• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling the Roles of Cewebrity Trust and Platform Trust in Consumers’ Propensity of Live-Streaming: An Extended TAM Method

    2018-06-04 07:15:57DonghuiLiGuozhengZhangZengXuYongLanYongdongShiZhiyaoLiangandHaiwenChen
    Computers Materials&Continua 2018年4期
    關(guān)鍵詞:師資隊(duì)伍重要性英語(yǔ)

    Donghui Li, Guozheng Zhang, , Zeng Xu, Yong Lan, Yongdong Shi, Zhiyao Liang and Haiwen Chen

    1 Introduction

    Live streaming refers to online streaming media simultaneously recorded and broadcast in real time to the viewer or streaming in short. The live streaming industry allows ordinary people to present their charisma and talent to a crowd of people in cyberspace and it has been flourishing in China in recent years. The content of live streaming is diverse, it can be the streaming of scheduled promotions and celebrity events as well as streaming between individuals, include video games, real-life activities and so on.Several Chinese live streaming platforms have brought up many cewebrities. A cewebrity is a web celebrity, who is mostly famous through their presence on the internet.Nowadays, being a cewebrity means a lot more than feeling the sense of pride.Particularly, the emerging streaming platforms have turned cewebrity into a well-paying career by converting fans to consumers. Platforms allow users to reward live presenters with virtual presents, which can then be sold off for cash, and this has created a billionyuan market. According to the data from CINIC (China Internet Network Information Center), live streaming companies, such as “HuaJiao” and “DouYu” etc. have made an astonishing amount of profits from live interactions between cewebrities and fans.Therefore, it is of great important to improve the experience of interactions to cultivate a loyalty group of fans. Platforms need to improve the level interactive contents, increase users’ favorability.

    In this paper, we explored key factors impacting consumers’ adoption and adherence to live-streaming platforms in China, which include trust, cost, emotion, convenience, etc.Specifically, we discussed the influence of trust factors including the platform trust and the cewebrity trust. We extended the Technology Acceptance Model (TAM) method to model the factors impacting customers’ propensity of technology adoption in a live streaming context. Data collected from 520 respondents (fans of live steaming platforms)were used to test the extended TAM model. Several managerial implications were derived from the analysis and further studies were suggested.

    2 Literature survey

    The technology acceptance model (TAM) is a theoretical model proposed by Davis based on Theory of Reasoned Action (TRA) [Ajzen and Fishbein (1980)]. TAM believes that the acceptance and utilization of a new technology by consumers are influenced by behavioral intentions, and behavioral intentions are influenced by customers’ attitude towards the targeted new technology, including perceived usefulness and perceived ease of use. In TAM, perceived usefulness refers to the extent to which individuals believe that a new technology can improve their performance; perceived ease of use refers to the extent to which individuals believe that the use of a new technology can require less effort. TAM has been widely used to explain and predict the acceptance and adoption of new things, such as medicine technology [Wu, Wang and Lin (2007)], information system [Chau and Hu (2001)], e-business [Pavlou (2003)], online shopping [Gefen,Karahanna and Straub (2003)], Internet banking [Zhang, Zhou, Wang et al. (2008)],mobile e-commerce [Wang and Li (2012)], on-line games [Hsu and Lu (2004)] and so on.Those studies have demonstrated that TAM is very effective in interpreting and predicting the acceptance of new things.

    However, TAM has its inherent limitations. Firstly, it only considers the behavior of the cognitive subject, while ignoring personal emotions, personality traits and other intrinsic psychological factors as well as social norms, interpersonal effects and other external social factors impacting on the behavior [Davis (1992); Venkatesh and Davis (2004);Venkatesh (2003)]. The study of Legris et al. [Legris, Ingham and Collerette (2003)]shows that the original TAM can only explain 40% to 60% of consumer behavior intentions, and nearly half of the influencing factors are difficult to explain.

    Therefore, we propose to extend TAM and use the extended method to explain and predict the behaviors of people on live streaming platforms.

    3 Methods and results

    3.1 Extension of the TAM method

    This paper aims to extend the TAM model by introducing customer perceived value and consumer trust theory. Our idea is inspired by the unified model of trust in e-commerce relationship development by Zhang et al. [Zhang and Wang (2009)]. The foremost purpose of this paper is to capture factors that can impact user’s intention to adopt and stick to a specific live streaming service. The extended TAM model is a more comprehensive model of technology acceptance, and it considers more impacting factors about the acceptance and retention of innovative interactive technology. Specially, we emphasize that trust plays an important role in behavior intention. And this research divides the trust into two separate dimensions: platform trust and cewebrity trust. Live streaming cewebrities can switch freely between platforms, but whether their fans will switch platforms synchronously is dependent on the acceptance of the new platform.

    To predict users’ behavioral intention, our model incorporates a few features. Firstly, we incorporate the impacts of the economic value, emotions, convenience and the community;we also investigate the roles of platform trust and cewebrity trust. Each of these factors corresponded to a hypothesis. Six hypotheses (H1-H6) are illustrated in Fig. 1.

    Figure 1: Features considered in our model

    The first hypothesis (H1) is that both the buyer and the seller make economic gains because each obtains something useful. This is inspired by the study of Sinha [Sinha(1998)], in which it was pointed out that more benefits brought about by the products represents a higher perceived economic value.

    Consumers who have had a hedonic experience with live streaming would be more likely to exhibit a positive attitude to stay with the current streaming platform [Zhang, Zhou and Lan (2010)]. H2 state that the emotional value, which refers to the emotional utility gained by the consumers from certain products or services, has an influence on the behavioral intention of users.

    Chuan et al. [Chuan, Salniza, Salleh et al. (2015)] regarded network structures as a joint value creation source through access to new skills, new knowledge, new people, and new technologies by sharing risk and integrating complementary competencies Chuan et al.[Chuan, Salniza, Salleh et al. (2015)]. Therefore, customer communities in live streaming is a good potential driver of creating values together (H3).

    Literature on service marketing shows that convenience depends on several factors,including time and effort. Here, convenience refers to the speed of completing a task quickly and easily [Anderson and Srinivasan (2003)]. Convenience value should have a strong impacting on adoption of innovative interactive technology, because customer is fond of instant convenient access to services (H4).

    Hassan et al. [Hassan, Alexander and Collins (2003)] suggest that trust is a cornerstone to develop e-commerce. Dutot [Dutoto (2014)] believes that trust is a key factor to maintain the prosperity of social media. And Liu et al. [Liu, Marchewka, Lu et al. (2004)] insisted that trust is relevant in all kinds of high tech context. Long-term relationships with customers are critical to the success of the power business, and trust plays a central role in the adoption and retention of customers [Kim, Ferrin and Rao (2008)]. Thus, trust is important in maintaining relationships and providing customer value, although it is also considered difficult to manage [Bejou, Ennew and Palmer (1998)]. Of course, the security and reliability of the network is also important to ensure the user’s communication privacy [Liu and Li (2018); Zhang, Cai, Liu et al. (2018); Sun, Cai, Li et al. (2018)], and a great quantity of research has been done in this area [Cai, Wang, Zheng et al. (2013); Xia, Cai and Xu (2018); Li, Cai and Xu (2018)]. This research divides the trust into two separate dimensions: platform trust and cewebrity trust because both live steaming platform and cewebrity are important for customer to adopt and reuse their live streaming servers (H5 and H6).

    3.2 Data collection

    In this study, we designed a questionnaire to collect data from streaming users. The questionnaire collects the background information of the respondents and it includes 32 questions on six aspects (economy, community, emotion, convenience, platform trust and cewebrity trust), which are listed on a 5-point Likert scale. Based on this questionnaire,we carried out a survey in China from January to March in 2017. In the end, a total number of 520 questionnaires were collected and 462 of them were valid.

    Table 1: A profile of participants

    Table 2: A profile of platform usage

    A profile of participants is listed in Tab. 1, which includes basic characteristics like gender, age and education level. Most streaming users are young people aged from 19-30(over 80 percent) and most of them have received university education.

    A profile of platform usage is listed in Tab. 2, which gives the top streaming platforms and top types of streaming content. It is evident that users use live streaming service mostly for entertainment, including games, talk shows, concerts, celebrities, etc.

    3.3 Data analysis

    We analyzed the data in two steps: firstly, we employed the measurement model to evaluate the convergent validity and discriminate validity; next, we utilized the structural model to evaluate and verify the assumptions. The data were analyzed using IBM SPSS AMOS 24. AMOS is powerful structural equation modeling software that supports research and theories by extending standard multivariate analysis methods, including regression, factor analysis, correlation, and analysis of variance. With SPSS AMOS you can build attitudinal and behavioral models that reflect complex relationships more accurately than with standard multivariate statistics techniques.

    西藏地區(qū)交通不發(fā)達(dá),生活環(huán)境也較為閉塞,相比較于其它地區(qū)文化、經(jīng)濟(jì)以及教育而言,都明顯較為落后,彼此之間的交流機(jī)會(huì)也較少,在這種情況下西藏地區(qū)學(xué)校教學(xué)條件以及師資隊(duì)伍也就較為薄弱,學(xué)生無(wú)法從中得到資助學(xué)習(xí)能力培養(yǎng),也無(wú)法意識(shí)到自主學(xué)習(xí)的重要性,反而對(duì)英語(yǔ)學(xué)習(xí)越來(lái)越?jīng)]有興趣,在這種情況下學(xué)生也就更加不可能參與到英語(yǔ)自主學(xué)習(xí)之中。所以說(shuō),教學(xué)條件、師資隊(duì)伍薄弱也是影響西藏地區(qū)學(xué)生英語(yǔ)自主學(xué)習(xí)的重要因素之一。

    3.3.1 The measurement model

    CFA (Confirmatory Factor Analysis) is used to determine how well the questions, which are treated as the latent variables indicators, can represent the whole model. We compared two different structures: a theoretical one and one created via data for testing hypotheses [Bryman and Cramer (2005)]. We conducted a confirmatory analysis via SL(Std. Loading), CR (Cronbach Alpha, a lower-bound estimate of the reliability of a psychometric test in statistics) and AVE (Average Variance Extracted, a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error) to test the validity and reliability of our measures. Results are demonstrated in Tab. 3.

    Table 3: Standardized (Std.) loading for sub-scales

    Here, the constructs and sources (C&S) include the economic value (ECO), the emotion value (EMO), the community value (COM), the convenience value (CON), the platform trust (PLT), the cewebrity trust (CWT) and the behavioral intention (BIN). To note, CFA is not suitable for two manifest variables; model with 3 manifest variables is just identified, so it cannot detect the model fit metric.

    Fit index values of CFA for sub-scales are presented in Tab. 4. Fit index values for subscales do not reach the desired range according to the boundary value listed in Tab. 5.Landis et al. [Landis, Edwards and Cortina (2009)] argued that the fit metric does not standard for the correlation between residuals when Standardized loading values are up to the recommended standard. Anderson et al. [Anderson and Gerbing (1988)] present recommendations for this state: (a) elimination of problematic items and (b) estimation of the structural model only. We can adjust the model according to the modification indices value (M.I.), deleting item CON4 and item BIN5 with the largest M.I. value. After adjusting the model, the fit indices value (see Tab. 4) reach an ideal range.

    Table 4: Fit indices of confirmatory factor analysis for sub-scales

    Table 5: Fit indices for the structural model

    In Tab. 5, GFI is 0.886 and AGFI is 0.782, therefore, they are not within acceptable limits.GFI and AGFI are largely affected by sample size [Fan and Sivo (2005)]; therefore, use of these fit indexes is not recommended [Sharma, Mukherjee, Kumar et al. (2005)]. Other value of fit indices is reasonable.

    Table 6: Reliability and convergence validity analysis

    In Tab. 6, all values of CR are higher than the threshold of 0.70 [Chin (1998)]. They are in the range of 0.751 and 0.950, indicating that the project internal consistency reached a high level. In addition, all AVE values exceed 0.50 (Tab. 6). AVE value of at least 0.50 indicates that the potential variable has an explanatory power of more than 50%. Thus,the measurement model achieves enough sum the convergence effect is satisfactory.

    Fornell et al. [Fornell and Larcker (1981)] evaluated the effectiveness of the Fornell and Larcker evaluations. Each reflex structure should be more strongly related to its own indicators than others. Tab. 6 shows that the all correlations between constructs are less than the square root of AVE except for ECO & CON. The difference between ECO and CON does not reach the ideal state, but the numerical difference is very small(ECO=0.709; CON=0.779), so it is still within reasonable limits. Almost each reflex structure is more strongly related to its own indicators than others. So the validity of the judgment Construction measures has been established.

    Table 7: Discriminant validity of constructs

    Recently, Gu et al. [Gu, Sun and Sheng (2017)] pointed out that the structural information is an effective way to represent prior knowledge and it can be vital for training classifiers in real-world problems. In the theoretical part of our study, we had an explicit set up of structural information, in which six latent variables were included:Economic value (ECO), Emotion value (EMO), Community value (COM), Convenient value (CON), Platform trust (PLT), Cewebrity trust (CWT). Hair et al. [Hair, Hult,Ringle et al. (2016)] recommended the coefficient of determination (R2) and corresponding t-values to evaluate the structural model and argued that R2 values of endogenous latent variables of 0.75, 0.50, or 0.25 can be described as highly, moderately or weakly, respectively. The R2 values for the endogenous construct are 0.874 for the behavioral intention (BIN), indicating a high level of the prediction accuracy. The estimated coefficient values close to zero are usually non-significant.

    Table 8: Path co-efficient and t-values for structural model

    In this step, we consider the existence of structural model relations and their correlation.Five hypotheses were tested based on the ECO, EMO, COM, CON, PLT, CWT and BIN.Using the calculated path coefficients, hypotheses were tested and relationships between latent variables were explained. Statistically meaningful relationships between latent variables were demonstrated by significant path coefficients. As shown in Tab. 8,Economic value (ECO) (β=0.440, p<0.05), Emotion value (EMO) (β=0.371, p<0.05),Community value (COM) (β=0.270, p<0.05), Convenient value (CON) (β=0.680, p<0.05), Platform trust (PLT) (β=0.175, p<0.05) and Cewebrity trust (CWT) (β=0.458, p<0.05) were positively related to Behavioral Intention. Thus, H1, H2, H3, H4, H5 and H6 are supported.

    The estimated path coefficients show that the convenient value dimension has the strongest positive relationship with the behavioral intention of the consumer to use a certain streaming platform, followed by the cewebrity trust, economic value, the emotion value, the community value and the platform trust.

    4 Conclusions

    This study explores key factors impacting customer acceptance and retention of live steaming platforms. The study proposed six critical factors including convenient value,cewebrity trust, economic value, emotional value, community value, and platform trust and tested the relationship between those factors and customer behavior intention by using an extended TAM method. This study greatly improves TAM by increasing several important variables within the context of live streaming to explain technology acceptance behavior for current users. Our study concludes that the two kinds of trust play considerable roles in consumers’ adoption of live streaming, and the cewebrity trust is more important than the platform trust. This has an important implication to practice. If the most important factors highlighted by our method such as convenience value,cewebrity trust and economic value are properly managed, it will lead to a potentially successful adoption and retention of the customer.

    Therefore, by focusing on these key factors, the marketing strategy should be more effective [Deng, Lu, Wei et al. (2010)]. Live streaming platforms should simplify the interface, so that users can easily find the favorite content and cewebrities, while the service providers must maximize the users’ perception of cost and effectiveness. A cewebrity wants to maintain a good relationship with his/her fans, and actively spread the positive energy, focusing on long-term benefits. Specially, it is important for a live streaming platform to treat cewebrities well, maintain stability of cewebrities, as customer trust cewebrities more than platforms. For future work, we will investigate how cewebrities can affect the streaming service provides as them are also users of technology;in addition, if we can collect enough data, we will be able to introduce more advanced methods like machine learning methods [Gurusamy and Subramaniam (2017)] and fuzzy approaches [Kaur and Kaur (2017);Wang, Jiang and Yang (2016)]. Currently, the data collection process of our study depends on questionnaires, a possible improvement in the future is to automatically collect data from live streaming platforms that are hosted on cloud systems, which are usually managed using a balanced scheduling method [Xu,Zhang, Khan et al. (2017)].

    Acknowledgement:This study was supported by National Social Science Foundation(Project No: 12CGL046).

    Ajzen, I.; Fishbein, M.(1980): Understanding attitudes and predicting social behavior.Prentice-Hall, USA.

    Aljifri, H.; Pons, A.; Collins, D. (2003): Global ecommerce: A framework for understanding and overcoming the trust barrier. Information Management & Computer Security, vol. 11, no. 3, pp. 130-138.

    Anderson, I.; Gerbing, D.(1988): Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, vol. 103, no. 3, pp. 411-423.

    Anderson, R.; Srinivasan, S.(2003): E-satisfaction and e-loyalty: A contingency framework. Psychology & Marketing, vol. 20, no. 2, pp. 123-138.

    Bejou, D.; Ennew, C.; Palmer, A.(2015): Trust, ethics and relationship satisfaction.Springer International Publishing, vol. 16, no. 4, pp. 226-227.

    Bryman, A.; Cramer, D.(2005): Quantitative data analysis with SPSS 12 and 13.Routledge, United Kingdom.

    Cai, Z.; Wang, Z.; Zheng, K.; Cao, J.(2013): A distributed TCAM coprocessor architecture for integrated longest prefix matching, policy filtering, and content filtering.IEEE Transactions on Computers, vol. 62, no. 3, pp. 417-427.

    Chau, P.; Hu, P.(2001): Information technology acceptance by individual professionals:A model comparison approach. Decision Sciences, vol. 32, no. 4, pp. 699-719.

    Chin, W.(1998): The partial least squares approach to structural equation modeling. In:Marcoulides, G. A. (Ed.), Modern Methods for Business Research. Psychology Press, pp.295-336.

    Dan, J.; Ferrin, D.; Rao, H.(2008): A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, vol. 44, pp. 544-564.

    Davis, F. D.(1989): Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, vol. 13, no. 3, pp. 319-340.

    Davis, F. D.(1992): Extrinsic and intrinsic motivation to use computers in the workplace.Journal of Applied Social Psychology, vol. 22, pp. 1111-1132.

    Deng, Z.; Lu, Y.; Wei, K.; Zhang, J.(2010): Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International Journal of Information Management, vol. 30, no. 4, pp. 289-300.

    Dutot, V.(2014): Adoption of social media using technology acceptance model: The generational effect. International Journal of Technology and Human Interaction, vol. 10,no. 4, pp. 18-35.

    Fan, X.; Sivo, S. (2005): Sensitivity of fit indexes to misspecified structural or measurement model components: Rationale of two-index strategy revisited. Structural Equation Modeling, vol. 12, no. 3, pp. 343-367.

    Fornell, C.; Larcker, D.(1981): Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, vol. 18, no. 1, pp. 112-134.

    Gefen, D.; Karahanna, E.; Straub, D.(2003): Trust and TAM in online shopping: An integrated model. MIS Quarterly, vol. 27, no. 1, pp. 51-90.

    Gu, B.; Sun, X.; Sheng, V.(2017). Structural minimax probability machine. IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 7, pp. 1646-1656.

    Gurusamy, R.; Subramaniam, J.(2017): A machine learning approach for MRI brain tumor classification. Computers, Materials & Continua, vol. 53, no. 2, pp. 91-108.

    Hair, J.; Black, W.; Babin, B.; Anderson, R. E.(2010): Multivariate data analysis: A global perspective (7th ed.). Pearson Education, United Kingdom.

    Hair, J.; Hult, G.; Ringle, C.; Sarstedt, M.(2016): A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, USA.

    Hsu, C.; Lu, H.(2004): Why do people play on-line game(s)? An extended TAM with social influences and flow experience. Information & Management, vol. 41, no. 7, pp.853-868.

    Kaur, J.; Kaur, K.(2017): A fuzzy approach for an iot-based automated employee performance appraisal. Computers, Materials & Continua, vol. 53, no. 1, pp. 23-36.

    Landis, R.; Edwards, B.; Cortina, J.(2009): Statistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational and social sciences.Taylor & Francis Group, USA.

    Legris, P.; Ingham J.; Collerette, P.(2003): Why do people use information technology?A critical review of the technology acceptance model. Information & Management, vol.40, no. 3, pp. 191-204.

    Li, Y.; Cai, Z.; Xu, H.(2018): LLMP: Exploiting LLDP for latency measurement in software-defined data center networks. Journal of Computer Science and Technology, vol.33, no. 2, pp. 277-285.

    Liu, C.; Marchewka, J.; Lu, J.; Yu, C.(2004): Beyond concern: A privacy-trustbehavioral intention model of electronic commerce. Information & Management, vol. 42,no. 1, pp. 127-142.

    Liu, F.; Li, T.(2018): A clustering k-anonymity privacy-preserving method for wearable IoT devices. Security and Communication Networks, pp. 1-8.

    Ong, C. H.; Md. Salleh, S.; Zien Yusoff, R.(2015): Bridging the gap between brand experience and customer loyalty: The mediating role of emotional-based trust. International Academic Research Journal of Business and Technology, vol. 1, no. 2, pp. 58-70.

    Pavlou, P. A.(2003): Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, vol. 7, no. 3, pp. 101-134.

    Sharma, S.; Mukherjee, S.; Kumar, A.; Dillon, W. R.(2005): A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models.Journal of Business Research, vol. 58, no. 7, pp. 935-943.

    Sinha, D.(1998): Integrated approach toward spatial modeling perceived customer value.Journal Marketing Research, vol. 35, no. 2, pp. 236-249.

    Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, F.(2018): Security and privacy in the medical internet of things: A review. Security and Communication Networks.

    Venkatesh, V.; Morris, M. G.; Davis, G. B.; Davis, F. D.(2003): User acceptance of information technology: Toward unified view. MIS Quarterly, vol. 27, no. 3, pp. 425-478.

    Venkatesh, V.; Davis, F. A.(2004): Theoretical extension of the technology acceptance model: four longitude field studies. Management Science, vol. 46, pp. 186-204.

    Wang, H. S.; Jiang, H.; Yang, B.(2016): Higher-order line element analysis of potential field with slender heterogeneities. Computers, Materials & Continua, vol. 51, no. 3, pp.145-161.

    Wang, W.; Li, H.(2012): Factors influencing mobile services adoption: A brand-equity perspective. Internet Research, vol. 22, no. 2, pp. 142-179.

    Wu, J.; Wang, S.; Lin, L.(2007): Mobile computing acceptance factors in the health care industry: A structural equation model. International Journal of Medical Informatics,vol. 76, no. 1, pp. 66-77.

    Xia, J.; Cai, Z.; Xu, M.(2018): An active defense solution for arp spoofing in openflow network. Chinese Journal of Electronics.

    Xu, X.; Zhang, X.; Khan, M.; Dou, W.(2017): A balanced virtual machine scheduling method for energy-performance trade-offs in cyber-physical cloud systems. Future Generation Computer Systems. (In press)

    Zhang, G.; Wang, X.(2009): Research on the relationship between e-customer value and repurchase intention. Intelligent Computation Technology and Automation, vol. 4, no.1, pp. 419-421.

    Zhang, G.; Zhou, F.; Lan, Y. (2010): Customer value of social network service website:Key components and impacts on customer loyalty. IEEE International Conference on Industrial Engineering and Engineering Management, China.

    Zhang, G.; Zhou, F.; Wang, X.(2008): Research on factors affecting customer’s interactions with online bank. IEEE International Conference on Wireless Communications,Networking and Mobile Computing, China.

    Zhang, H.; Cai, Z.; Liu, Q.; Xiao, Q; Li, Y. et al.(2018): A survey on security-aware measurement in SDN. Security and Communication Networks.

    猜你喜歡
    師資隊(duì)伍重要性英語(yǔ)
    關(guān)于加強(qiáng)鐵路職工培訓(xùn)師資隊(duì)伍建設(shè)的思考
    “0”的重要性
    論七分飽之重要性
    幼兒教育中閱讀的重要性
    甘肅教育(2020年21期)2020-04-13 08:09:24
    翻譯碩士師資隊(duì)伍建設(shè)的反思
    讀《邊疆的重要性》有感
    讀英語(yǔ)
    酷酷英語(yǔ)林
    師資隊(duì)伍建設(shè)
    江蘇年鑒(2014年0期)2014-03-11 17:09:50
    地方高校師資隊(duì)伍建設(shè)初探
    河南科技(2014年15期)2014-02-27 14:13:00
    国产一区二区激情短视频| 国产成人影院久久av| 最近在线观看免费完整版| 午夜激情欧美在线| 亚洲欧美日韩高清在线视频| 麻豆成人av在线观看| 波多野结衣高清无吗| 国产一区二区在线观看日韩| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 国产精品三级大全| 男人和女人高潮做爰伦理| 成人二区视频| 色综合婷婷激情| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 国产亚洲91精品色在线| 桃红色精品国产亚洲av| 人妻久久中文字幕网| 99精品在免费线老司机午夜| 在线天堂最新版资源| 免费看a级黄色片| 亚洲av美国av| 久久久久国内视频| 亚洲图色成人| 国产精品一区二区三区四区免费观看 | 国产精品亚洲美女久久久| 动漫黄色视频在线观看| 久久这里只有精品中国| 99九九线精品视频在线观看视频| 成人性生交大片免费视频hd| 欧美另类亚洲清纯唯美| 亚洲av中文字字幕乱码综合| 国产高清视频在线播放一区| 亚洲av成人av| 精品欧美国产一区二区三| 日韩欧美在线二视频| 伦精品一区二区三区| 免费在线观看影片大全网站| 国产私拍福利视频在线观看| 高清毛片免费观看视频网站| 亚洲第一电影网av| h日本视频在线播放| 亚洲成人久久性| 黄色女人牲交| 免费观看人在逋| 日韩 亚洲 欧美在线| 午夜久久久久精精品| 天天一区二区日本电影三级| 村上凉子中文字幕在线| 免费看美女性在线毛片视频| 亚洲成a人片在线一区二区| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 午夜影院日韩av| 麻豆国产97在线/欧美| 中国美女看黄片| 久久久国产成人精品二区| 99精品在免费线老司机午夜| 精品一区二区三区视频在线观看免费| 日韩欧美三级三区| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 网址你懂的国产日韩在线| 日本五十路高清| 日本精品一区二区三区蜜桃| 一区二区三区免费毛片| 国产av一区在线观看免费| 国产精品99久久久久久久久| 精品一区二区三区人妻视频| 精品乱码久久久久久99久播| 亚洲精品久久国产高清桃花| 久久久久精品国产欧美久久久| 免费无遮挡裸体视频| 亚洲美女黄片视频| 免费大片18禁| 免费看av在线观看网站| 国产午夜精品论理片| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 午夜免费激情av| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 最新中文字幕久久久久| 亚洲黑人精品在线| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| 精品人妻1区二区| 国产av不卡久久| 18禁裸乳无遮挡免费网站照片| 99热这里只有精品一区| 久久久久久久久中文| 国产高潮美女av| 亚洲自偷自拍三级| 真人一进一出gif抽搐免费| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 亚洲黑人精品在线| 级片在线观看| 女同久久另类99精品国产91| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 成人亚洲精品av一区二区| 欧美日韩国产亚洲二区| 精品久久久久久,| 99热只有精品国产| 男人和女人高潮做爰伦理| 精品人妻一区二区三区麻豆 | 久久久久久久亚洲中文字幕| 国产视频一区二区在线看| 国产主播在线观看一区二区| 久久久国产成人免费| 赤兔流量卡办理| 精品人妻1区二区| а√天堂www在线а√下载| 免费在线观看成人毛片| 波野结衣二区三区在线| 九色成人免费人妻av| 18禁黄网站禁片午夜丰满| 免费av观看视频| 又粗又爽又猛毛片免费看| 国产一区二区三区在线臀色熟女| 精品99又大又爽又粗少妇毛片 | 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 国产三级中文精品| 在线观看美女被高潮喷水网站| 亚洲四区av| 久久人妻av系列| 在线a可以看的网站| 他把我摸到了高潮在线观看| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 黄色女人牲交| 亚洲精品久久国产高清桃花| 中文字幕人妻熟人妻熟丝袜美| av天堂中文字幕网| 亚洲自偷自拍三级| 亚洲四区av| 成人美女网站在线观看视频| 亚洲 国产 在线| 精品久久国产蜜桃| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 亚洲精华国产精华精| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 日本撒尿小便嘘嘘汇集6| 日韩在线高清观看一区二区三区 | 日韩强制内射视频| 97超级碰碰碰精品色视频在线观看| 亚洲成av人片在线播放无| 午夜影院日韩av| 嫩草影院新地址| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 一a级毛片在线观看| 丝袜美腿在线中文| 99热这里只有是精品50| 大型黄色视频在线免费观看| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 最新中文字幕久久久久| 在线观看午夜福利视频| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 亚洲最大成人av| 女人被狂操c到高潮| 免费看光身美女| 国产精品综合久久久久久久免费| 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 国内少妇人妻偷人精品xxx网站| 九九热线精品视视频播放| 国产成人aa在线观看| 中国美白少妇内射xxxbb| 国产极品精品免费视频能看的| 国产国拍精品亚洲av在线观看| 久久午夜福利片| av黄色大香蕉| 22中文网久久字幕| 一个人免费在线观看电影| 蜜桃亚洲精品一区二区三区| 白带黄色成豆腐渣| 日日撸夜夜添| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 男人和女人高潮做爰伦理| 少妇的逼水好多| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| a级一级毛片免费在线观看| 日本五十路高清| 成人午夜高清在线视频| 久久久久久久久久久丰满 | 久久中文看片网| 毛片女人毛片| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 波多野结衣巨乳人妻| 亚洲自拍偷在线| 亚洲五月天丁香| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 午夜免费男女啪啪视频观看 | 国产男靠女视频免费网站| 在线观看美女被高潮喷水网站| 蜜桃久久精品国产亚洲av| 国产极品精品免费视频能看的| 91久久精品国产一区二区三区| 简卡轻食公司| 国产精品一区二区三区四区免费观看 | 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 免费在线观看日本一区| 97人妻精品一区二区三区麻豆| 亚洲五月天丁香| 99热精品在线国产| 日本色播在线视频| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 成人亚洲精品av一区二区| 久久香蕉精品热| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲网站| 亚洲专区国产一区二区| 亚洲狠狠婷婷综合久久图片| 国产综合懂色| 无遮挡黄片免费观看| 嫩草影院入口| 看黄色毛片网站| 欧美bdsm另类| 成人av在线播放网站| av在线亚洲专区| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 午夜爱爱视频在线播放| 国产精品不卡视频一区二区| 此物有八面人人有两片| 日韩av在线大香蕉| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 99在线视频只有这里精品首页| 国产午夜精品论理片| 91麻豆精品激情在线观看国产| 午夜激情欧美在线| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 九九在线视频观看精品| 国内毛片毛片毛片毛片毛片| 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 黄色配什么色好看| 99九九线精品视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 欧美中文日本在线观看视频| 久久久久性生活片| 国产中年淑女户外野战色| 欧美另类亚洲清纯唯美| 中文在线观看免费www的网站| 国产高清三级在线| 国产亚洲精品av在线| 老熟妇乱子伦视频在线观看| 在线天堂最新版资源| 亚洲国产精品sss在线观看| 3wmmmm亚洲av在线观看| 哪里可以看免费的av片| 日韩欧美精品免费久久| 国产真实乱freesex| 亚洲av不卡在线观看| 精品一区二区三区av网在线观看| 99久久成人亚洲精品观看| 毛片女人毛片| 99精品久久久久人妻精品| 国内精品宾馆在线| 蜜桃久久精品国产亚洲av| 日韩欧美国产在线观看| 欧美国产日韩亚洲一区| 成人永久免费在线观看视频| 成年女人看的毛片在线观看| 成年免费大片在线观看| 久久九九热精品免费| 能在线免费观看的黄片| 99热这里只有是精品在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩大尺度精品在线看网址| 在线播放无遮挡| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| 五月伊人婷婷丁香| 国产av不卡久久| 91在线精品国自产拍蜜月| 真人一进一出gif抽搐免费| 极品教师在线视频| 国产探花在线观看一区二区| 亚洲色图av天堂| 黄片wwwwww| 一级毛片久久久久久久久女| 中文字幕精品亚洲无线码一区| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 熟女电影av网| 日本与韩国留学比较| 亚州av有码| 一个人观看的视频www高清免费观看| 国产麻豆成人av免费视频| 精品人妻一区二区三区麻豆 | 不卡视频在线观看欧美| 国语自产精品视频在线第100页| 观看免费一级毛片| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 午夜福利在线在线| 天堂动漫精品| 欧美在线一区亚洲| 欧美3d第一页| 18+在线观看网站| 成人亚洲精品av一区二区| 国产黄片美女视频| 欧美+日韩+精品| 啦啦啦观看免费观看视频高清| 三级毛片av免费| 麻豆成人午夜福利视频| 美女高潮的动态| 免费观看的影片在线观看| 欧美黑人巨大hd| 亚洲va在线va天堂va国产| 国内精品久久久久久久电影| 高清在线国产一区| 中文字幕av在线有码专区| 99久久九九国产精品国产免费| 波多野结衣高清无吗| 久久人人爽人人爽人人片va| 中国美女看黄片| 久久精品国产亚洲av天美| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕日韩| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 麻豆国产av国片精品| 在线播放国产精品三级| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 国产精品精品国产色婷婷| 99精品久久久久人妻精品| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 小说图片视频综合网站| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 熟女人妻精品中文字幕| 淫妇啪啪啪对白视频| 在线观看66精品国产| 精品国产三级普通话版| 色播亚洲综合网| 女的被弄到高潮叫床怎么办 | 少妇丰满av| 天天躁日日操中文字幕| 高清在线国产一区| 看十八女毛片水多多多| av国产免费在线观看| 午夜老司机福利剧场| 性欧美人与动物交配| 尾随美女入室| 美女大奶头视频| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 欧美激情久久久久久爽电影| 成人三级黄色视频| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 日韩在线高清观看一区二区三区 | 热99在线观看视频| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 成人永久免费在线观看视频| 男人舔女人下体高潮全视频| 啪啪无遮挡十八禁网站| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 国产不卡一卡二| 亚洲av第一区精品v没综合| 欧美极品一区二区三区四区| 国产伦精品一区二区三区四那| 国产一区二区三区av在线 | 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 亚洲人与动物交配视频| 又黄又爽又免费观看的视频| 有码 亚洲区| 亚洲第一电影网av| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| av在线亚洲专区| 国产不卡一卡二| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 欧美性感艳星| 成人美女网站在线观看视频| 黄片wwwwww| 亚洲四区av| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 久久久久精品国产欧美久久久| 日本五十路高清| 99久久精品国产国产毛片| 欧美精品啪啪一区二区三区| 国产国拍精品亚洲av在线观看| 校园春色视频在线观看| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 夜夜夜夜夜久久久久| 亚洲人成网站在线播放欧美日韩| 日韩强制内射视频| 级片在线观看| 日韩中字成人| 韩国av在线不卡| 成人特级黄色片久久久久久久| 国国产精品蜜臀av免费| 精品久久久久久久久久久久久| 日韩欧美国产一区二区入口| 国内精品宾馆在线| 欧美最新免费一区二区三区| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| а√天堂www在线а√下载| 少妇的逼水好多| 亚洲熟妇中文字幕五十中出| 精品久久久久久成人av| 91久久精品电影网| www.www免费av| 少妇高潮的动态图| 舔av片在线| 成人欧美大片| 香蕉av资源在线| 中文字幕免费在线视频6| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 亚洲av一区综合| 亚洲中文日韩欧美视频| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 在线免费观看不下载黄p国产 | 欧美一区二区亚洲| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| 国产成人aa在线观看| 三级国产精品欧美在线观看| 午夜老司机福利剧场| 老熟妇乱子伦视频在线观看| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看 | 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址| 色综合亚洲欧美另类图片| 老司机福利观看| 亚洲精品在线观看二区| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 亚洲av美国av| 亚洲人成网站在线播| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 免费观看在线日韩| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 91麻豆av在线| 国产精品福利在线免费观看| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 国产黄片美女视频| 日日干狠狠操夜夜爽| 免费av观看视频| 国产一区二区激情短视频| 国产色婷婷99| 国产精品免费一区二区三区在线| 如何舔出高潮| 精品久久久久久,| 一级黄片播放器| 在线观看av片永久免费下载| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| a在线观看视频网站| 女同久久另类99精品国产91| 一区二区三区四区激情视频 | 午夜亚洲福利在线播放| 91狼人影院| 精品久久国产蜜桃| 日日摸夜夜添夜夜添小说| 波多野结衣高清作品| 精品久久久久久久久久久久久| 成人国产麻豆网| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 亚洲人与动物交配视频| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 日本爱情动作片www.在线观看 | 亚洲性久久影院| 中文字幕熟女人妻在线| 亚洲三级黄色毛片| 九色成人免费人妻av| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区视频9| 欧美高清性xxxxhd video| 亚洲国产精品sss在线观看| 久久99热6这里只有精品| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 一边摸一边抽搐一进一小说| 国产高清不卡午夜福利| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 在线观看66精品国产| 中亚洲国语对白在线视频| 日韩国内少妇激情av| 淫秽高清视频在线观看| 在线观看舔阴道视频| 国产精品女同一区二区软件 | 女生性感内裤真人,穿戴方法视频| 成人欧美大片| 亚洲最大成人av| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 伊人久久精品亚洲午夜| av视频在线观看入口| .国产精品久久| 桃红色精品国产亚洲av| 欧美激情国产日韩精品一区| 日韩强制内射视频| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 亚洲av熟女| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 不卡一级毛片| 国产淫片久久久久久久久| 日韩人妻高清精品专区| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 久久精品国产99精品国产亚洲性色| 亚洲乱码一区二区免费版| 人妻久久中文字幕网| 国产私拍福利视频在线观看| 淫妇啪啪啪对白视频| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 久久久久久大精品| 欧美激情国产日韩精品一区| 亚洲黑人精品在线| 99精品久久久久人妻精品| 久久热精品热| 精品人妻熟女av久视频| 亚洲真实伦在线观看| 免费看av在线观看网站| 婷婷六月久久综合丁香| 国产在线精品亚洲第一网站| 国产成人福利小说| 欧美日韩国产亚洲二区| 免费搜索国产男女视频| 一区二区三区激情视频| 三级毛片av免费| 黄片wwwwww| 最近最新中文字幕大全电影3|