• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defining Embedding Distortion for Intra Prediction Mode-Based Video Steganography

    2018-06-01 11:12:14QiankaiNieXubaXuBingwenFengandLeoYuZhang
    Computers Materials&Continua 2018年4期
    關(guān)鍵詞:膽堿酯酶肝炎肝功能

    Qiankai Nie, Xuba Xu, Bingwen Feng, and Leo Yu Zhang

    1 Introduction

    Steganography is a technique on secret communication, where a sender embeds secrets into covers, such as videos, audios, images, etc. and does not allow the others to detect the embedding event, except for the recipient. For the steganalysis, the main task is to detect whether in the carrier a secret message is hidden or not. With the rapid popularity of multimedia, compressed video has become one of the most popular carriers for information hiding. Therefore, a series of video steganographic schemes have been proposed, which also buoys the development of video steganalytic methods.

    In recent years, adaptive stego-coding technique such as wet paper codes (WPCs)[Fridrich, Goljan, Lisonek et al. (2005)] and Syndrome-trellis code (STC) [Filler, Judas and Fridrich (2011)] have been presented. STC is regarded as the most effective coding method for steganography, because it separates the distortion definition and the distortion minimization. Furthermore, the recipient can extract the secret data without the knowledge about the definition. By applying these mature coding techniques, video steganography can focus on defining the distortion function. Cao et al. [Cao, Zhang, Zhao et al. (2015)] defined the distortion function by considering the motion vector (MV)’s local optimality. Wang et al. [Wang, Zhang, Cao et al. (2016)] combined motion characteristics of video content, MV’s local optimality and statistical distribution together to define the distortion function.

    Video steganographic methods can be studied according to different modification such as motion vectors, quantized DCT coefficients, variable length codes and intra prediction modes (IPMs). Intra prediction mode-based video steganographic method can preserve the video quality perfectly [Bouchama, Hamami and Aliane (2012)]. The early IPMsbased approaches [Hu, Zhang and Su (2007); Xu, Wang and Wang (2012)] only modulate the intra prediction modes of qualified intra 4×4 luminance blocks for data hiding. In order to improve the embedding capacity, Yang et al. [Yang, Li, He et al.(2011)] introduced matrix coding to hiding two bits information by modifying one IPM.Bouchama et al. [Bouchama, Hamami and Aliane (2012)] increased the capacity by grouping the IPMs and modifying them within the same group. However, in these methods, non-optimal selection rules destroy the optimalities of IPMs seriously, which was easily detected by Zhao et al.’s [Zhao, Zhang, Cao et al. (2015)] IPMs calibration(IPMC) steganalytic method. Machine learning has been widely used as an effective detection method [Chang and Lin (2011); Gurusamy and Subramaniam (2017)],especially in steganalysis.

    This paper proposes a video steganographic scheme by embedding message bits into intra predictions of video encoding. Inspired by the prediction mode reversion phenomenon caused by increasing the SAD value, the SAD prediction deviation (SPD) is considered in defining the distortion function. Moreover, mapping rule is introduced to expand the range of selectable modes for each block. In this way, we can preserve the optimality of IPMs is maximally preserved at a given embedding rate during the embedding process,which can effectively resist the detect by Zhao et al. [Zhao, Zhang, Cao et al. (2015)].

    The rest of this paper is organized as follows. In Section 2, we describe the framework of the distortion minimization for IPMs-based steganograpy. The proposed distortion function and mapping rule are elaborated in Section 3. The practical implementation is presented in Section 4. The experimental evaluation is shown in Section 5. In the end,conclusions and future works are given in Section 6.

    2 Framework of distortion minimization for steganography

    The minimal-distortion steganographic schemes focuse on the definition of distortion function and the choice of cover. The following is a common framework.

    In the coding process, the cover sequence is denoted by, and theis an integer, such as the mode value of an intra-block. What is more, non-negative additive distortionsare defined for each cover element in advance, whereis the i-th element in the stego vector. Assuming thatbits secret binary message e is to be embedded with the payload, STCs (Syndrome-Trellis Codes)[Filler, Judas and Fridrich (2011)] perform the embedding operation as the kernel of this framework:

    s.t.

    whereis the stego embeded with secret message, φ(e)is the coset corresponding to syndrome e and the overall distortion. At the extractor, the operation is simply computing.

    3 Proposed approach

    3.1 Mode prediction

    Video compression can effectively compress a raw video into a smaller compressed one by using coding techniques, which facilitates the transmission on the network as well as storage on hardware [Wiegand, Sullivan, Bjontegaard et al. (2003)]. The compression technique mainly uses the redundancy of a video frame and the high similarity between adjacent intra-macroblocks. In this paper, intra-44 blocks (intra-4B) are used as carriers for the data embedding, while those intra-1616 blocks are not changed because they are used for coding smooth regions that are not suitable for modification. H.264, a state-ofthe-art video coding standards, contains 9 intra prediction modes based on prediction direction shown as Fig. 1.

    Figure 1: Intra 44 prediction modes

    Since the SAD is determined by the original pixels of the macroblock and the reconstruction pixels, choosing the mode of the minimum SAD (Sum of Absolute Difference) [Kim and Jeong (2012)] to code can minimize the bit rate and ensure the quality of video compression. The SAD of i-th intra-4B in t-th intra-frame is given by:

    where B is the current intra-4B. Oi,t(x, y) respents the original value of the pixel (x, y) and Ri,t(x, y) is the reconstruction pixels associated with prediction mode.

    3.2 SAD prediction deviation

    Calibration-based steganalysis [Fridrich and Kodovsky (2012)] reconstructs an estimation of the cover from the stego object and draws features based on the difference between the two, which can achieve a high detection accuracy. Zhao et al. [Zhao, Zhang, Cao et al.(2015)] proposed the IPMC features based on the calibration method, which is sensitive to the non-optimal IPMs. During the intra-frame coding process, intra-4B will select the minimum SAD mode to code, so the intra-4B’s SAD will also be changed when we modify the intra-frame optimal prediction mode for the embedding target. After the calibration process, the non-optimal prediction modes will tend to restore the original optimal value, implying that the block is not coded according to the optimal prediction mode. In addition, based on the prediction mode reversion phenomenon, our study has observed the fact that different degrees of changing the prediction SAD lead to different reversal probabilities.

    An example is illustrated as in Fig. 2. In order to take a look at the reversion phenomenon of modified intra-4Bs, a test sequence “Coastguard.yuv” (CIF, 352288) from video database [YUV (2008)] is used to calibrate with a customized H.264 codec named x264[x264 (2010)]. Modifying rate (MR) 0.35 and 0.5 represent modifying 35 percent and 50 percent of the total number of blocks, respectively. At the encoder, these specified original blocks are first coded with the optimal prediction mode with minimum SAD.Then, the second and third best modes are used instead of the optimal one for comparison.At the decoder, these modified blocks are reconstructed and then undergo recompression with the standard prediction method. It can be seen from Fig. 2 that a lower level mode,which yields a larger change on SAD, makes the reversion phenomenon more frequent.

    Figure 2: Reversion phenomenon of (a) 0.35 modifying rate and (b) 0.5 modifying rate on different mode level

    Fig. 2 indicates that the SAD change of prediction mode is a key factor to construct the distortion function. If a candidate modeis given during intra predition, the SAD prediction deviation (SPD) is formulated as

    whereis the prediction SAD of the optimal modeassociated with the ith prediction block in the t-th key frame.

    When steganalyzer utilizes calibration to determine whether a sequence is stego object,the SAD prediction deviation (SPD) indeed increase the probability of reversion phenomenon. Through the above analysis, the smaller SPD the reselected mode has, the more suitable it can be used for modification.

    3.3 Mapping rule

    We use STC as the practical steganographic method. Seeking for an appropriate pattern should traverse the entire pattern space as shown in Fig. 1 as much as possible. Thus we herein introduce a mapping rule between prediction modes and groups of modes to complete the traverse. Many state-of-the-art schemes use mapping rules to represent the secret information [Cao, Zhou and Sun (2018)], which indeed improves coding efficiency.

    Table 1: Average SPD caused by replacement of optimal mode m and candidate mode m’

    Since a mode will not change to those modes in the same group, we divide the modes with large SPD into the same group to reduce the probability of selecting a large distortion mode. We observe the SPD generated when the optimal modes is replaced with the other 8 candidate modes, respectively. Assuming that the total number of intra-4Bs with the optimal mode 0 is K, then the average SPD for each intra-4B is. The experimental results of three video sequences, i.e. “akiyo.yuv”, “Mobile.yuv” and“Waterfall.yuv” are shown in Tab. 1. It can be seen that 9×8=72 replacement results, in which the maximum SPD is bolded to indicate that this pair of modes is more suitable to be placed in the same group. These groups of modes can be defined as follows:

    If the block uses the 4×4 prediction:

    Group 1: Modes 0, 1 and 4.

    Group 2: Modes 3, 5 and 8.

    Group 3: Modes 2, 6 and 7.

    本次數(shù)據(jù)顯示,肝硬化組、肝癌組、慢性肝炎組、急性肝炎組對(duì)比參照組,肝硬化組對(duì)比肝癌組、慢性肝炎組、急性肝炎組,統(tǒng)計(jì)學(xué)具有數(shù)據(jù)分析意義。表示,肝硬化患者的血清膽堿酯酶活性最低,其次為肝癌。A級(jí)和C級(jí)比較、A級(jí)和B級(jí)比較、B級(jí)和C級(jí)比較,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。證實(shí)肝功能Child分級(jí)和血清膽堿酯酶水平之間呈現(xiàn)出正相關(guān)性。

    The block uses the 1616 prediction:

    Group 0:Modes 0, 1, 2 and 3.

    Here, the group 0 belonging to 1616 block does not make any changes. The original group gi,tcontains the original modemi,t, wheregi,t∈{0,1,2,3}. In candidate group g′i,t,the mode of the minimum SAD is stored as m'i,tand before the STC embedding is executed, each group’s m'i,tis known. At this point, we get the mapping table MT,which records the optimal mode for each group in all blocks. As shown in (Fig. 3), the modes 1, 5 and 6 are the minimum SAD modes of the groups 1, 2 and 3 in an intra-4B,respectively.

    Figure 3: An example of mapping rule

    From this point of rule, the SAD prediction deviation of different candidate groups(SPDG) can be denoted by

    whererepresents the prediction SAD change of candidate mode in the group. Andis chosen from the candidate group setusing STCs-basedembedding.

    Applying the mapping rule can effectively expand the search range because these 3 groups are handled as an input set instead of 9 prediction modes. In Section 4, we would describe the implementation of mapping rule in detail.

    3.4 The definition of distortion function

    As introduced in Section 2, accumulating the non-negative additive distortions introduced by independent modifications can obtain the overall embedding impact. Therefore the overall distortion sumDtof all intra-4Bs in t-th key frame should be minimized by steganographic codes, which Dtcan be calculated by following formulas.

    4 Practical implementation

    ±1 STC is used as the practical steganographic method for the secret message embedding and extraction. In addition, both the sender and the receiver should know the mapping rule. The proposed steganographic method is divided into the following three phases.

    Embedding Distortion Definition:Before embedding the data, we measure the distortion value of each intra-4B using the distortion function in key frames. Firstly, each key frame uses the mapping rule to obtain the original group matrix Gtand the mapping table. For each intra-4B, the distortionis defined in Eq.8. Secondly, save all the defined distortion in. Assuming that group 1 is suitable as a modification group, the appropriate mode m′i,twithin group 1 can be obtained by mapping table MTt.

    Data Embedding:In this step, after obtaining, the original group matrixis applied inSTC for embedding to get the modified group matrix, and then the suitable mode matchingis found in the mapping table. Suppose that T is the total number of key frame in the cover sequence anddenotes the binary length of cover sequence. Then we use STC to embed anbits message e with a given embedding raterepresenting the average embedded bits per prediction mode (bppm), and make the overall embedding impact minimal:

    whereis the group vector, and D is the distortion vector

    After executing STC, the modified group vectoris obtained to find the appropriate modes for modifying according to the. Finally, the stego sequence can be generated by H.264 codec.

    Data Extraction:For the recipient, all prediction mode values is obtained by using a customized decoder, and then the G′is reconstructed by MT easily. Now the secret messages can be extracted by using STC, which can be denoted as

    where H is parity-check matrix employed by both the sender and recipient.

    5 Evaluation

    5.1 Experiment setup

    The video database [(Yuv (2008)] containing 25 standard 4:2:0 YUV sequences in CIF format (CIF, 352×288) is used to test, as shown in Fig. 4. The number of frame ranges from 100 fps to 400 with 30 fps frame rate. The 25 standard sequences are divided into 120 subsequences without overlapping, and each subsequence contains 60 frames. In order to obtain sufficient samples, the maximum interval of the intra frame is set 10,which does not degrade the compression quality. Besides, x264 executes the embedding scheme and the LibSVM toolbox [Chang and Lin (2011)] with the polynomial kernel is employed for classiflcation. For performance comparison, Yang et al.’s [Yang, Li, He et al. (2011)] method and Bouchama et al.’s [Bouchama, Hamami and Aliane (2012)]method are also implemented.

    In this experiment, two bit-rates(BR) of the compressed sequences, 0.5 Mbit/s and 1 Mbit/s, with various embedding rates(ER) ranging from 0.125 to 0.5 are considered, in which the embedding rate(ER) indicates the average embedding bit length of available intra-4Bs and it can be calculated as

    where L denotes the length of the binary message embedded in the t-th frame, and theis the total number of intra-4Bs in t-th key frame.

    According to the difference in the embedding rate(ER), the theoretic value of embedding capacity can be calculated as

    where Inrepresents the number of intra-frames, h and w represent the height and width of the video sequence, respectively. If the embedding rate(ER) is set to 0.5 and the number of intra-frames is 20, the theoretic embedding capacity will be 63360 bits.

    5.2 Steganalysis result

    Steganalysis is the most important measure of the security of steganography. The recently proposed IPMC [Zhao, Zhang, Cao et al. (2015)] feature has achieved the most effective detection performance against the IPMs-based Video steganography scheme. IPMC extracts a 13-dimension feature from each intra-frame according to the recovery phenomenon of the intra prediction modes.

    In our test, 80 video subsequences are randomly selected for training, and the remaining 40 video subsequences are used for classification. The experiment was repeated 10 times to calculate the average detection performance evaluated by the minimum average classification error probability [Kodovsky, Fridrich and Holub (2012)]. Three different steganographic schemes are shown in Fig. 5 and Tab. 2. All schemes have a slightly worse performance at bit-rate 1.0 Mbit/s than at 0.5 Mbit/s, because higher bitrate leads to lower loss and the greater difference between the stego and the cover. In addition, our method is much better than Yang et al.’s method [Yang, Li, He et al. (2011)]and Bouchama et al.’s [Bouchama, Hamami and Aliane (2012)] method at low embedding rates. As the embedding rate increases, the performance gap becomes smaller,but our method is still best, which indicates higher steganographic security level.

    Figure 5: Reversion phenomenon in case of (a) BR=0.5 Mbit/s and (b) BR=1.0 Mbit/s on different mode levels

    Table 2: Comparison of different method against IPMC features

    5.3 Steganalysis result

    The measurement PSNR (dB) is commonly adopted to measure video quality in steganographic scheme. Here, the video quality results of the three video sequences“Coastguard.yuv”, “Mobile.yuv” and “Waterfall.yuv” are shown in Tab. 3 where NO-E(no-embedding) represent the compression without any data embedding. It is observed that our method does not lead to great errors and is closer to the PSNR of NO-E than Yang et al.’s [Yang, Li, He et al. (2011)] methods and Bouchama et al.’s [Bouchama,Hamami and Aliane (2012)] methods. Because our scheme is based on the choice of the smallest SAD block to be embedded, which ensures that the embedded perturbation is slight. Referring to NO-E, we can see that the impact of these three embedding schemes on video quality is slight, with the least impact being our methods.

    Table 3: Comparison of PSNR values (dB) using four steganographic schemes at two bit-rates(Mbit/s)

    6 Conclusion

    In this paper, we present a novel intra prediction mode-based video steganography by minimizing the embedding distortion defined according to SAD. We introduce STC as the practical embedding method, and SAD can be regarded as an important factor to establish the distortion function. Then, we introduce the mapping rule to expand the range of selective modes for each block. The experimental results show that our proposed steganographic scheme outperforms other intra prediction mode-based steganographic schemes in resisting steganalysis and video quality.

    In the future work, we will combine SAD and the statistical distribution of frame to construct more effective distortion functions. In addition, the mapping rule is also to be improved to further increase the range of selection. For video steganography, we have to further reduce the computational complexity to accommodate the fast growing of video data.

    Acknowledgements:This work was supported by National Key R&D Plan of China(Grant No. 2017YFB0802203), National Natural Science Foundation of China (Grant No.U173620045, 61732021, 61472165 and 61373158), Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030313390), Science and Technology Program of Guangzhou, China (Grant No. 201804010428), Guangdong Provincial Engineering Technology Research Center on Network Security Detection and Defence(Grant No. 2014B090904067), Guangdong Provincial Special Funds for Applied Technology Research and Development and Transformation of Important Scientific and Technological Achieve (Grant No. 2016B010124009), the Zhuhai Top Discipline-Information Security, Guangzhou Key Laboratory of Data Security and Privacy Preserving, Guangdong Key Laboratory of Data Security and Privacy Preserving, the Fundamental Research Funds for the Central Universities.

    Bouchama, S.; Hamami, L.; Aliane, H.(2012): H.264/avc data hiding based on intra prediction modes for real-time applications. Lecture Notes in Engineering and ComputerScience, vol. 1.

    Cao, Y.; Zhang, H.; Zhao, X.; Yu, H.(2015): Video steganography based on optimized motion estimation perturbation. ACM Workshop on Information Hiding and Multimedia Security, pp. 25-31.

    Cao, Y.; Zhou, Z.; Sun, X.(2018): Coverless information hiding based on the molecular structure images of material. Computers, Materials & Continua, vol. 54, no. 2, pp. 197- 207.Chang, C. C.; Lin, C. J.(2011): Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1-27.

    Filler, T.; Judas, J.; Fridrich, J.(2011): Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Transactions on Information Forensics and Security, vol.6, no. 3, pp. 920-935.

    Fridrich, J.; Goljan, M.; Lisonek, P.; Soukal, D.(2005): Writing on wet paper. IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3923-3935.

    Fridrich, J.; Kodovsky, J.(2012): Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 868-882.

    Gurusamy, R.; Subramaniam, V.(2017): A machine learning approach for mri brain tumor classification. Computers, Materials & Continua, vol. 53, no. 2, pp. 91-109.

    Hu, Y.; Zhang, C.; Su, Y.(2007): Information hiding based on intra prediction modes for h.264/avc. IEEE International Conference on Multimedia and Expo, pp. 1231-1234.

    Kim, J.; Jeong, J.(2012): Fast intra mode decision algorithm using the sum of absolute transformed differences. International Conference on Digital Image Computing Techniques and Applications, pp. 655-659.

    Kodovsky, J.; Fridrich, J.; Holub, V.(2012): Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security, vol. 7, no. 2, pp.432-444.

    Wang, P.; Zhang, H.; Cao, Y.; Zhao, X.(2016): A novel embedding distortion for motion vector-based steganography considering motion characteristic, local optimality and statistical distribution. ACM Workshop on Information Hiding and Multimedia Security,pp.127-137.

    Wiegand, T.; Sullivan, G. J.; Bjontegaard, G.; Luthra, A.(2003): Overview of the h.264/avc video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576.

    x264(2010): Videolan. x264. http://www.videolan.org/ developers/x264.html.

    Xu, D.; Wang, R.; Wang, J.(2012): Prediction mode modulated data-hiding algorithm for h.264/avc. Journal of Real-Time Image Processing, vol. 7, no. 4, pp. 205-214.

    Yang, G.; Li, J.; He, Y.; Kang, Z.(2011): An information hiding algorithm based on intra-prediction modes and matrix coding for h.264/avc video stream. International Journal of Electronics and Communications, vol. 65, no. 4, pp. 331-337.

    YUV(2008): Yuv video sequences. http://trace.eas.asu.edu/ yuv/index.html.

    Zhao, Y.; Zhang, H.; Cao, Y.; Wang, P.; Zhao, X.(2015): Video steganalysis based on intra prediction mode calibration. 2015 International Workshop on Digital-forensics and Watermarking.

    猜你喜歡
    膽堿酯酶肝炎肝功能
    重視肝功能正常的慢性HBV感染者
    肝博士(2024年1期)2024-03-12 08:38:08
    《世界肝炎日》
    肝功能報(bào)告單解讀
    肝博士(2022年3期)2022-06-30 02:48:58
    世界肝炎日
    戰(zhàn)勝肝炎,沿需努力
    關(guān)注肝炎 認(rèn)識(shí)肝炎
    華南胡椒的化學(xué)成分及其抗膽堿酯酶活性研究
    老年慢阻肺合并呼吸衰竭患者檢測(cè)膽堿酯酶的臨床意義分析
    拉米夫定在乳腺癌化療期間對(duì)肝功能的作用
    131碘治療甲狀腺功能亢進(jìn)合并肝功能損害48例的療效
    91成人精品电影| 中文欧美无线码| 日韩中文字幕视频在线看片| 久久6这里有精品| 亚洲精品第二区| 中文字幕久久专区| 性高湖久久久久久久久免费观看| 久久99蜜桃精品久久| 我的女老师完整版在线观看| 亚洲国产精品一区三区| 亚洲欧美中文字幕日韩二区| av在线老鸭窝| 国产黄片美女视频| 国产精品无大码| 亚洲精品国产成人久久av| 最后的刺客免费高清国语| 中文字幕制服av| 亚洲,欧美,日韩| freevideosex欧美| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区| 中文天堂在线官网| 一本—道久久a久久精品蜜桃钙片| 少妇猛男粗大的猛烈进出视频| 国产精品伦人一区二区| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频 | 国产美女午夜福利| 亚洲伊人久久精品综合| 久久97久久精品| 国产69精品久久久久777片| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 一级毛片 在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲av.av天堂| 日韩一本色道免费dvd| 在线天堂最新版资源| 国产极品天堂在线| 精品久久国产蜜桃| 国产淫片久久久久久久久| 少妇精品久久久久久久| 美女脱内裤让男人舔精品视频| 搡女人真爽免费视频火全软件| 高清不卡的av网站| 如何舔出高潮| 熟女av电影| 亚洲一区二区三区欧美精品| 成人特级av手机在线观看| 久久久久精品性色| 成年女人在线观看亚洲视频| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 国产在线视频一区二区| 久久国产乱子免费精品| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 亚洲精品一二三| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| av专区在线播放| 天天躁夜夜躁狠狠久久av| 精品久久国产蜜桃| 最近的中文字幕免费完整| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 成人影院久久| 久久99热6这里只有精品| 精品视频人人做人人爽| 亚洲第一av免费看| 久久精品国产鲁丝片午夜精品| 中文字幕免费在线视频6| 久久久久久久久久成人| 日本av免费视频播放| 人人妻人人添人人爽欧美一区卜| 成人二区视频| 日韩,欧美,国产一区二区三区| 日韩中字成人| 嫩草影院入口| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 日日撸夜夜添| 美女cb高潮喷水在线观看| 亚洲精品亚洲一区二区| 国产精品人妻久久久影院| 2021少妇久久久久久久久久久| 丝袜喷水一区| 高清黄色对白视频在线免费看 | 国产淫语在线视频| 久久热精品热| 亚洲欧洲精品一区二区精品久久久 | 黄色毛片三级朝国网站 | 一边亲一边摸免费视频| 国产精品一区www在线观看| 国产av一区二区精品久久| 日韩av在线免费看完整版不卡| 激情五月婷婷亚洲| 国产精品一二三区在线看| 色5月婷婷丁香| 亚洲天堂av无毛| 久久6这里有精品| 老熟女久久久| 中文资源天堂在线| 成人免费观看视频高清| 黄色日韩在线| 久久av网站| 国产成人freesex在线| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 一边亲一边摸免费视频| 国产乱来视频区| 午夜免费男女啪啪视频观看| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 国产欧美日韩一区二区三区在线 | 免费播放大片免费观看视频在线观看| 午夜老司机福利剧场| 一个人免费看片子| 美女大奶头黄色视频| 久久ye,这里只有精品| 免费看av在线观看网站| 五月开心婷婷网| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 国产欧美日韩精品一区二区| 亚洲真实伦在线观看| 国产黄片视频在线免费观看| 老熟女久久久| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 亚洲欧美日韩东京热| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 人妻 亚洲 视频| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 高清在线视频一区二区三区| 久久99一区二区三区| 国产视频首页在线观看| 欧美日韩亚洲高清精品| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 青春草国产在线视频| 国产欧美亚洲国产| 国产精品国产三级国产av玫瑰| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院 | 永久网站在线| 22中文网久久字幕| 少妇丰满av| 精品久久国产蜜桃| 国内精品宾馆在线| 欧美成人午夜免费资源| 欧美+日韩+精品| 亚洲精品自拍成人| 九色成人免费人妻av| 亚洲综合精品二区| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| 免费观看在线日韩| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 亚洲精品456在线播放app| 亚洲性久久影院| 观看av在线不卡| 免费观看无遮挡的男女| 狠狠精品人妻久久久久久综合| 免费观看在线日韩| 99九九线精品视频在线观看视频| 久久精品国产亚洲av天美| 天天操日日干夜夜撸| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 欧美精品高潮呻吟av久久| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 免费少妇av软件| 免费高清在线观看视频在线观看| 国产高清有码在线观看视频| 丰满饥渴人妻一区二区三| 中文字幕制服av| 精品亚洲乱码少妇综合久久| 国产色爽女视频免费观看| 蜜桃在线观看..| 永久免费av网站大全| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 亚洲内射少妇av| 国产精品熟女久久久久浪| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲av.av天堂| 一本大道久久a久久精品| 观看免费一级毛片| 美女脱内裤让男人舔精品视频| 国产亚洲午夜精品一区二区久久| 晚上一个人看的免费电影| 欧美xxⅹ黑人| 少妇裸体淫交视频免费看高清| 十八禁高潮呻吟视频 | 特大巨黑吊av在线直播| 欧美xxⅹ黑人| 久久精品久久精品一区二区三区| 欧美一级a爱片免费观看看| 国产一区二区三区av在线| 美女cb高潮喷水在线观看| 人妻一区二区av| 国产成人免费观看mmmm| 日本黄色片子视频| 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区| 亚洲不卡免费看| 午夜日本视频在线| 最后的刺客免费高清国语| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 成人二区视频| 伦精品一区二区三区| 久久久午夜欧美精品| 97超视频在线观看视频| 综合色丁香网| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 少妇的逼好多水| 建设人人有责人人尽责人人享有的| 伦精品一区二区三区| 深夜a级毛片| 日韩强制内射视频| 日本欧美国产在线视频| 国产精品久久久久久久久免| 尾随美女入室| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 亚洲人成网站在线播| 国产白丝娇喘喷水9色精品| 国产精品秋霞免费鲁丝片| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久久久免| 国产黄片美女视频| 一本色道久久久久久精品综合| 五月天丁香电影| 久久毛片免费看一区二区三区| 最新的欧美精品一区二区| 视频中文字幕在线观看| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 国产精品免费大片| 国产日韩欧美视频二区| 全区人妻精品视频| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 成人国产av品久久久| 亚洲av成人精品一区久久| 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx在线观看| 91成人精品电影| 国产熟女午夜一区二区三区 | 久久这里有精品视频免费| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 日韩人妻高清精品专区| 日韩免费高清中文字幕av| 十八禁网站网址无遮挡 | 大香蕉久久网| 青春草亚洲视频在线观看| 国产一区有黄有色的免费视频| 69精品国产乱码久久久| 一级黄片播放器| 欧美xxⅹ黑人| 精品国产国语对白av| 韩国av在线不卡| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 91精品一卡2卡3卡4卡| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 久久久久久久国产电影| 国产亚洲最大av| 亚洲人与动物交配视频| 少妇被粗大的猛进出69影院 | 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 亚洲成色77777| 夫妻午夜视频| 亚洲成人一二三区av| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 国产一级毛片在线| 全区人妻精品视频| av天堂久久9| 黑人巨大精品欧美一区二区蜜桃 | 晚上一个人看的免费电影| 亚洲av日韩在线播放| 嫩草影院入口| 亚洲性久久影院| 免费av中文字幕在线| 国产色婷婷99| 十分钟在线观看高清视频www | 国产精品无大码| 少妇人妻精品综合一区二区| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 久久 成人 亚洲| 欧美人与善性xxx| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 丰满人妻一区二区三区视频av| av线在线观看网站| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美 | 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频 | 午夜影院在线不卡| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类| 亚洲精品,欧美精品| 国产中年淑女户外野战色| 天堂中文最新版在线下载| 一本久久精品| 高清午夜精品一区二区三区| 午夜91福利影院| 黄色日韩在线| 精品卡一卡二卡四卡免费| 国产白丝娇喘喷水9色精品| 免费观看无遮挡的男女| 国产成人精品福利久久| 精品少妇久久久久久888优播| 在线播放无遮挡| 亚洲欧洲精品一区二区精品久久久 | 三上悠亚av全集在线观看 | 国产日韩欧美在线精品| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 国产成人精品婷婷| 99热这里只有是精品50| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 亚洲av福利一区| 99热这里只有是精品50| xxx大片免费视频| 国产一区有黄有色的免费视频| 亚洲一级一片aⅴ在线观看| 丁香六月天网| 国产欧美另类精品又又久久亚洲欧美| 国产成人精品一,二区| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| videos熟女内射| 99热网站在线观看| av在线老鸭窝| 国产成人精品婷婷| 99久久精品一区二区三区| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| av天堂久久9| 91精品一卡2卡3卡4卡| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 99热国产这里只有精品6| 伊人亚洲综合成人网| 亚洲自偷自拍三级| 妹子高潮喷水视频| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| 美女主播在线视频| 嫩草影院入口| 日韩视频在线欧美| 成人黄色视频免费在线看| 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 国产男人的电影天堂91| 男人添女人高潮全过程视频| 色哟哟·www| 久久久精品免费免费高清| 夫妻午夜视频| 日韩成人伦理影院| 91在线精品国自产拍蜜月| 欧美日本中文国产一区发布| 国产精品久久久久久av不卡| 精品国产露脸久久av麻豆| 日韩免费高清中文字幕av| 永久网站在线| 亚洲人与动物交配视频| av播播在线观看一区| a级毛色黄片| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| tube8黄色片| 国产精品人妻久久久影院| 大又大粗又爽又黄少妇毛片口| 国国产精品蜜臀av免费| 国产成人一区二区在线| 卡戴珊不雅视频在线播放| 性高湖久久久久久久久免费观看| 性色avwww在线观看| av.在线天堂| 2021少妇久久久久久久久久久| 天天操日日干夜夜撸| 久久精品夜色国产| 国产真实伦视频高清在线观看| 在线亚洲精品国产二区图片欧美 | 精品久久国产蜜桃| 久久av网站| 亚洲情色 制服丝袜| 大又大粗又爽又黄少妇毛片口| 日韩av在线免费看完整版不卡| 国产av码专区亚洲av| 久久ye,这里只有精品| 三上悠亚av全集在线观看 | 青春草亚洲视频在线观看| 日日啪夜夜爽| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 欧美97在线视频| 日韩精品有码人妻一区| 亚洲精品第二区| 永久免费av网站大全| 亚洲va在线va天堂va国产| 大香蕉久久网| 亚洲国产精品一区三区| 秋霞伦理黄片| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 国产精品伦人一区二区| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 日本欧美视频一区| 桃花免费在线播放| 亚洲av不卡在线观看| 国产极品天堂在线| 黄色视频在线播放观看不卡| 美女主播在线视频| 久久精品国产自在天天线| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品一区二区大全| 亚洲av综合色区一区| 国内揄拍国产精品人妻在线| 国产成人精品一,二区| 日韩强制内射视频| 日韩熟女老妇一区二区性免费视频| 免费观看的影片在线观看| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 免费播放大片免费观看视频在线观看| 国产免费又黄又爽又色| 国产日韩一区二区三区精品不卡 | 高清黄色对白视频在线免费看 | www.色视频.com| 国产淫语在线视频| 精品少妇久久久久久888优播| 久久久久久久久久人人人人人人| 男人和女人高潮做爰伦理| 欧美亚洲 丝袜 人妻 在线| 18禁动态无遮挡网站| 久久久久久伊人网av| 一级毛片aaaaaa免费看小| 在线观看美女被高潮喷水网站| av天堂中文字幕网| 国产 精品1| 如日韩欧美国产精品一区二区三区 | 久久精品夜色国产| 国产极品粉嫩免费观看在线 | a级片在线免费高清观看视频| 国产成人免费无遮挡视频| 免费观看在线日韩| 日本黄色片子视频| 美女国产视频在线观看| 99久久精品一区二区三区| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 韩国av在线不卡| 精品国产一区二区久久| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 天堂中文最新版在线下载| 建设人人有责人人尽责人人享有的| 日本wwww免费看| 涩涩av久久男人的天堂| 我要看日韩黄色一级片| 精品国产一区二区三区久久久樱花| 欧美精品亚洲一区二区| 日韩中字成人| 精品视频人人做人人爽| 国精品久久久久久国模美| 精品熟女少妇av免费看| 青春草国产在线视频| 国产成人91sexporn| 亚洲人成网站在线观看播放| 亚洲高清免费不卡视频| 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 2018国产大陆天天弄谢| 国产成人精品福利久久| 国产精品一区www在线观看| av福利片在线| 欧美97在线视频| 国产黄片视频在线免费观看| 久久99一区二区三区| 嘟嘟电影网在线观看| 久久久久视频综合| 亚洲性久久影院| 国产在视频线精品| 欧美亚洲 丝袜 人妻 在线| 又爽又黄a免费视频| av天堂久久9| 最近中文字幕2019免费版| 在线免费观看不下载黄p国产| 最新中文字幕久久久久| 日韩精品免费视频一区二区三区 | 日韩制服骚丝袜av| 欧美变态另类bdsm刘玥| 精品少妇内射三级| 国产黄色免费在线视频| 精品亚洲成a人片在线观看| 成人18禁高潮啪啪吃奶动态图 | 国产黄色免费在线视频| 精品人妻一区二区三区麻豆| 99九九线精品视频在线观看视频| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品古装| 亚洲自偷自拍三级| 欧美日本中文国产一区发布| 下体分泌物呈黄色| 26uuu在线亚洲综合色| 久久精品熟女亚洲av麻豆精品| 国产成人免费无遮挡视频| 久久久亚洲精品成人影院| 蜜桃久久精品国产亚洲av| 成人特级av手机在线观看| 老司机影院毛片| 亚洲精品成人av观看孕妇| 少妇人妻久久综合中文| 欧美高清成人免费视频www| 插阴视频在线观看视频| 免费人妻精品一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 精品少妇久久久久久888优播| 永久免费av网站大全| 自线自在国产av| 日韩强制内射视频| av.在线天堂| 香蕉精品网在线| 久久人人爽人人爽人人片va| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 18禁裸乳无遮挡动漫免费视频| 高清视频免费观看一区二区| 亚洲av免费高清在线观看| 看非洲黑人一级黄片| 国产欧美日韩精品一区二区| 一区二区三区免费毛片| 蜜臀久久99精品久久宅男| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 久久免费观看电影| 极品少妇高潮喷水抽搐| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲精品一区蜜桃| 欧美性感艳星| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式| 成人18禁高潮啪啪吃奶动态图 | 女性被躁到高潮视频| 日韩欧美一区视频在线观看 | 一级av片app| 国产熟女午夜一区二区三区 | 99热这里只有是精品50| 久久久精品94久久精品| 人妻一区二区av| 国产精品久久久久久av不卡| av网站免费在线观看视频| 另类精品久久| 免费不卡的大黄色大毛片视频在线观看| 国产在线男女| 啦啦啦视频在线资源免费观看| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 中文字幕制服av| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 亚洲国产精品一区三区| 成人免费观看视频高清| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| av免费在线看不卡|