• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the Short-Time Photodissociation Dynamics of Furfural in S2 State by Resonance Raman and Quantum Chemistry Calculations

    2018-06-01 11:12:28KemeiPeiYuebenDongandLeiChen
    Computers Materials&Continua 2018年4期

    Kemei Pei , Yueben Dong and Lei Chen

    1 Introduction

    Furfural (furfuraldehyde, C4H3OCHO), is an aromatic aldehyde with the cyclic structure shown in Fig. 1, and this substance is an important environmental pollutants, in natural environment they are very resistant to decay and decompose [Liu, Knopp, Qin et al.(2015); Liu, Knopp and Gerber (2015)]. This compound is used as an excellent solvent for extractive refining of lubricating oils, as it is very effective in removing compounds containing oxygen or sulfur. Therefore the release of furfural from petrochemical industries, oil refineries, oil processing and chemical plants into the environment has been considered as a major source of air and water pollution. The separation or degradation of furfural is an important field of study for the sake of industrial safety and environmental protection [Motiyenko, Alekseev and Dyubko (2007); Borghei and Hosseini (2008); Bataev, Pupyshev and Godunov (2016)]. Lots of works have been performed for photocatalytic degradation of furfural in aqueous phase. Titanium dioxide nanoparticles (as photocatalyst) were immobilized on a porous and low-density support called "perlite" using a very simple and inexpensive method. TiO2-coated perlite granules were used in a “floating-bed photo-reactor” to study the photoc catalytic purification process of a typical wastewater polluted by furfural [Faramarzpour, Vossoughi and Borghei (2009); Fu, Huang, Ren et al. (2017); Fu, Wu, Wang et al. (2017)]. NiS-clinoptilolite zeolite is used as a catalyst for photodegradation of furfural in aqueous solution under UV irradiation. The degradation process is monitored during the experimental runs by UV/Visible absorption, COD and TOC concentration determination and HPLC methods. The effect of key operating parameters such as catalyst dosage, initial concentration of furfural, initial pH of the solutions and effect of the presence of hydrogen peroxide and potassium bromate is studied on the degradation efficiency [Alireza and Solmaz (2011)]. Furfural in aqueous solution was treated by UV/O3method. The results show that the removal rate of furfural is severely enhanced and the synergism phenomenon appears when ultraviolet and ozone are present together. The influences of experimental parameters such as pH, the intensity of light and the negative-positive ions on furfural degradation were investigated. The results indicate that furfural (300 mg/L) is almost completely degraded after 3 h under the optimum conditions. The intermediate in the furfural degradation was characterized by GC-MS and IR spectrum and the degradation mechanism of furfural by UV/O3technology was proposed. Commercial grade activated carbon (ACC) was used for adsorptive removal of furfural from aqueous solution using batch studies. In the present study, continuous fixed-bed adsorption was carried out in ACC packed bed for the removal of furfural from aqueous solution. The effects of important factors namely bed height (Z=15-60 cm), influent concentration of furfural (C0=50-200 mg/L), the flow rate(Q=0.02-0.04 L/min) and column diameter (D=2-4 cm) were studied. Capacity of the bed to adsorb furfural was found to increase with an increase in the value of Z, C or D, and with decrease in the value of Q. Adams Bohart, Bed-Depth Service-Time, Thomas,Yoon-Nelson, Clark and Wolborska models were applied to the experimental data for the prediction of the breakthrough point, and to determine the characteristic parameters of the column. Error analysis showed that the Yoon-Nelson model best described the experimental breakthrough curve, while Wolborska model showed a good prediction of breakthrough curve for the relative concentration region up to 0.5 [Singh, Srivastava and Mall (2009)].

    Figure 1: Structure and atom labeling scheme of furfural

    But in fact, when furfural is released to water or air, it will be exposed in the sunlight, and photochemical reactions may happen before other chemical processes. Consequently,photodegradation and phototransformation may result from the direct photo excitation by sunlight. Since the natural environment is very complex, many works about photochemistry of furfural in different conditions (different pH, ions, organic compounds, etc.) should be received lots of attention for its importance in the environment [Macounová, Krysová,Ludví et al. (2003); Giacomazzi and Cochet (2004)]. For furfural has strong UV absorption in UV-B region (about 280.0 nm),in this work, resonance Raman (RR) spectra and quantum chemical calculations were used to investigate the photodissociation dynamics of furfural in S2state which corresponds to the strong absorption of furfural in UV absorption.

    Transformation of furfural from the direct photoexcitation of the substrate by sunlight or artificial light of shorter wavelengths is important degradation way in aquatic and atmospheric environments, and previous studies are concentrated on the purification analysis or photocatalytic degradation photoproducts analysis. Direct photolysis has not been performed. In contrast with the ultrafast electronic spectra, the vibrational spectroscopies such as resonance Raman spectroscopy and infrared absorption generally reveal detailed information about molecular and electronic structure as well as photo short-time dynamics in excited states. Few studies have been carried out for furfural on Franck-Condon region short time dynamic analysis and conical intersection of different potential energy surfaces which often play an important role in the photodissociation dynamics [Pei, Su, Chen et al. (2012); Gorski, Starukhin, Stavrov et al. (2017)].

    Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) are suitable for determining the ground molecular conformation, while resonance and near resonance Raman might produce valuable information on structural and other important properties of molecules in excited states [Yang, Ma, Ma et al. (2017); Selvakumar,Pradhan, Krupanidhi et al. (2016)]. Complete active space self-consistent field (CASSCF)method and time-dependent density functional theory (TD DFT) are powerful theoretical methods to investigate excited states. In this paper, resonance Raman spectra analysis and quantum chemical calculations (CASSCF and TD DFT) are used to investigate the excited state photo-dissociation dynamics of furfural. These studies are expected to be helpful in understanding the photophysical and photochemical characteristics of furfural in the environment.

    2 Experiment and calculations

    The UV absorption spectrum of furfural was measured by a UV-2501 PC ultraviolet/visible spectrometer. FT-Raman and FT-IR spectra of furfural were obtained using a Thermo Nicolet FT-Raman 960 spectrometer and a Perkin-Elmer FT-IR spectrometer, respectively.The methods and experimental apparatus used for the resonance Raman experiments have been described elsewhere [Zheng and Phillips (1998)]. Herein, only a short description is given here. The harmonics of a nanosecond Nd: YAG laser and their hydrogen Raman shifted laser lines were used to generate the 266.0 nm, 273.9 nm and 282.7 nm excitation wavelengths employed in the resonance Raman experiments. A backscattering geometry was used for sample excitation and for collection of the Raman scattered light by reflective optics. The Raman scattered light through a polarizer and entrance slit of a 0.5 m spectrograph, and the grating of the spectrograph dispersed the light onto a liquid nitrogen cooled charge-coupled device (CCD) mounted on the exit of the spectrograph.The concentration of approximately 0.005 mol/L in aqueous solvent is used as the solution phase sample. The Raman shifts of the resonance Raman spectra were calibrated using the known vibrational frequencies of the solvent Raman bands. The solvent Raman bands were subtracted from the resonance Raman spectra using an appropriately scaled solvent spectrum.

    Density functional theory was done to determine the ground optimized geometry,vibrational frequencies and the electronic transition energies and electronic transition orbitals for furfural. Vibration wavenumber was computed by using the B3LYP/6-311+G(d, p) theoretical level for the ground state, while the electronic transition energies and electronic transition orbitals were calculated using B3LYP TD/6-311+G (d, p) method.CASSCF method was used to obtain the equilibrium structure and energies of S0, S1, S2,T1and T2. States average method was used to localize the conical inter-section S2/S1. All quantum mechanical calculations were carried out in Gaussian 03 program [Frisch,Trucks, Schlegel et al. (2009)].

    3 Results and discussion

    3.1 Absorption spectra

    Table 1: TD calculation results about electronic absorption band and oscillator strength (f)above 200.0 nm wavelength range

    For furfural has trans and cis isomers, in this work, the most stable ground trans structure was used to discuss. The most stable structure was confirmed by the global minimum energy calculations at B3LYP/6-311+G (d, p) level. The trans molecular structure and atom labeling scheme of furfural shown in Fig. 1 has been optimized by ab initio and DFT theory. By allowing the relaxation of all the parameters, calculation has been found to converge to the optimized geometry, as revealed by the absence of imaginary values in the calculated wavenumbers of the vibrational modes. Fig. 2 presents the absorption spectrum of furfural in aqueous solution with the wavelengths for the resonance Raman experiments indicated above the spectrum. Tab. 1 lists the B3LYP-TD/6-311+G (d, p)computed electronic absorption bands, the corresponding electric transition orbitals, and the oscillator strengths for furfural. Tab. 1 shows that among the calculated electronic transitions above 200.0 nm optical region there are two transition-allowed absorption bands S0→S2at 255.5 nm and S0→S3at 217.5 nm with the oscillator strength of f=0.3605 and 0.1960 respectively. This is in good agreement with the intense experimental absorption bands at 276.0 nm and 224.0 nm with the experimental oscillator strength of f=0.52 and 0.16. Fig. 3 displays the three orbitals (24, 25 and 26) associated with electronic transition of S0→S1, S0→S2transitions. It shows that orbital 24 (HOMO-1) is n orbital with electron density being mainly delocalized on the C=O bond, 61 (HOMO, π)and 62 (LUMO, π*) is π orbital mainly delocalized on the whole molecule. According to the classic view, we assign this intense experimental 276.0 nm absorption band to the π(the whole molecule) →π* (the whole molecule) transition. 266.0 nm, 273.9 nm and 282.7 nm in our resonance Raman experiments are mostly on resonance with S0→S2transition.

    Figure 2: Absorption spectrum of furfural in water with the wavelengths for the resonance Raman experiments indicated above the spectrum

    Figure 3: Transition orbitals correlated with S0→S1, S0→S2 excitation of furfural at B3LYP/6-311+G (d, p) level

    3.2 Resonance Raman spectroscopy

    Tab. 2 lists a comparison of the B3LYP/6-311+G (d, p) calculated vibrational frequencies with experimental resonance Raman, FT-Raman and FT-IR values. The notations and assignments of the vibrations are based on the visualization Gaussview3.0 software. The overall agreement between the linear scaled DFT calculated vibrational frequencies with scaled factor 0.96 and the experimental values is good for furfural [Kurté n, Berndt and Stratmann (2009)]. Fig. 4 presents an overview of the 266.0 nm, 273.9 nm and 282.7 nm resonance Raman spectra. The spectra shown in Fig. 4 have been corrected for sample reabsorption as well as the wavelength dependence response of the detection system.Solvent Raman bands were removed from the spectra by subtracting an appropriately scaled solvent spectrum. Fig. 5 shows vibrational assignments of the resonance Raman spectra of furfural in water obtained with the 273.9 nm excitation wavelengths. Fig. 4 only indicates the largest Raman band contributions to each Raman feature of the spectra since the intensity of some Raman bands in the spectrum may have contributions from several Raman bands which have very close Raman shifts due to the limited resolution of the solution phase spectra. Most of the resonance Raman features can be assigned to the fundamentals, overtones, and combination bands of the nine Franck-Condon active vibrational modes based on the information in Tab. 2: C=O stretch ν5(1667 cm-1), ring C2=C3 antisymmetric stretch ν6(1570 cm-1), ring C=C symmetric stretch ν7(1472 cm-1),C2-O6-C5 symmetric stretch/C1-H8 rock in plane ν8(1389 cm-1), C3-C4 stretch/C1-H8 rock in plane ν9(A’, 1370 cm-1), C5-O6 stretch in plane ν12(A’, 1154 cm-1), ring breath ν13(A’, 1077 cm-1), C3-C4 stretch ν14(A’, 1020 cm-1), C3-C2-O6 symmetric stretch ν16(A’,928 cm-1). The RRs suggest that all the vibrational modes are in plane, that is to say, S0→S2excitation do not change the point group symmetry. The RRs suggest that photoexcitation of furfural by ~280 nm UV light has a multidimensional character with nine motions. From comparison of the 266.0 nm, 273.9 nm and 282.7 nm RRs of furfural with FT-Raman in water, the most important difference is intensity change of ring C2-C3 antisymmetric stretch ν6in RRs. Compare the S0, S1and S2structure, it is obvious that the C2-C3 in S2is 1.4644 ?, which is much longer than that 1.4086 in S1and 1.3608 in S0. This phenomenon about ν9mode suggests that ν6stretch plays an important role in photodissociation dynamics of furfural in S2state.

    Figure 4: An overview and vibrational assignments of the resonance Raman spectra of furfural in water obtained with the 266.0 nm, 273.9 nm and 282.7 nm excitation wavelengths. The asterisks [*] mark solvent subtraction artifacts

    Table 2: Experimental and B3LYP/6-311+G (d, p) computed vibrational frequencies(cm-1) of furfural (abbreviated) (a: Scaled by 0.96)

    It is obvious that ν13(ring C=C antisymmetric stretch), ν16(C3-C4 stretch/C1-H8 rock in plane), ν19(C5-O6 stretch in plane), ν23(C3-C2-O6 symmetric stretch) modes were excited effectively, herein, comparing with S0structure the changes of S2correlates the above four modes. Tab. 1 clearly shows that all the active modes in Frank-Condon region are planar and distribute on the whole skeleton. These active modes results shows that the S0→S2is π→π* transition. RR spectroscopy shows that ν9mode intensity changes significantly. To make sure the nature of this phenomenon about ν9mode, we carried out 228.7 nm RR spectroscopy experiment. The results indicates that in 228.7 nm RR spectroscopy ν9mode is very strong and almost dominant the whole RR spectroscopy. That is to say, the ν9mode intensity difference comes from the neighbor high states influence.

    Table 3: Selected bond parameters of furfural at S0, S1, S2, T1, T2, S2/S1 states by CASSCF (10, 8)/cc-PVDZ calculations (in)

    Table 3: Selected bond parameters of furfural at S0, S1, S2, T1, T2, S2/S1 states by CASSCF (10, 8)/cc-PVDZ calculations (in)

    ?

    Figure 5: Vibrational assignments of the resonance Raman spectra of furfural in water obtained with the 273.9 nm excitation wavelengths. The asterisks [*] mark solvent subtraction artifacts

    3.3 Equilibrium structures and energies of S0, S1, S2, T1, T2, S2/S1

    Stationary structures for furfural in the five lowest electronic states (S0, S1, S2, T1, T2, S2/S1)have been fully optimized by means of CASSCF (10, 8)/cc-PVDZ method. To check the correctness of the CASSCF results, the B3LYP/6-311+G (d, p) calculations was used to determine the equilibrium structures of S0and T1states. All the stationary structures reported in present study at CASSCF (10, 8)/cc-PVDZ levels are available in Tab. 3. It is clear that the optimized S0structural parameters computed by CASSCF (10,8)/cc-PVDZ are very close to those obtained from B3LYP/6-311+G (d, p) computations, as Fig.6 shown. This suggests that our CASSCF (10, 8)/cc-PVDZ calculations is appropriate for the prediction of both the ground and the excited state structure of furfural. S1(1nπ*) and T2(3nπ*) of furfural come from the same orbitals (24, 26). The CASSCF results show that S1(1nπ*) and T2(3nπ*) of furfural have similar structures, as Tab. 3 shown. S2(1ππ*) and T1(3ππ*) of furfural come from the same orbital (25, 26). The CASSCF results show that S2(1nπ*) and T1(3nπ*) of furfural have similar structures, as Tab. 3 shown. The π→π*excitation of S2(1ππ*) is mainly localized on the aromatic ring, and the lengthening of the C-C bonds in the ring exhibits characteristics of a π→π* transition, where the aromatic ring attempts to reduce its π bonding character upon excitation. The energy values listed in Tab.4 are computed at CASSCF (10, 8)/cc-PVDZ level. The adiabatic excitation energies (EA)of S1, S2, T1and T2are 138.36, 163.96, 66.26 and 109.97 kcal/mol. The vertical excitation energies (EV) of S1, S2, T1and T2are 144.45 kcal/mol, 167.59 kcal/mol, 81.64 kcal/mol and 119.25 kcal/mol respectively. Meaningful result is found for the adiabatic excitation and vertical excitation energies of S1and T2are very close. The vertical excitation energy difference between S2and S1is significant with a value of 60.72 kcal/mol for furfural. The energy of S2/S1is 5.50 kcal/mol lower than S2and 20.10 kcal/mol higher than S1.

    Table 4: The total energies (ET), adiabatic excitation energies (EA), and vertical excitation energies (EV) of S0, S1, S2, T1, T2, S2/S1 at CAS (10, 8)/cc-PVDZ calculation level

    3.4 Photodissociation dynamics of furfural

    As a general rule, the photochemistry reactions proceed mainly along the ground or lowest excited state pathway. Thus, the surface intersection point is an important point through which a molecule in upper electronically excited state can efficiently relax to lower state.In the Franck-Condon (FC) region, the S2and S1surface intersection (S2/S1) was optimized with the state-averaged CAS (10, 8)/CASSCF (10, 8)/cc-PVDZ computations and the points was confirmed by structural parameters and orbital analysis, as Tab. 3 shows.

    It is very interesting to note that the C-O bond length of 1.3318 ? for S2/S1conical point is much longer than the corresponding 1.2044 ? for S0state, and this is very similar to the short-time dynamics results in aqueous solution that display very strong FC region dynamical motion along the C-O reaction coordinate of S2state from 266.0 nm, 273.9 nm and 282.7 nm RRs. Compare the S2optimized structure and S0, the C-O bond length is 1.20 ? and 1.24 ?, that is to say, C-O bond should not change much by S0to S2transition, but in 266.0 nm, 273.9 nm and 282.7 nm RRs it is clear that C-O vibration shows strong activity, we therefore expect that the molecule in FC region getting into the conical intersection point before to the S2state. This is the further analysis of the S2/S1, S0parameters and RR spectra.

    Figure 6: Photorelaxation mechanism of furfural in S2 state

    We note that the structural differences between S2/S1conical point and S0minimum provide us important information on how far a conical point left away from FC region. As Tab. 3 shown, Tab. 3 shows the C1-C2 bond length of 1.3806 ?, the C1-O7 bond length of 1.3318 ? , the C2-C3 bond length of 1.5488 ?, the C2-O6 bond length of 1.2993 ?, and the C3-C4 bond length of 1.5483 ? for S2/S1conical point are, respectively, which changes much more than the corresponding 1.4684 ?, 1.2044 ?, and 1.3608 ? for S0state. Our short-time dynamics results in Tab. 2 show that the Franck-Condon region structural dynamics of furfural in S2excited state is mostly along C1-O7 stretch ν5(1667 cm-1), ring C=C antisymmetric stretch ν6(1570 cm-1), ring C=C symmetric stretch ν7(1472 cm-1),C2-O6-C5 symmetric stretch/C1-H8 rock in plane ν8(1389 cm-1), C3-C4 stretch/C1-H8 rock in plane ν9(1370 cm-1), C5-O6 stretch in plane ν12(1154 cm-1), C3-C2-O6 symmetric stretch ν16(928 cm-1), correlates to the bond changes of S2/S1conical point. We therefore expect that the molecule in FC region getting into the conical intersection point before to the S2state, as Fig. 6 shown.

    4 Conclusions

    RR spectra of 266.0 nm, 273.9 nm and 282.7 nm excitation wavelengths were acquired for furfural in water solution. The RR spectra results indicates that the short-time S0→S2photorelaxation dynamics of furfural propanil have substantial multidimensional character mainly along C=O stretch ν5, ring C=C antisymmetric stretch ν6, ring C=C symmetric stretch ν7, C2-O6-C5 symmetric stretch/C1-H8 rock in plane ν8, C3-C4 stretch/C1-H8 rock in plane ν9, C5-O6 stretch in plane ν12, ring breath ν13, C3-C4 stretch ν14, C3-C2-O6 symmetric stretch ν16. Strong electron state coupling was found between S2and S1states,and the S2/S1conical intersection can be predicted in Franck-Condon region by theoretical and experimental analysis.

    Acknowledgements:This work was supported in parts by National Natural Science Foundation of China (No. 21673208), Zhejiang Provincial Natural Science Foundation of China (No. LY16B070009).

    Alireza, N. E.; Solmaz, M.(2011): Heterogeneous photocatalytic degradation of furfural using NiS-clinoptilolite zeolite. Desalination, vol. 273, no. 2, pp. 248-256.

    Bataev, V. A.; Pupyshev, V. I.; Godunov, A.(2016): Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes.Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, vol. 161, pp.155-161.

    Borghei, S. M.; Hosseini, S. N.(2008): Comparison of furfural degradation by different photooxidation methods. Chemical Engineering Journal, vol. 139, no. 3, pp. 482-488.

    Faramarzpour, M.; Vossoughi, M.; Borghei, M.(2009): Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chemical Engineering Journal, vol. 146, no. 1, pp. 79-85.

    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A. et al.(2009): Gaussian 09. Gaussian Inc., Wallingford CT.

    Fu, Z.; Huang, F.; Ren, K.; Weng, J.; Wang, C.(2017): Privacy-preserving smart semantic search based on conceptual graphs over encrypted outsourced data. IEEE Transactions on Information Forensics & Security, vol. 12, no. 8, pp. 1874-1884.

    Fu, Z.; Wu, X.; Wang, Q.; Ren, K.(2017): Enabling central keyword-based semantic extension search over encrypted outsourced data. IEEE Transactions on Information Forensics & Security, vol. 12, pp. 99-93.

    Giacomazzi, S.; Cochet, N.(2004): Environmental impact of diuron transformation: A review. Chemosphere, vol. 56, no. 11, pp. 1021-1032.

    Gorski, A.; Starukhin; A.; Stavrov, S.; Gawinkowski, S.; Waluk, J.(2017):Resonance Raman spectroscopy study of protonated porphyrin. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, vol. 173, pp. 350-355.

    Kurtén, T.; Berndt, T.; Stratmann, F.(2009): Hydration increases the lifetime of HSO5and enhances its ability to act as a nucleation precursor-a computational study.Atmospheric Chemistry and Physics, vol. 9, pp. 3357-3369.

    Liu, Y.; Knopp, G.; Gerber, T.(2015): Direct observation of up-conversion via femtosecond photoelectron imaging. Physical Review A, vol. 92, no. 4.

    Liu, Y.; Knopp, G.; Qin, C.; Gerber, T.(2015): Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging. Chemical Physics, vol. 446, pp. 142-147.

    Macounová, K.; Krysová, H.; LudvíK, J.; Jirkovsky, J.(2003): Kinetics of photocatalytic degradation of diuron in aqueous colloidal solutions of Q-TiO2particles.Journal of Photochemistry & Photobiology A Chemistry, vol. 156, no. 1, pp. 273-282.

    Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.(2007): Microwave spectroscopy of furfural in vibrationally excited states. Journal of Molecular Spectroscopy, vol. 244, no. 1,pp. 9-12.

    Pei, K.; Su, M.; Chen, L.; Zheng, X.(2012): Excited-state structural dynamics of propanil in the S2state: Resonance raman and first-principle investigation. Journal of Physical Chemistry B, vol. 116, no. 27, pp. 7914-7919.

    Selvakumar, N.; Pradhan, U.; Krupanidhi, S. B.; Barshilia, H. C.(2016): Structural and optical properties of graphene oxide prepared by modified hummers’ method.Computers, Materials & Continua, vol. 52, no. 3, pp. 175-185.

    Singh, S.; Srivastava, V. C.; Mall, I. D.(2009): Fixed-bed study for adsorptive removal of furfural by activated carbon. Colloids and Surfaces A: Physicochemical & Engineering Aspects, vol. 332, no.1, pp. 50-56.

    Yang, Z.; Ma, L.; Ma, Q.; Cui, J.; Nie, Y. et al.(2017): Molecule dynamics study on heat transfer at gas-nanoparticle interface. Computers, Materials & Continua, vol. 51, no.1, pp. 219-248.

    Zheng, X. M.; Phillips, D. L.(1998): A-band resonance Raman spectra and short-time photodissociation dynamics of trans-1-chloro-2-iodoethane in cyclohexane solution.Chemical Physics Letters, vol. 286, no. 1-2, pp. 79-87.

    亚洲熟妇熟女久久| 在线看三级毛片| 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 国产aⅴ精品一区二区三区波| 日韩欧美在线二视频| 美女高潮的动态| 国产欧美日韩一区二区精品| 日韩欧美精品免费久久 | 成人精品一区二区免费| 午夜福利高清视频| 欧美日韩中文字幕国产精品一区二区三区| 能在线免费观看的黄片| 久久久久久久久中文| 一区二区三区高清视频在线| 午夜福利免费观看在线| xxxwww97欧美| 在线十欧美十亚洲十日本专区| av天堂在线播放| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 亚洲国产高清在线一区二区三| av国产免费在线观看| 深爱激情五月婷婷| 日韩 亚洲 欧美在线| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 99久国产av精品| 欧美高清成人免费视频www| av福利片在线观看| 成人高潮视频无遮挡免费网站| 亚洲av第一区精品v没综合| 国产一区二区激情短视频| 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 中文亚洲av片在线观看爽| 亚洲综合色惰| 日韩亚洲欧美综合| 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件 | av视频在线观看入口| 久久人人爽人人爽人人片va | 亚洲av中文字字幕乱码综合| av中文乱码字幕在线| 久久久久久久午夜电影| 亚洲人与动物交配视频| 欧美乱色亚洲激情| 在线观看一区二区三区| www.www免费av| 级片在线观看| 亚洲 欧美 日韩 在线 免费| 少妇的逼好多水| 亚洲国产色片| 丁香六月欧美| 欧美又色又爽又黄视频| 国产黄色小视频在线观看| 色视频www国产| 韩国av一区二区三区四区| 欧美又色又爽又黄视频| 观看美女的网站| 一级av片app| 欧美乱色亚洲激情| 国产欧美日韩一区二区三| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 色综合欧美亚洲国产小说| 91狼人影院| 国产三级在线视频| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 看黄色毛片网站| 亚洲精品在线观看二区| 日韩av在线大香蕉| 夜夜躁狠狠躁天天躁| 人妻夜夜爽99麻豆av| 床上黄色一级片| 欧美xxxx性猛交bbbb| 午夜日韩欧美国产| av欧美777| 中亚洲国语对白在线视频| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 国产精品三级大全| 极品教师在线视频| 日本黄色视频三级网站网址| 国产精品爽爽va在线观看网站| 97超级碰碰碰精品色视频在线观看| 国产熟女xx| 亚洲国产精品sss在线观看| 69人妻影院| 内地一区二区视频在线| 亚洲国产高清在线一区二区三| 免费高清视频大片| 嫩草影院入口| 天堂影院成人在线观看| 日韩精品青青久久久久久| 我要看日韩黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 国产精品美女特级片免费视频播放器| 特级一级黄色大片| 欧美午夜高清在线| 一级黄片播放器| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区| 国产精华一区二区三区| 日韩欧美在线乱码| 亚洲av.av天堂| 1024手机看黄色片| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 一本一本综合久久| netflix在线观看网站| 深夜a级毛片| 日本 欧美在线| 久久久久久久亚洲中文字幕 | 99久国产av精品| av福利片在线观看| 哪里可以看免费的av片| 97超级碰碰碰精品色视频在线观看| 成人高潮视频无遮挡免费网站| 丰满的人妻完整版| xxxwww97欧美| 久久精品91蜜桃| 国产一区二区在线av高清观看| 国产亚洲欧美98| 成年版毛片免费区| 综合色av麻豆| 欧美国产日韩亚洲一区| 大型黄色视频在线免费观看| 综合色av麻豆| 女人十人毛片免费观看3o分钟| 一进一出抽搐gif免费好疼| 亚洲电影在线观看av| 亚洲一区二区三区色噜噜| 国产野战对白在线观看| www.色视频.com| 69人妻影院| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 身体一侧抽搐| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄 | 国产成人av教育| 99国产精品一区二区三区| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久 | 精品久久久久久久久av| 久久久国产成人精品二区| 又紧又爽又黄一区二区| 亚洲乱码一区二区免费版| 国产野战对白在线观看| 中文资源天堂在线| 搡老妇女老女人老熟妇| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 精品人妻一区二区三区麻豆 | 一a级毛片在线观看| 制服丝袜大香蕉在线| 久久久久性生活片| 少妇高潮的动态图| 日本精品一区二区三区蜜桃| 特大巨黑吊av在线直播| 好男人电影高清在线观看| а√天堂www在线а√下载| 午夜久久久久精精品| 老熟妇仑乱视频hdxx| 一夜夜www| 国产综合懂色| 成人三级黄色视频| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 免费看光身美女| 亚洲精品色激情综合| 久久久久性生活片| 欧美日韩综合久久久久久 | а√天堂www在线а√下载| 国产精品一区二区免费欧美| 久久精品久久久久久噜噜老黄 | 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 国产麻豆成人av免费视频| 国产精品国产高清国产av| 欧美精品国产亚洲| 欧美国产日韩亚洲一区| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看| 日韩欧美三级三区| 国产精品久久电影中文字幕| av在线观看视频网站免费| www.www免费av| 国产亚洲精品av在线| 国产精品av视频在线免费观看| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 在线观看av片永久免费下载| 久久久久九九精品影院| 亚洲欧美日韩东京热| 长腿黑丝高跟| 成人亚洲精品av一区二区| 悠悠久久av| 69av精品久久久久久| 国产色爽女视频免费观看| 在线观看舔阴道视频| 嫩草影院入口| 国产精品美女特级片免费视频播放器| 亚洲在线观看片| 精品一区二区三区人妻视频| www.色视频.com| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 国产成+人综合+亚洲专区| 日本与韩国留学比较| 18禁在线播放成人免费| 国产成人啪精品午夜网站| 欧美绝顶高潮抽搐喷水| 国产精品三级大全| 观看免费一级毛片| 一区福利在线观看| 99热6这里只有精品| 在线a可以看的网站| 久久精品综合一区二区三区| 国产久久久一区二区三区| 中文字幕av成人在线电影| 国产精品久久视频播放| 国内精品一区二区在线观看| 国产三级黄色录像| av在线老鸭窝| 亚洲美女视频黄频| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 一级作爱视频免费观看| 亚洲中文字幕日韩| 老鸭窝网址在线观看| 免费av观看视频| 精品乱码久久久久久99久播| 日韩欧美在线二视频| 亚洲真实伦在线观看| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 亚洲性夜色夜夜综合| 又黄又爽又刺激的免费视频.| 亚洲精品成人久久久久久| 久99久视频精品免费| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 韩国av一区二区三区四区| 五月玫瑰六月丁香| 一本精品99久久精品77| 草草在线视频免费看| 成年免费大片在线观看| 97碰自拍视频| 亚洲国产色片| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| av在线天堂中文字幕| 国内精品久久久久精免费| 在线观看一区二区三区| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 三级国产精品欧美在线观看| 两个人视频免费观看高清| 亚洲国产精品久久男人天堂| 别揉我奶头~嗯~啊~动态视频| 欧美成人免费av一区二区三区| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 成年人黄色毛片网站| 国产精品野战在线观看| 人人妻,人人澡人人爽秒播| 日本a在线网址| 国产久久久一区二区三区| 色哟哟哟哟哟哟| 美女xxoo啪啪120秒动态图 | 亚洲色图av天堂| 亚州av有码| 99riav亚洲国产免费| 老女人水多毛片| 中文字幕av成人在线电影| 亚洲av一区综合| 97超级碰碰碰精品色视频在线观看| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 我要搜黄色片| 欧美日韩亚洲国产一区二区在线观看| 波野结衣二区三区在线| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 亚洲最大成人中文| 精品午夜福利在线看| 国产亚洲欧美98| 在线观看66精品国产| 九九热线精品视视频播放| 久久久国产成人精品二区| 99热精品在线国产| 精品人妻熟女av久视频| 脱女人内裤的视频| 亚洲成人免费电影在线观看| 久久久久久国产a免费观看| 男人狂女人下面高潮的视频| 国产视频一区二区在线看| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 日本免费a在线| 婷婷丁香在线五月| 日韩欧美精品v在线| 非洲黑人性xxxx精品又粗又长| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| av天堂中文字幕网| 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 亚洲七黄色美女视频| 国产精品亚洲美女久久久| 亚洲最大成人av| 99久久精品一区二区三区| 十八禁网站免费在线| av在线老鸭窝| 天堂动漫精品| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 天堂av国产一区二区熟女人妻| 宅男免费午夜| 淫妇啪啪啪对白视频| 久久中文看片网| 乱码一卡2卡4卡精品| 欧美午夜高清在线| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 脱女人内裤的视频| 色综合站精品国产| 欧美日本视频| 偷拍熟女少妇极品色| 91九色精品人成在线观看| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 国产av不卡久久| 高潮久久久久久久久久久不卡| 日本精品一区二区三区蜜桃| 免费人成在线观看视频色| 久久精品影院6| 日韩大尺度精品在线看网址| АⅤ资源中文在线天堂| 日日摸夜夜添夜夜添小说| 九色成人免费人妻av| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片 | 99国产精品一区二区蜜桃av| 亚洲经典国产精华液单 | 国产一区二区三区视频了| 性色avwww在线观看| 欧美日本视频| 亚洲内射少妇av| 99热精品在线国产| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 极品教师在线视频| 黄色女人牲交| 十八禁国产超污无遮挡网站| 国产黄a三级三级三级人| 国产伦精品一区二区三区四那| 国产精品三级大全| 中文资源天堂在线| 国产高清有码在线观看视频| .国产精品久久| 午夜老司机福利剧场| 全区人妻精品视频| 简卡轻食公司| ponron亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲精品亚洲一区二区| 又爽又黄无遮挡网站| 久久国产乱子免费精品| 日本三级黄在线观看| 无遮挡黄片免费观看| 久久久国产成人免费| 国产精品久久久久久人妻精品电影| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 女人十人毛片免费观看3o分钟| 丁香六月欧美| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看| 日本黄色片子视频| 欧美在线黄色| 中文在线观看免费www的网站| 亚洲av免费在线观看| 天堂网av新在线| 亚洲精品粉嫩美女一区| 好看av亚洲va欧美ⅴa在| 嫩草影院新地址| 成人国产综合亚洲| 高清毛片免费观看视频网站| 三级国产精品欧美在线观看| 免费在线观看亚洲国产| 欧美在线黄色| 最近最新中文字幕大全电影3| 亚洲av成人av| 99久久99久久久精品蜜桃| 在线观看美女被高潮喷水网站 | 男人舔女人下体高潮全视频| 国产大屁股一区二区在线视频| 波多野结衣高清作品| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 久久久久国产精品人妻aⅴ院| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美 日韩 在线 免费| 日韩有码中文字幕| 国产真实伦视频高清在线观看 | 国语自产精品视频在线第100页| 午夜福利在线观看吧| 精品国产亚洲在线| 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 中出人妻视频一区二区| 亚洲激情在线av| 人妻丰满熟妇av一区二区三区| 丰满乱子伦码专区| 亚洲欧美日韩东京热| 久久午夜福利片| 身体一侧抽搐| 麻豆av噜噜一区二区三区| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 国产探花极品一区二区| 99riav亚洲国产免费| 99久久久亚洲精品蜜臀av| aaaaa片日本免费| 精华霜和精华液先用哪个| 在线播放国产精品三级| 少妇的逼好多水| 国产午夜精品论理片| 一区二区三区四区激情视频 | 精品人妻熟女av久视频| 91av网一区二区| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清作品| 亚洲三级黄色毛片| 我要搜黄色片| 国产精品亚洲一级av第二区| 欧美xxxx性猛交bbbb| 91av网一区二区| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 俺也久久电影网| 免费黄网站久久成人精品 | 免费无遮挡裸体视频| 最后的刺客免费高清国语| 国产高潮美女av| 欧美中文日本在线观看视频| 亚洲av.av天堂| 国产激情偷乱视频一区二区| 一区二区三区四区激情视频 | 精品无人区乱码1区二区| 亚洲精品成人久久久久久| 国产大屁股一区二区在线视频| 国产亚洲欧美在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 99riav亚洲国产免费| 大型黄色视频在线免费观看| 校园春色视频在线观看| АⅤ资源中文在线天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产成人影院久久av| 午夜福利高清视频| 欧美另类亚洲清纯唯美| 亚洲国产欧洲综合997久久,| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一小说| 久久精品人妻少妇| 精品久久久久久成人av| 国产成人福利小说| 少妇高潮的动态图| 亚洲人成电影免费在线| eeuss影院久久| 天堂网av新在线| 亚洲av一区综合| 久久香蕉精品热| 亚洲欧美激情综合另类| 亚洲综合色惰| 国产精品人妻久久久久久| 91久久精品国产一区二区成人| 不卡一级毛片| 国产精品久久久久久久久免 | 国产成人啪精品午夜网站| 国产av不卡久久| 日本熟妇午夜| 在现免费观看毛片| 91av网一区二区| 精品一区二区三区av网在线观看| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲av一区麻豆| 国产91精品成人一区二区三区| 18+在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国产乱人视频| 亚洲国产精品久久男人天堂| 久久久久久大精品| 亚洲经典国产精华液单 | 在线观看一区二区三区| 美女被艹到高潮喷水动态| 欧美zozozo另类| 每晚都被弄得嗷嗷叫到高潮| 成人亚洲精品av一区二区| 变态另类丝袜制服| 亚洲av五月六月丁香网| 简卡轻食公司| 亚洲片人在线观看| 久久久久久久久中文| 久久午夜福利片| 午夜福利在线在线| 国产大屁股一区二区在线视频| 听说在线观看完整版免费高清| 日本成人三级电影网站| 成年免费大片在线观看| 亚洲精品色激情综合| 老司机深夜福利视频在线观看| 久久九九热精品免费| 美女大奶头视频| 脱女人内裤的视频| 久久亚洲真实| 波多野结衣高清无吗| 国产久久久一区二区三区| 国产精品爽爽va在线观看网站| 小说图片视频综合网站| 国产69精品久久久久777片| 我的女老师完整版在线观看| 欧美乱色亚洲激情| 最近在线观看免费完整版| 久久精品国产自在天天线| 欧美最黄视频在线播放免费| 女人十人毛片免费观看3o分钟| 久久热精品热| 精品久久久久久久久久久久久| 欧美性感艳星| 色哟哟哟哟哟哟| 精品久久久久久成人av| 国产精品爽爽va在线观看网站| 熟女电影av网| 极品教师在线视频| 琪琪午夜伦伦电影理论片6080| 在线a可以看的网站| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 亚洲人成电影免费在线| 久久久成人免费电影| 韩国av一区二区三区四区| 国产亚洲精品久久久com| 18禁黄网站禁片免费观看直播| 99久久精品一区二区三区| 成人无遮挡网站| 国产男靠女视频免费网站| 又黄又爽又刺激的免费视频.| 日日干狠狠操夜夜爽| 一进一出抽搐gif免费好疼| 久久伊人香网站| 中文字幕熟女人妻在线| 午夜福利在线观看免费完整高清在 | 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 变态另类丝袜制服| 又紧又爽又黄一区二区| 国产精品伦人一区二区| 十八禁人妻一区二区| 少妇人妻一区二区三区视频| 日日摸夜夜添夜夜添小说| 在线观看午夜福利视频| 成人三级黄色视频| 精品久久久久久久人妻蜜臀av| 日韩欧美精品免费久久 | 国产在线精品亚洲第一网站| 欧美zozozo另类| 午夜免费成人在线视频| 国内精品久久久久精免费| 老鸭窝网址在线观看| 亚洲乱码一区二区免费版| 欧美最黄视频在线播放免费| 成人无遮挡网站| 日韩免费av在线播放| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 国产精品三级大全| 韩国av一区二区三区四区| 国产精品久久视频播放| 日韩免费av在线播放| 99热这里只有是精品在线观看 | 欧美成人a在线观看|