• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    2018-06-01 11:12:27LiangYangCaizhuangWangShiweiLinYangCaoandXiaohengLiu
    Computers Materials&Continua 2018年4期

    Liang Yang , Caizhuang Wang , Shiwei Lin, , Yang Cao and Xiaoheng Liu

    1 Introduction

    As a material combining good mechanical strength and light weight [Chen, Fray and Farthing (2000); Plimpton (1995)], titanium is used in many technological areas such as aerospace, automotive industry, jewelry and medicine [Praveena and Nirmala (2017)]. It is well documented that biocompatibility and corrosion resistance properties, which are very important in such applications, is due to a thin passive film forming spontaneously on the surface of Ti when oxygen is present [Alves, Rossi, Ribeiro et al. (2017); Gemelli and Camargo (2007); Jaeggi, Parlinskawojtan, Kern et al. (2012)]. The passive film is normally a few nanometers thick and consists mainly of amorphous titanium dioxide[Pan, Thierry and Leygraf (1996)]. Nevertheless, the functionality of the oxide film depend on the chemical composition structure, morphology and mechanical conditions of the material [Gemelli and Camargo (2007)] Titanium oxide film produced from titanium surface has been the focus of experimental studies for many years. A great deal of experimental investigation has been performed to investigate oxide film using various experimental techniques such as vacuumS evaporated titanium oxidation [Babuji and Radhakrishna (1985)], DC plasma oxidation [Leng, Chen, Yang et al. (2003)], anodic oxidation [Wu, Liu, Wu et al. (2000)], micro-arc oxidation [Li, Kong, Kim et al. (2004)],thermal oxidation treatment [Dong and Bell (2000)], RF plasma oxidation [Valenciaalvarado,La Piedadbeneitez, Lopezcallejas et al. (2014)], and laser oxidation [Lavisse, Langlade,Berger et al. (2004)]. Many of these methods involve oxygen atoms under electric field to bombard the titanium surface to form an oxide film. However, mechanism on how electric field effect and intrinsic stress influence the transport of Oxygen atoms has not been clearly discussed. Moreover, studies concerning the early stage of oxidation are still very few. When the film thickness decreases to a nanometer scale, stress distributions are very crucial to the initial oxidation process. Therefore, the initial stage of titanium oxidation has been one of the most intensively studied topics, yet remains controversial.Understanding the initial oxidation behavior is also important for revealing and controlling the structure and properties of Titanium oxide films. In order to gain an atomic scale insight into the oxidation process, in this work, we simulate the oxidation of titanium by using molecular dynamics simulation under different electric field condition.

    2 Computational details

    In this paper, molecular dynamics simulations are performed using the “l(fā)arge-scale atomic/molecular massively parallelized simulator” (LAMMPS) code integrated with the Reactive Force-Field (ReaxFF) [Aktulga, Fogarty, Pandit et al. (2012); Plimpton (1995);Xia, Wang, Sun et al. (2016)]. ReaxFF is a generic bond order dependent force field that can simulate chemical reactions by introducing the dynamic bond-orders and partial charges of the atoms [Zheng, Li, Nie et al. (2017)]. The bonded interactions are bond-order-dependent, with the bond order itself being calculated based on interatomic distance. In this method the forces are derived from the following energy expression[Ashraf and van Duin (2017)]:

    which consists of different partial contributions: bond energies (Ebond), energy penalties for over-coordination (Eover) and (optionally) stabilize under-coordination of atoms(Eoverand Eunder), lone-pair energies (Elp), valence angle energies (Eval), and the terms to handle non-bonded van der Waals (EvdWaals) and coulomb (Ecoulomb) interaction energies [Huygh, Bogaerts, Duin et al. (2014)]. The force field parameters used in this work were developed by Ashraf C et al. [Huygh, Bogaerts, Duin et al. (2014)] which provides accurate description of the interatomic interactions among the Ti and O atoms.To further verify the accuracy of the ReaxFF in describing the interatomic interactions in Ti-O systems, we compare the adsorption energy for an oxygen adadtom on various sites of Ti (101) surface and the formation energy of an oxygen atom in the different interstitial sites in bulk Ti obtained from ReaxFF with those from first principles DFT calculations as shown in Fig. 1 and Fig. 2 respectively.

    Figure 1: Oxygen adsorption energies per O atom in various configuration on Titanium(0001) surface

    The ReaxFF MD and the DFT results on the adsorption energies are compared in Fig. 1.Although the absolute values of the adsorption energy from both calculations are not exactly the same, the relative stability of the adsorption site predict by the ReaxFF MD calculations agrees well with that of the DFT result. This comparison suggests that the ReaxFF can give a good description of reactions occurring at the titanium surface.

    Figure 2: Formation energies calculated with ReaxFF MD and DFT for the different interstitial oxygen sites located in the titanium. (a) formation energies (b) interstitial sites

    In Fig. 2 the formation energies of interstitial oxygen calculated with the ReaxFF MD and with DFT are compared. Octahedral center (OC) site, hexahedral center (HE) site and Ti-Ti bond center crowdion (CR) site as indicated in the right site of the figure represent different locations where an oxygen interstitial atom can occupy in bulk titanium. The relative stability of the interstitial sites obtained from the ReaxFF MD calculations also agrees with that from DFT calculations. However, ReaxFF MD result underestimates all formation energies compared to the DFT result [Huygh, Bogaerts, Duin et al. (2014)]pecially for CR site, for which the formation energy calculated with ReaxFF lies about 42% below the DFT value. Therefore, ReaxFF MD overestimates the significance of CR site in comparison with the OC and HE sites.

    Figure 3: Side view of the simulation box. Red and yellow atoms are O atoms and Ti atoms, respectively

    We also test the accuracy of the ReaxFF in describing the lattice parameters of Ti crystal.After relaxing at 300 K for 10 ps [Liu, Fan, Sun et al. (2016); Liu, Wang, Zhou et al.(2007); Sun, Dai, Song et al. (2014)], the hcp Ti crystal structure has lattice constants of a=0.2983 nm, c=0.4883 nm, which gives c/a=1.6371. These calculated values are close the experiment values of a=0.2949 nm, c=0.4677 nm and c/a=1.5860 [Liu, Wang, Zhou et al. (2007)] To perform the MD simulation, a thick slab of (0001) Ti containing 6957 atoms with the dimensions of 4.29 nm×4.29 nm×7.269 nm was set up. The simulation box was set to be 10.42 nm along z direction (the out-of-plane direction) to allow about 3.5 nm of free space (vacuum region) above the Ti (0001) surface for introducing oxygen atoms. Periodic boundary conditions were applied to all three directions.

    Fig. 3 shows the simulation box used in the present simulation. In order to mimic a thick substrate, titanium atoms in the bottom 1 nm region of the simulation box were fixed. An oxygen reflection layer was also fixed at the top of the vacuum region so that oxidation can only occur at one surface (the non-fixed surface) of the Ti (0001) slab. Atoms in the region of about 6.6 nm above the fixed layer were kept at a constant oxidation temperature (300 K) during simulation to provide a thermal bath during the oxidation(Melro and Jensen (2017). The temperature of the moving atoms in the Ti (0001) slab was rescaled at every time step (0.5 fs) during simulation. Oxidation was proceeded by placing oxygen atoms one-by-one (shown as red balls) at the distance 2 nm above the Ti(0001) surface. In order to simulate the effect of electric field force on oxidation process,each oxygen atom is subjected to a constant electric field force and moves toward the titanium surface. The range of this force is determined by the anode voltage as shown in Tab. 1 [Li, Chen, Wang et al. (2016); Liu, Liu, Zhong et al. (2014)]. In order to compare the oxidation behavior with the previous ab initio calculations and the experimental results of surface reaction, we oxidized the surface by sequentially adding 100 oxygen atoms in to the vacuum region to study the evolution of the surface oxidation.

    Table 1: The oxygen atom of force in reaction process

    3 Results and discussion

    Although titanium has been studied extensively for many decades, there are still a lot of debates regarding the fundamental oxidation mechanism of this material [Fang, Wen, Xu et al. (2017)]. It is important to obtain atomic scale information on the interaction of oxygen with titanium surface to gain better fundamental insights into which factors play an important role in the oxidation process.

    3.1 Structural properties

    Figure 4: The evolution of atomistic structures during oxidation process under Force-1 and Force-5

    Fig. 4 shows the typical snapshots of the oxidation reaction when the oxygen atoms were supplied at a constant force toward the relaxed Ti (0001) surface at 300 K. Our simulations show that for the low coverage the oxygen atoms prefer occupying both the surface layer and the seond layer. This calculated result agrees with the DFT results [Liu,Wang, Zhou et al. (2007)]. When the oxygen atoms dose was increased, the oxygen atoms were found mainly distributed into the second layer and the third layer, although a few adatoms are still left on the Ti (0001) surface. With the increase of oxidation time,the oxygen of the second layer and the third layer tends to be saturated and the coverage of surface oxygen atoms increases. Finally, the surface, second layer and the third layer of the Ti slab are all saturated with oxygen.

    3.2 Oxidation time

    Figure 5: Reaction rate of oxidation process under different consist force

    We found that the reaction kinetics is dependent on the position of oxygen atom on the Ti(0001) surface. Fig. 5 shows the oxidation process when the oxygen atoms were supplied with different force. The curves exhibit similar shape, all of which found three stages of early titanium oxidation. In the 1ststage, oxygen reaction rate increased with time. In the 2ndstage, oxygen then incorporated into the subsurface region and resulted in a reaction decrease and finally in the 3rdstage the reaction was very small which was caused by Ti-O layer formation. The oxygen-titanium reaction occurred very rapidly within 0.8 ps at all forces conditions. Therefore, it must be noted that the present simulations consider only very initial stage of the oxidation and exclude thermal diffusion of oxygen in a long time scale. However, the resulting atomic reaction rate of the oxygen atom is essentially the same for different applied forces. This result implies that the oxidation reaction on Ti(0001) surface is independent of applied forces.

    3.3 Oxidation process

    Figure 6: At top 9 layers, total oxygen atoms in each layer profile of the oxidized Titanium surface during oxidation process with 100 oxygen atoms in Vacuum Slab

    By analyzing the simulated oxide layer, initial oxidation behaviors at 300 K were studied.Fig. 6 shows the distributions of oxygen atoms in different layers as the function of oxidation time. The results show that the oxygen concentration in the 2ndlayer increases sharply from 0 fs to 25 ps and then decreases quickly until about 60 ps when it becomes stabilizing. The slopes of the curves reflect the reaction rate, which indicate that oxidation rate was extremely high in the first 25 ps, especially at the 2ndlayer. This result agrees with the results shown in Fig. 5. During early 25 ps, the oxygen concentration rise rapidly and reached a maximum, especially the change at second layer is much faster than that at the other layers. Our simulations suggest that oxygen go to the 2ndlayer without adsorbed on the surface at initial stage of oxidation. After the first 25 ps, the oxygen concentration at the 2ndlayer is saturate and we could observe that a lot of oxygen atoms start to accumulate on the first layer and generate a surface oxide layer. At the same time the number of oxygen atoms at deeper layer is less than the first layer because of oxidation was decelerating attributed to the compressive stress at the 2ndlayer which block the diffusion of the oxygen atoms into the deeper layers as shown below.

    3.4 Self-limiting oxidation

    Figure 7: The corresponding x component stress distribution under different oxidation time

    To unravel the oxygen atom transport mechanism during early stage of oxidation,compressive stress along x-y planar direction for different time ranging from 0.1 ps to 150 ps were calculated and shown in Fig. 7. Note that in the present work, the stress/atom is defined as the negative of the pressure tensor per atom. From 0.1 ps to 150 ps, the compressive stress in the surface region reached maximum at second layer then reduced at deeper layers. The maximum compression stress located at the region with the maximum oxygen concentration (Fig. 6). Indeed, the early stage of oxidation was almost completed within 80 ps. It was reported that one possible mechanism for ultrathin film oxidation is ballistic transport act as rather than the conventional dissolution-diffusion.This mechanism is supported by both experiment and simulations. Our present MD simulation results show that the accumulation of O atoms at top few surface layers during the initial stage of oxidation can generate compressive stress at the surface layers and further block O atom diffusion into deeper layers. The maximum compression stress located at the region where O concentration is at maximum. Due to the injection of O atoms, the oxide film turned to expand in parallel to the surface direction. But, as the lateral expansion was constrained by the titanium substrate, compression stress was generated in the oxide film. Such residual compressive stress in oxide film cause the so-called “self-limiting oxidation” since the barrier caused by compressive deformation is higher than the activation energy of oxygen diffusion and reaction. So the ballistic transport of O atoms at very early moment played dominant role during oxidation of titanium.

    4 Conclusions

    By performing a ReaxFF MD simulation study, the transport of O atoms was found to control the initial oxidation stage of titanium. Surface oxide layer is formed quickly within 2 ps of simulation time. Our simulation results also show that the oxidation reaction is independent of the initial applied forces. The O concentration accumulation was caused by the transport of O atoms into 2ndlayer at the very beginning of oxidation(50 ps), leading to compressive stress of the surface layer which blocked the subsequent transport of O atoms. We believe that the mechanism discovered in this work can be applied to other self-limiting oxidation behaviors.

    Acknowledgments:Support of this work from the National Natural Science Foundation of China (Grant No. 51361009). Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under Contract No. DE-AC02-07CH11358, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA.

    Aktulga, H. M.; Fogarty, J.; Pandit, S. A.; Grama, A.(2012): Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing,vol. 38, no. 4, pp. 245-259.

    Alves, S. A.; Rossi, A. L.; Ribeiro, A. R.; Toptan, F.; Pinto, A. M. et al.(2017):Tribo-electrochemical behavior of bio-functionalized TiO2nanotubes in artificial saliva:Understanding of degradation mechanisms. Wear, vol. 384-385, pp. 28-42.

    Ashraf, C.; van Duin, A. C. T.(2017): Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics. Journal of Physical Chemistry A,vol. 121, no. 5, pp. 1051-1068.

    Babuji, B.; Radhakrishna, S.(1985): Optical properties of titanium oxide thin films.Journal of Materials Science Letters, vol. 4, no. 6, pp. 767-769.

    Chen, G. Z.; Fray, D. J.; Farthing, T. W.(2000): Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, vol. 407, pp. 361-364.

    Dong, H.; Bell, T.(2000): Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, vol. 238, no. 2, pp. 131-137.

    Fang, W.; Wen, X.; Xu, J.; Zhou, J.(2017): CSDA: A novel cluster-based secure data aggregation scheme for WSNs. Cluster Computing

    Gemelli, E.; Camargo, N. H. A.(2007): Oxidation kinetics of commercially pure titanium. Materia-rio De Janeiro, vol. 12, no. 3, pp. 525-531.

    Huygh, S.; Bogaerts, A.; van Duin, A. C. T.; Neyts, E. C.(2014): Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Computational Materials Science, vol. 95, pp. 579-591.

    Jaeggi, C.; Parlinskawojtan, M.; Kern, P.(2012): Correlation of electrolyte-derived inclusions to crystallization in the early stage of anodic oxide film growth on titanium.Thin Solid Films, vol. 520, no. 6, pp. 1804-1808.

    Lavisse, L.; Langlade, C.; Berger, P.; Grevey, D.; Vannes, A. B.(2004): A thermo-kinetic study of titanium oxidation assisted by a Nd-YAG pulsed laser. Materials Science Forum, pp. 697-704.

    Leng, Y.; Chen, J.; Yang, P.; Sun, H.; Huang, N.(2003): Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surface & Coatings Technology, vol. 166, no. 2, pp. 176-182.

    Li, D.; Chen, D.; Wang, J.; Liang, P.(2016): Effect of acid solution, fluoride ions,anodic potential and time on the microstructure and electronic properties of self-ordered TiO2nanotube arrays. Electrochimica Acta, vol. 207, pp. 152-163.

    Li, L.; Kong, Y.; Kim, H.; Kim, Y.; Kim, H. et al.(2004): Improved biological performance of Ti implants due to surface modification by micro-arc oxidation.Biomaterials, vol. 25, no. 14, pp. 2867-2875.

    Liu, J.; Fan, X.; Sun, C.; Zhu, W.(2016): Oxidation of the titanium(0001) surface:Diffusion processes of oxygen from DFT. RSC Advances, vol. 6 , no. 75, pp. 71311-71318.

    Liu, S.; Wang, F.; Zhou, Y.; Shang, J.(2007): Ab initio study of oxygen adsorption on the Ti (0001) surface. Journal of Physics: Condensed Matter, vol. 19, no. 22.

    Liu, Z.; Liu, H.; Zhong, X.; Hashimoto, T.; Thompson, G. E. et al.(2014):Characterization of anodic oxide growth on commercially pure titanium in NaTESi electrolyte. Surface and Coatings Technology, vol. 258, pp. 1025-1031.

    Melro, L. S.; Jensen, L. R.(2017): Influence of functionalization on the structural and mechanical properties of graphene. Computers, Materials & Continua, vol. 53 no. 2, pp.111-131.

    Pan, J.; Thierry, D.; Leygraf, C.(1996): Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta,vol. 41, pp. 1143-1153.

    Plimpton, S.(1995): Fast parallel algorithms for short-range molecular dynamics.Journal of Computational Physics, vol. 117, no. 1, pp. 1-19.

    Praveena, R.; Nirmala, S.(2017): Bus encoded LUT Multiplier for portable biomedical therapeutic devices. Computers, Materials & Continua, vol. 53, no. 1, pp. 39-51.

    Sun, J. P.; Dai, J. H.; Song, Y.; Wang, Y.; Yang, R.(2014): Affinity of the interface between hydroxyapatite (0001) and Titanium (0001) surfaces: A first-principles investigation. ACS Applied Materials & Interfaces, vol. 6, no. 23, pp. 20738-20751.

    Valenciaalvarado, R.; La Piedadbeneitez, A. D.; Lopezcallejas, R.; Barocio, S. R.;Mercadocabrera, A. et al.(2014): Titanium oxidation by rf inductively coupled plasma.Journal of Physics: Conference Series, vol. 511, no. 1, pp. 222-226.

    Wu, L.; Liu, J.; Wu, G.; Li, S.; Yu, M.(2000): Growth behaviour of anodic oxide film on titanium alloy. Surface Engineering, vol. 31, no. 12, pp. 904-911.

    Xia, Z.; Wang, X.; Sun, X.; Wang, Q.(2016):A Secure and dynamic multi-keyword ranked search scheme over encrypted cloud data.IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 2, pp. 340-352

    Zheng, M.; Li, X.; Nie, F.; Guo, L.(2017): Investigation of overall pyrolysis stages for liulin bituminous coal by large-scale ReaxFF olecular Dynamics. Energy & Fuels, vol. 31,no. 4, pp. 3675-3683.

    一个人免费看片子| 成人国产av品久久久| 国产精品偷伦视频观看了| 午夜av观看不卡| 国产毛片在线视频| 精品少妇内射三级| 国产男人的电影天堂91| 国产国语露脸激情在线看| 天天躁夜夜躁狠狠久久av| 国产有黄有色有爽视频| 亚洲国产精品一区二区三区在线| 久久婷婷青草| 超碰97精品在线观看| av卡一久久| 久久久久精品国产欧美久久久 | 欧美日韩精品网址| 欧美国产精品va在线观看不卡| 2021少妇久久久久久久久久久| 亚洲国产欧美网| 亚洲成人手机| 午夜福利影视在线免费观看| 久久久久久久久免费视频了| 亚洲精品国产一区二区精华液| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人添人人爽欧美一区卜| 精品国产超薄肉色丝袜足j| 考比视频在线观看| 青草久久国产| 亚洲色图综合在线观看| 丝袜在线中文字幕| 九草在线视频观看| 99久久精品国产亚洲精品| 卡戴珊不雅视频在线播放| 国产成人欧美| 亚洲国产精品999| 亚洲av国产av综合av卡| www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 97在线人人人人妻| 欧美在线黄色| 精品国产一区二区三区四区第35| 国产日韩欧美亚洲二区| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 亚洲精品国产一区二区精华液| 性少妇av在线| 90打野战视频偷拍视频| 亚洲精品一二三| 久久久久久人妻| av在线app专区| 国产日韩欧美在线精品| 日韩一区二区视频免费看| 午夜福利视频在线观看免费| 日本欧美视频一区| 午夜福利乱码中文字幕| 欧美黄色片欧美黄色片| 五月开心婷婷网| 男女之事视频高清在线观看 | 又大又爽又粗| 日本爱情动作片www.在线观看| 妹子高潮喷水视频| 国产欧美亚洲国产| 一区在线观看完整版| 青青草视频在线视频观看| 欧美成人午夜精品| 亚洲,欧美精品.| 亚洲人成电影观看| 日日摸夜夜添夜夜爱| 悠悠久久av| 成年人免费黄色播放视频| 中文欧美无线码| 亚洲精品国产色婷婷电影| 在线免费观看不下载黄p国产| 国产淫语在线视频| 在线观看免费日韩欧美大片| av卡一久久| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 午夜老司机福利片| 日韩一卡2卡3卡4卡2021年| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 黄片播放在线免费| 精品一区二区三区av网在线观看 | 国产97色在线日韩免费| 丁香六月欧美| 亚洲精品国产区一区二| 少妇精品久久久久久久| 一本一本久久a久久精品综合妖精| 在线天堂最新版资源| 青草久久国产| 美女扒开内裤让男人捅视频| 美女福利国产在线| 久久人人爽人人片av| 丝袜喷水一区| 九草在线视频观看| 亚洲激情五月婷婷啪啪| 日本vs欧美在线观看视频| 在线观看国产h片| 免费日韩欧美在线观看| 国产精品蜜桃在线观看| 久久狼人影院| 亚洲成色77777| 十八禁人妻一区二区| 国产精品免费大片| 一区二区三区乱码不卡18| 一区二区三区激情视频| 国产成人系列免费观看| 大香蕉久久网| 伊人亚洲综合成人网| 日韩制服骚丝袜av| 日本av手机在线免费观看| 丝袜脚勾引网站| 精品人妻一区二区三区麻豆| 亚洲成av片中文字幕在线观看| 久久99一区二区三区| 操出白浆在线播放| 伦理电影免费视频| 在线 av 中文字幕| 亚洲av成人不卡在线观看播放网 | 女人爽到高潮嗷嗷叫在线视频| 国产精品一二三区在线看| 午夜影院在线不卡| 波野结衣二区三区在线| www.av在线官网国产| 精品福利永久在线观看| 国产 一区精品| 国产精品免费大片| 午夜福利影视在线免费观看| 国产精品久久久久久精品古装| 亚洲专区中文字幕在线 | 免费观看a级毛片全部| 日韩人妻精品一区2区三区| 免费不卡黄色视频| 日韩成人av中文字幕在线观看| 亚洲四区av| 悠悠久久av| 热99久久久久精品小说推荐| 中文字幕另类日韩欧美亚洲嫩草| 青草久久国产| svipshipincom国产片| 咕卡用的链子| 欧美日韩亚洲高清精品| 国产淫语在线视频| 日韩伦理黄色片| 一本久久精品| 蜜桃在线观看..| av免费观看日本| 好男人视频免费观看在线| 欧美97在线视频| 丝袜人妻中文字幕| 午夜91福利影院| 国产精品香港三级国产av潘金莲 | 天美传媒精品一区二区| 天天影视国产精品| 婷婷色综合大香蕉| 下体分泌物呈黄色| 人人妻人人澡人人爽人人夜夜| 大码成人一级视频| 国产精品蜜桃在线观看| 电影成人av| 最近中文字幕高清免费大全6| 国产乱人偷精品视频| 精品福利永久在线观看| 色播在线永久视频| 欧美激情 高清一区二区三区| 久久久精品国产亚洲av高清涩受| 一级黄片播放器| 精品酒店卫生间| 亚洲av男天堂| 韩国av在线不卡| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 在线观看三级黄色| 中文字幕亚洲精品专区| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 国产日韩欧美在线精品| 日本午夜av视频| 亚洲精品国产av成人精品| 午夜免费观看性视频| 一区在线观看完整版| av不卡在线播放| 国产一卡二卡三卡精品 | 国产精品一二三区在线看| 午夜福利在线免费观看网站| 制服人妻中文乱码| 少妇精品久久久久久久| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 欧美黑人欧美精品刺激| 亚洲综合色网址| 国产成人欧美| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区激情| 中文欧美无线码| 婷婷色综合www| 搡老乐熟女国产| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 亚洲国产欧美在线一区| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 91精品国产国语对白视频| 欧美在线黄色| 日日撸夜夜添| 亚洲精品国产av蜜桃| 国产成人精品无人区| 国精品久久久久久国模美| 巨乳人妻的诱惑在线观看| 午夜日本视频在线| 亚洲欧洲日产国产| 亚洲三区欧美一区| 秋霞伦理黄片| 国产av码专区亚洲av| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 18禁动态无遮挡网站| 看免费成人av毛片| 亚洲av国产av综合av卡| 一级毛片电影观看| 国产 精品1| 在线观看免费视频网站a站| 亚洲欧美精品自产自拍| 女人精品久久久久毛片| 日韩免费高清中文字幕av| 乱人伦中国视频| 久久久国产精品麻豆| 久久精品久久久久久噜噜老黄| 卡戴珊不雅视频在线播放| 自线自在国产av| 成人亚洲精品一区在线观看| 欧美日韩福利视频一区二区| 国产av国产精品国产| 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| 日本午夜av视频| 91精品伊人久久大香线蕉| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 免费在线观看完整版高清| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 两个人看的免费小视频| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| 日本91视频免费播放| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 丁香六月欧美| 亚洲,欧美精品.| 成人三级做爰电影| 精品亚洲成国产av| 日本一区二区免费在线视频| 婷婷色av中文字幕| 黑丝袜美女国产一区| 熟女少妇亚洲综合色aaa.| 夜夜骑夜夜射夜夜干| 一个人免费看片子| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 九色亚洲精品在线播放| 久久毛片免费看一区二区三区| 91国产中文字幕| 综合色丁香网| 久久久久久久国产电影| 成人亚洲欧美一区二区av| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 99精国产麻豆久久婷婷| av又黄又爽大尺度在线免费看| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 大香蕉久久成人网| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 精品酒店卫生间| 欧美日韩视频高清一区二区三区二| 久热这里只有精品99| 日韩一卡2卡3卡4卡2021年| 婷婷成人精品国产| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 一本久久精品| 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 欧美久久黑人一区二区| 欧美激情 高清一区二区三区| 国产亚洲午夜精品一区二区久久| 国产成人系列免费观看| xxx大片免费视频| 人人妻,人人澡人人爽秒播 | 色网站视频免费| 在线观看三级黄色| 国产成人系列免费观看| 成人国语在线视频| 少妇精品久久久久久久| 成年女人毛片免费观看观看9 | 十八禁高潮呻吟视频| 久久精品久久久久久噜噜老黄| 国产无遮挡羞羞视频在线观看| 久久免费观看电影| 美女国产高潮福利片在线看| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 丝袜脚勾引网站| 免费观看av网站的网址| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 午夜福利视频精品| 波野结衣二区三区在线| 欧美乱码精品一区二区三区| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 久久99精品国语久久久| 亚洲精品国产区一区二| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 2021少妇久久久久久久久久久| 精品国产乱码久久久久久男人| 99九九在线精品视频| 久久久国产精品麻豆| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 久久久久精品国产欧美久久久 | 亚洲精品第二区| 国产精品久久久久久人妻精品电影 | 免费日韩欧美在线观看| 欧美日韩综合久久久久久| 少妇猛男粗大的猛烈进出视频| 久久鲁丝午夜福利片| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 久久97久久精品| 黄色一级大片看看| 精品卡一卡二卡四卡免费| 波野结衣二区三区在线| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 侵犯人妻中文字幕一二三四区| 亚洲精品视频女| 一二三四在线观看免费中文在| 久久免费观看电影| 久久久精品区二区三区| 欧美日韩一级在线毛片| av线在线观看网站| 中文字幕色久视频| avwww免费| www.精华液| 午夜福利一区二区在线看| 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 久久青草综合色| 不卡视频在线观看欧美| 美女福利国产在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 超碰97精品在线观看| av免费观看日本| 国产欧美日韩一区二区三区在线| 少妇人妻久久综合中文| 精品亚洲成国产av| 国产激情久久老熟女| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 亚洲国产精品999| 校园人妻丝袜中文字幕| 午夜福利在线免费观看网站| 日本欧美国产在线视频| 日韩av在线免费看完整版不卡| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av高清不卡| 欧美精品一区二区免费开放| 伊人久久大香线蕉亚洲五| 亚洲av男天堂| 一区福利在线观看| 在线观看国产h片| 亚洲精品美女久久久久99蜜臀 | 亚洲成人一二三区av| 波多野结衣一区麻豆| 久久人人97超碰香蕉20202| 99热网站在线观看| 亚洲国产看品久久| 国产日韩一区二区三区精品不卡| 美女高潮到喷水免费观看| 好男人视频免费观看在线| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 中文字幕制服av| 在线观看免费日韩欧美大片| 美女视频免费永久观看网站| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 亚洲国产av新网站| 日韩电影二区| 欧美另类一区| 老汉色av国产亚洲站长工具| 精品久久久精品久久久| 久久久久久久久久久久大奶| 精品国产超薄肉色丝袜足j| 欧美日韩福利视频一区二区| 欧美av亚洲av综合av国产av | 亚洲视频免费观看视频| 国产成人啪精品午夜网站| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 99re6热这里在线精品视频| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网 | 不卡视频在线观看欧美| 大码成人一级视频| 国产xxxxx性猛交| 激情五月婷婷亚洲| 欧美黑人精品巨大| 男女边吃奶边做爰视频| 日韩视频在线欧美| 狂野欧美激情性xxxx| 亚洲精品久久成人aⅴ小说| 久久热在线av| 午夜福利免费观看在线| 亚洲精品日本国产第一区| 麻豆av在线久日| 国产成人欧美| 18禁裸乳无遮挡动漫免费视频| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 人妻一区二区av| 久久韩国三级中文字幕| 国产成人精品无人区| 建设人人有责人人尽责人人享有的| 最黄视频免费看| 91成人精品电影| 免费久久久久久久精品成人欧美视频| 日韩欧美一区视频在线观看| 午夜免费鲁丝| 九草在线视频观看| 老司机亚洲免费影院| 1024视频免费在线观看| 国产欧美日韩一区二区三区在线| 精品午夜福利在线看| 宅男免费午夜| 大片免费播放器 马上看| 男女下面插进去视频免费观看| 韩国av在线不卡| 又大又黄又爽视频免费| 欧美97在线视频| 青青草视频在线视频观看| 免费高清在线观看日韩| 狂野欧美激情性bbbbbb| 99香蕉大伊视频| 欧美av亚洲av综合av国产av | 欧美激情极品国产一区二区三区| 午夜91福利影院| 久久免费观看电影| 久久人人97超碰香蕉20202| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃在线观看..| 中文字幕高清在线视频| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 超色免费av| 国产深夜福利视频在线观看| 多毛熟女@视频| 久久精品国产a三级三级三级| 七月丁香在线播放| 人妻 亚洲 视频| 久久精品久久精品一区二区三区| 你懂的网址亚洲精品在线观看| 女性被躁到高潮视频| 欧美精品一区二区免费开放| 波多野结衣av一区二区av| 欧美精品av麻豆av| 久久精品人人爽人人爽视色| 九色亚洲精品在线播放| 久久久久精品久久久久真实原创| 午夜福利乱码中文字幕| 少妇猛男粗大的猛烈进出视频| 纵有疾风起免费观看全集完整版| 女人被躁到高潮嗷嗷叫费观| av网站在线播放免费| 捣出白浆h1v1| 亚洲一区中文字幕在线| 少妇被粗大猛烈的视频| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 色网站视频免费| 秋霞在线观看毛片| 亚洲伊人久久精品综合| 午夜福利一区二区在线看| 在线观看免费高清a一片| 纵有疾风起免费观看全集完整版| 18禁动态无遮挡网站| 一级片'在线观看视频| 国产一区二区三区综合在线观看| 欧美国产精品va在线观看不卡| 国产精品一国产av| 美女午夜性视频免费| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆 | 丰满少妇做爰视频| 免费人妻精品一区二区三区视频| 无遮挡黄片免费观看| 人人澡人人妻人| 51午夜福利影视在线观看| 老汉色∧v一级毛片| 久久免费观看电影| 久久久久久人妻| 欧美少妇被猛烈插入视频| 人人妻人人澡人人爽人人夜夜| 97精品久久久久久久久久精品| 久久久精品国产亚洲av高清涩受| 国产成人午夜福利电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 大香蕉久久成人网| 搡老岳熟女国产| 久久97久久精品| 母亲3免费完整高清在线观看| 如何舔出高潮| 国产亚洲午夜精品一区二区久久| 国产精品一区二区在线观看99| 狂野欧美激情性bbbbbb| 色婷婷av一区二区三区视频| 亚洲精品一二三| 人妻人人澡人人爽人人| 国产一区二区三区av在线| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图| 免费观看人在逋| 老司机靠b影院| 日本猛色少妇xxxxx猛交久久| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 国产97色在线日韩免费| 高清视频免费观看一区二区| 日本欧美国产在线视频| 超色免费av| 日本欧美视频一区| 在线观看免费高清a一片| 婷婷色麻豆天堂久久| 波多野结衣av一区二区av| 久久99热这里只频精品6学生| 男女免费视频国产| 狠狠精品人妻久久久久久综合| √禁漫天堂资源中文www| 色网站视频免费| 婷婷色av中文字幕| 午夜久久久在线观看| 成人亚洲欧美一区二区av| 啦啦啦啦在线视频资源| 久久久久国产一级毛片高清牌| 国产在线视频一区二区| 国产精品免费视频内射| 成人国产av品久久久| 久久影院123| 中文字幕人妻丝袜制服| 蜜桃国产av成人99| 多毛熟女@视频| 国产熟女欧美一区二区| 欧美日韩亚洲高清精品| 伦理电影免费视频| 51午夜福利影视在线观看| 成年av动漫网址| 国产一区二区 视频在线| 男女免费视频国产| 黑人巨大精品欧美一区二区蜜桃| 久久热在线av| 中文天堂在线官网| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 亚洲精品视频女| 在线观看一区二区三区激情| 卡戴珊不雅视频在线播放| 在线观看免费日韩欧美大片| 美女中出高潮动态图| 国产成人免费无遮挡视频| 一区二区三区精品91|