AP locations arbitrarily selected in the C room, the vertical axis denotes the localization error. As can be seen from the Figure that the number of APs affects the localization error of the RSS ranging localization algorithm based on the least squares and the RSS ranging localization algorithm based on particle swarm optimization, however, the localization algorithm proposed in this paper is not affected by the number of APs.

    5 Conclusion and future work

    Aiming at the problem that the existing Wi-Fi access points localization algorithm based on RSS ranging has lower localization accuracy, a localization algorithm of indoor Wi-Fi access points based on signal strength relative relationship and region division is proposed in this paper. This method uses a modified signal collection device to measure the RSS of the target AP at different reference points in different directions. By comparing the RSS values, the region has the largest relative value of signal strength is determined as the next candidate region. The location coordinate of the target Wi-Fi AP is obtained when the size of candidate region is reduced to the accuracy threshold. The experimental results show that the localization results of existing Wi-Fi access point localization algorithms based on RSS ranging is susceptible to the room structure, the types of Wi-Fi APs and the number of APs. The proposed algorithm is affected less by the room structure, and is not affected by the types of Wi-Fi APs and the number of APs at all. In future work, we will focus on the research of interference of indoor specific environmental factors to the localization of Wi-Fi APs, and try to find out the exact relationship between RSS and distance. It is hoped that this research will provide technical support for researchers and staffs related to indoor localization technology of Wi-Fi AP to find the location of the target Wi-Fi AP more quickly and accurately.

    Acknowledgement:The work presented in this paper is supported by the National Key R&D Program of China (No. 2016YFB0801303, 2016QY01W0105), the National Natural Science Foundation of China (No. U1636219, 61602508, 61772549, U1736214, 61572052),Plan for Scientific Innovation Talent of Henan Province (No. 2018JR0018) and the Key Technologies R & D Program of Henan Province (No. 162102210032).

    Awad, F.; Al-Refai, M.; Al-Qerem, A.(2017): Rogue access point localization using particle swarm optimization. 2017 8thInternational Conference on Information and Communication Systems, pp. 282-286.

    Cho, Y.; Ji, M.; Lee, Y.; Park, S.(2012): Wi-Fi AP position estimation using contribution from heterogeneous mobile devices. 2012 International Conference on Position Location and Navigation Symposium, pp. 562-567.

    Koo, J.; Cha, H.(2010): Localizing Wi-Fi access points using signal strength. IEEE Communications letters, vol. 15, no. 2, pp. 187-189.

    Koo, J.; Cha, H.(2012): Unsupervised locating of Wi-Fi access points using smartphones.IEEE Transactions on Systems Man and Cybernetics Part C, vol. 42, no. 6, pp. 1341-1353.

    Le, T. M.; Liu, R. P.; Hedley, M.(2012): Rogue access point detection and localization.2012 23rdInternational Symposium on Personal Indoor and Mobile Radio Communications,pp. 2489-2493.

    Liu, H.; Darabi, H.; Banerjee, P.; Liu, J.(2007): Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems Man and Cybernetics Part C, vol.37, no. 6, pp. 1067-1080.

    Ma, Y.; Luo, X.; Li, X.; Bao, Z.; Zhang, Y.(2018): Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Transactions on Circuits and Systems for Video Technology.

    Rappaport, T. S.(2002): Wireless communications principles and practice. Microwave Journal, vol. 45, no. 12, pp. 128-129.

    Shen, G.; Zetik, R.; Thoma, R. S.(2008): Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment. 2008 5thWorkshop on Positioning, Navigation and Communication, pp. 71-78.

    Varzandian, S.; Zakeri, H.; Ozgoli, S.(2013): Locating Wi-Fi access points in indoor environments using non-monotonic signal propagation model. Asian Control Conference,pp. 1-5.

    Wang, C.; Zheng, X. Y.; Chen, Y.; Yang, J.(2017): Locating rogue access point using fine-grained channel information. IEEE Transactions on Mobile Computing, vol. 16, no. 9,pp. 1-23.

    Wu, C.; Zapevalova, E.; Chen, Y.; Li, F.(2018): Time optimization of multiple knowledge transfers in the big data environment. Computers, Materials & Continua, vol.54, no. 3, pp. 269-285.

    Xu, J.; Ma, M.; Law, C. L.(2008): AOA cooperative position localization. Global Telecommunications Conference, pp. 1-5.

    Yuan, C.; Li, X.; Wu, Q. M. J.; Li, J.; Sun, X.(2017): Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis. Computers, Materials & Continua, vol. 53, no. 4, pp. 357-372.

    Zhang, Y.; Qin, C.; Zhang, W.; Liu, F.; Luo, X.(2018): On the fault-tolerant performance for a class of robust image steganography. Signal Processing, vol. 146, pp.99-111.

    Zhou, T.; Cai, Z.; Xiao, B.; Chen, Y.; Xu, M.(2017): Detecting rogue AP with the crowd wisdom. Distributed Computing Systems, pp. 2327-2332.

    av在线播放免费不卡| 脱女人内裤的视频| 国产单亲对白刺激| 亚洲成av人片免费观看| 高清黄色对白视频在线免费看| av在线天堂中文字幕| 婷婷精品国产亚洲av在线| 女人高潮潮喷娇喘18禁视频| 欧美性长视频在线观看| 国产精品影院久久| 亚洲 欧美 日韩 在线 免费| 亚洲自偷自拍图片 自拍| 一级毛片女人18水好多| 免费在线观看日本一区| 国产1区2区3区精品| 人人澡人人妻人| 国产片内射在线| 国产高清videossex| 自拍欧美九色日韩亚洲蝌蚪91| 老司机福利观看| 亚洲第一欧美日韩一区二区三区| 老司机午夜十八禁免费视频| 一区在线观看完整版| 欧美成狂野欧美在线观看| 91国产中文字幕| 禁无遮挡网站| 别揉我奶头~嗯~啊~动态视频| a在线观看视频网站| 欧美成人一区二区免费高清观看 | 精品国内亚洲2022精品成人| 色尼玛亚洲综合影院| 久久久久精品国产欧美久久久| 亚洲男人的天堂狠狠| 色综合欧美亚洲国产小说| 亚洲国产精品久久男人天堂| 91大片在线观看| 人妻丰满熟妇av一区二区三区| 亚洲天堂国产精品一区在线| 国产日韩一区二区三区精品不卡| 国产99久久九九免费精品| 亚洲午夜理论影院| 免费在线观看视频国产中文字幕亚洲| 久久久久久久久免费视频了| 久久热在线av| 国产99久久九九免费精品| 久久热在线av| 我的亚洲天堂| 麻豆一二三区av精品| 91精品国产国语对白视频| 无限看片的www在线观看| 国产精品亚洲美女久久久| 久久久久久久久中文| 亚洲情色 制服丝袜| 久久国产精品人妻蜜桃| 两个人看的免费小视频| 亚洲情色 制服丝袜| 成人欧美大片| 丝袜美足系列| 亚洲国产欧美网| 国产成人精品久久二区二区免费| 看黄色毛片网站| 黑人操中国人逼视频| 美国免费a级毛片| 欧美日韩精品网址| 国产亚洲精品久久久久久毛片| 12—13女人毛片做爰片一| 午夜免费成人在线视频| 免费少妇av软件| 日韩欧美一区视频在线观看| 欧美黑人欧美精品刺激| 中文字幕人妻丝袜一区二区| 亚洲av成人av| 午夜亚洲福利在线播放| 亚洲五月天丁香| 久久性视频一级片| 国产麻豆69| 中出人妻视频一区二区| 午夜久久久在线观看| 午夜久久久久精精品| 免费一级毛片在线播放高清视频 | 一个人免费在线观看的高清视频| 亚洲欧美一区二区三区黑人| 中国美女看黄片| 亚洲五月婷婷丁香| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 中文字幕高清在线视频| 一本大道久久a久久精品| 久久久久国产精品人妻aⅴ院| 一二三四在线观看免费中文在| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品久久久久久毛片| 91字幕亚洲| 国产单亲对白刺激| 狂野欧美激情性xxxx| 午夜久久久在线观看| 精品国内亚洲2022精品成人| 久久精品亚洲精品国产色婷小说| 老司机在亚洲福利影院| 一级黄色大片毛片| ponron亚洲| 亚洲国产精品sss在线观看| 亚洲成人精品中文字幕电影| 97人妻精品一区二区三区麻豆 | 亚洲国产精品合色在线| 亚洲三区欧美一区| www.自偷自拍.com| 亚洲第一av免费看| 亚洲,欧美精品.| 国产成人精品在线电影| av网站免费在线观看视频| 午夜免费激情av| 免费不卡黄色视频| 成人国语在线视频| √禁漫天堂资源中文www| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久人妻蜜臀av | 在线视频色国产色| 国产主播在线观看一区二区| 他把我摸到了高潮在线观看| 露出奶头的视频| 日本 欧美在线| 麻豆国产av国片精品| 狂野欧美激情性xxxx| 人人澡人人妻人| 欧美国产精品va在线观看不卡| 麻豆久久精品国产亚洲av| 午夜福利18| 一进一出好大好爽视频| 女生性感内裤真人,穿戴方法视频| 久久人妻福利社区极品人妻图片| a级毛片在线看网站| 麻豆国产av国片精品| 成人亚洲精品av一区二区| 夜夜躁狠狠躁天天躁| 亚洲一区二区三区不卡视频| 国产精品98久久久久久宅男小说| 老熟妇仑乱视频hdxx| 一a级毛片在线观看| 国产午夜精品久久久久久| 搡老妇女老女人老熟妇| 男人的好看免费观看在线视频 | 日韩欧美一区视频在线观看| 黑丝袜美女国产一区| 欧美成狂野欧美在线观看| 操美女的视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 中文字幕av电影在线播放| 亚洲专区国产一区二区| 男女午夜视频在线观看| 国产私拍福利视频在线观看| 国产精品av久久久久免费| 最近最新免费中文字幕在线| 免费看美女性在线毛片视频| 黄片大片在线免费观看| 精品午夜福利视频在线观看一区| 男男h啪啪无遮挡| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久亚洲av鲁大| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 欧美成人一区二区免费高清观看 | 欧美日韩亚洲国产一区二区在线观看| 九色国产91popny在线| 久久精品亚洲精品国产色婷小说| 丝袜在线中文字幕| 丰满的人妻完整版| 午夜福利免费观看在线| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 国产精品一区二区在线不卡| 一区二区三区国产精品乱码| 又紧又爽又黄一区二区| 男人舔女人的私密视频| 一进一出好大好爽视频| 国产成人精品在线电影| 桃红色精品国产亚洲av| 国产成人欧美在线观看| 窝窝影院91人妻| 亚洲中文字幕日韩| 在线观看免费视频网站a站| 久久久久久久午夜电影| 国产成人精品无人区| 国产国语露脸激情在线看| 九色国产91popny在线| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 18禁美女被吸乳视频| 免费在线观看黄色视频的| 伦理电影免费视频| 欧美 亚洲 国产 日韩一| 婷婷精品国产亚洲av在线| 啦啦啦 在线观看视频| 日韩av在线大香蕉| 国产亚洲欧美98| 久久青草综合色| av免费在线观看网站| 日本欧美视频一区| 国产精品日韩av在线免费观看 | 国产在线精品亚洲第一网站| 看黄色毛片网站| 不卡一级毛片| 亚洲精品久久成人aⅴ小说| 午夜福利免费观看在线| 欧美成狂野欧美在线观看| √禁漫天堂资源中文www| 日韩国内少妇激情av| 大型黄色视频在线免费观看| 日韩欧美三级三区| 国产高清有码在线观看视频 | 国产精品亚洲美女久久久| 成人国产一区最新在线观看| 欧美黄色片欧美黄色片| 国产精品 国内视频| 精品日产1卡2卡| 精品卡一卡二卡四卡免费| 亚洲精品中文字幕在线视频| 精品国产美女av久久久久小说| 国产伦人伦偷精品视频| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 国产一级毛片七仙女欲春2 | 91麻豆精品激情在线观看国产| 一夜夜www| 日本vs欧美在线观看视频| 久久青草综合色| 在线观看www视频免费| 免费av毛片视频| 少妇裸体淫交视频免费看高清 | 成年版毛片免费区| 亚洲欧美日韩无卡精品| 一夜夜www| 久久久久久亚洲精品国产蜜桃av| 波多野结衣巨乳人妻| 国产99白浆流出| 1024香蕉在线观看| 久久精品成人免费网站| 欧美日韩亚洲国产一区二区在线观看| 欧美性长视频在线观看| 免费少妇av软件| cao死你这个sao货| 两人在一起打扑克的视频| 麻豆一二三区av精品| 女人被躁到高潮嗷嗷叫费观| 国产一卡二卡三卡精品| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 无限看片的www在线观看| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 精品午夜福利视频在线观看一区| 一本综合久久免费| 亚洲中文字幕一区二区三区有码在线看 | 正在播放国产对白刺激| 久久精品亚洲精品国产色婷小说| www.自偷自拍.com| 美女高潮到喷水免费观看| 久99久视频精品免费| 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 又大又爽又粗| av天堂久久9| 一级黄色大片毛片| 亚洲片人在线观看| 色综合站精品国产| 黄片大片在线免费观看| 黄色丝袜av网址大全| 亚洲午夜精品一区,二区,三区| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人一区二区三| 纯流量卡能插随身wifi吗| 免费av毛片视频| 亚洲五月婷婷丁香| 脱女人内裤的视频| 午夜精品国产一区二区电影| 老汉色av国产亚洲站长工具| 桃红色精品国产亚洲av| 人人澡人人妻人| 国产午夜福利久久久久久| 99热只有精品国产| 青草久久国产| 国产精品野战在线观看| 日本免费一区二区三区高清不卡 | 久久午夜综合久久蜜桃| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看| 精品久久久精品久久久| 男女午夜视频在线观看| 成在线人永久免费视频| 99久久综合精品五月天人人| 美女国产高潮福利片在线看| 久久国产乱子伦精品免费另类| 亚洲一码二码三码区别大吗| 国产成人啪精品午夜网站| 午夜激情av网站| 国产91精品成人一区二区三区| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 国产一区二区三区视频了| 美女高潮到喷水免费观看| 日本vs欧美在线观看视频| 国产熟女xx| 国产不卡一卡二| 午夜免费激情av| 啦啦啦观看免费观看视频高清 | 久久久久九九精品影院| 级片在线观看| 大型黄色视频在线免费观看| 极品教师在线免费播放| 精品日产1卡2卡| 精品国产亚洲在线| 国产精品日韩av在线免费观看 | 亚洲成人精品中文字幕电影| 久久精品人人爽人人爽视色| 欧美日韩福利视频一区二区| 亚洲国产日韩欧美精品在线观看 | 免费在线观看视频国产中文字幕亚洲| 国产一区在线观看成人免费| 日韩av在线大香蕉| 91老司机精品| 神马国产精品三级电影在线观看 | 精品福利观看| 18禁国产床啪视频网站| 久9热在线精品视频| 久久久久久久久中文| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 国产精品电影一区二区三区| 亚洲精品在线观看二区| 一夜夜www| xxx96com| 女人被躁到高潮嗷嗷叫费观| 91av网站免费观看| 老司机福利观看| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 人妻久久中文字幕网| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 精品无人区乱码1区二区| 国产亚洲精品一区二区www| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 国产欧美日韩综合在线一区二区| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 在线观看免费日韩欧美大片| 波多野结衣巨乳人妻| 波多野结衣av一区二区av| 在线观看午夜福利视频| 窝窝影院91人妻| 亚洲国产看品久久| 一区在线观看完整版| 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 日韩有码中文字幕| 欧美激情久久久久久爽电影 | 淫妇啪啪啪对白视频| 国产精品久久久av美女十八| 欧美成人一区二区免费高清观看 | 免费在线观看影片大全网站| 嫩草影院精品99| 老司机福利观看| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 黄片小视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 18禁美女被吸乳视频| 久久影院123| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 热re99久久国产66热| 丰满的人妻完整版| 女人精品久久久久毛片| 国产精品亚洲一级av第二区| 免费观看人在逋| 正在播放国产对白刺激| 精品电影一区二区在线| 亚洲精品中文字幕一二三四区| 我的亚洲天堂| 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 性欧美人与动物交配| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 村上凉子中文字幕在线| www.www免费av| 亚洲专区字幕在线| 午夜福利,免费看| www国产在线视频色| 亚洲精品在线美女| 一夜夜www| 一级毛片高清免费大全| 男女下面进入的视频免费午夜 | 久久久水蜜桃国产精品网| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 日韩av在线大香蕉| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类 | 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 性色av乱码一区二区三区2| 一级毛片精品| 黄色女人牲交| 在线av久久热| 欧美一区二区精品小视频在线| 又大又爽又粗| 一本大道久久a久久精品| АⅤ资源中文在线天堂| 亚洲男人的天堂狠狠| 999久久久国产精品视频| 这个男人来自地球电影免费观看| 国产精品亚洲美女久久久| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 又黄又爽又免费观看的视频| 成人亚洲精品一区在线观看| 国产精品永久免费网站| 最好的美女福利视频网| 如日韩欧美国产精品一区二区三区| 国产精品一区二区精品视频观看| 夜夜躁狠狠躁天天躁| 99久久99久久久精品蜜桃| 99热只有精品国产| 大码成人一级视频| 国产欧美日韩一区二区三区在线| 色播亚洲综合网| 国产亚洲精品av在线| 国产成年人精品一区二区| 欧美国产日韩亚洲一区| 精品久久久久久,| 一区在线观看完整版| 一二三四在线观看免费中文在| 久久中文字幕一级| 日本三级黄在线观看| 精品国产亚洲在线| 亚洲精品久久成人aⅴ小说| 午夜亚洲福利在线播放| 亚洲人成电影观看| 一级作爱视频免费观看| √禁漫天堂资源中文www| 50天的宝宝边吃奶边哭怎么回事| 亚洲av电影不卡..在线观看| 看黄色毛片网站| 长腿黑丝高跟| svipshipincom国产片| 亚洲中文字幕一区二区三区有码在线看 | 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 国产精品98久久久久久宅男小说| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3 | 中文亚洲av片在线观看爽| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看 | 久久久久亚洲av毛片大全| 久久久国产成人免费| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 日韩视频一区二区在线观看| 国产99久久九九免费精品| 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 在线视频色国产色| 精品一区二区三区四区五区乱码| 久久婷婷成人综合色麻豆| 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看 | 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 看片在线看免费视频| 变态另类丝袜制服| 午夜免费鲁丝| 一进一出好大好爽视频| 日本在线视频免费播放| 国产又色又爽无遮挡免费看| 中文字幕色久视频| 此物有八面人人有两片| 操出白浆在线播放| 午夜视频精品福利| 国产av又大| 精品国产亚洲在线| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 亚洲精品中文字幕一二三四区| 精品久久久精品久久久| 国产精品爽爽va在线观看网站 | 久久午夜亚洲精品久久| 少妇 在线观看| cao死你这个sao货| 不卡av一区二区三区| 嫩草影院精品99| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 脱女人内裤的视频| 国产精品一区二区三区四区久久 | 日韩有码中文字幕| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 亚洲欧美激情在线| 18美女黄网站色大片免费观看| 亚洲最大成人中文| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 极品教师在线免费播放| netflix在线观看网站| 亚洲人成77777在线视频| 一区二区三区国产精品乱码| 国产一区二区三区综合在线观看| 久久热在线av| 欧美黄色片欧美黄色片| 最近最新中文字幕大全电影3 | 成人国产一区最新在线观看| 两性夫妻黄色片| 亚洲人成网站在线播放欧美日韩| 视频在线观看一区二区三区| 久久国产精品影院| a在线观看视频网站| 精品福利观看| 久久久久久久久久久久大奶| 亚洲国产精品合色在线| 99国产精品一区二区蜜桃av| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 曰老女人黄片| 欧美成人一区二区免费高清观看 | 搡老岳熟女国产| 色av中文字幕| 国产av一区二区精品久久| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| svipshipincom国产片| 在线永久观看黄色视频| 欧美大码av| 亚洲男人天堂网一区| 欧美一级a爱片免费观看看 | 日韩国内少妇激情av| 男女下面插进去视频免费观看| 女性被躁到高潮视频| av超薄肉色丝袜交足视频| 手机成人av网站| 日韩高清综合在线| 夜夜看夜夜爽夜夜摸| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人看| 亚洲伊人色综图| 亚洲欧美精品综合久久99| 国产真人三级小视频在线观看| 法律面前人人平等表现在哪些方面| 久久亚洲精品不卡| 国产精品永久免费网站| 人人妻人人爽人人添夜夜欢视频| 黄色a级毛片大全视频| 国产亚洲欧美在线一区二区| 香蕉久久夜色| cao死你这个sao货| 亚洲五月色婷婷综合| 国产成人影院久久av| 日韩免费av在线播放| 一区二区日韩欧美中文字幕| av片东京热男人的天堂| 人人妻人人澡欧美一区二区 | 男女午夜视频在线观看| 精品午夜福利视频在线观看一区| 黄色女人牲交| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 一区二区三区精品91| 男人舔女人的私密视频| 精品国产一区二区久久| 国产野战对白在线观看| 校园春色视频在线观看| 国产一卡二卡三卡精品| 成人欧美大片| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 日韩欧美一区二区三区在线观看| 淫妇啪啪啪对白视频| 19禁男女啪啪无遮挡网站| 色播在线永久视频| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 免费在线观看完整版高清| 一级毛片女人18水好多| 国产精品自产拍在线观看55亚洲| 国产激情欧美一区二区|