王海江 蔣天池 YUNGER John A 李亞莉 田 甜 王金剛
(1.新疆生產(chǎn)建設(shè)兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室, 石河子 832000; 2.石河子大學(xué)農(nóng)學(xué)院, 石河子 832000;3.州長(zhǎng)州立大學(xué)生物系, 芝加哥 60466; 4.新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所, 烏魯木齊 830091)
新疆鹽漬土不僅在分布廣度上存在明顯的區(qū)域分異性,其鹽害類型也有多種,如鹽脅迫、堿脅迫和鹽堿脅迫等[1]。當(dāng)土壤鹽分過(guò)多時(shí),由于某些離子過(guò)多產(chǎn)生了離子的競(jìng)爭(zhēng)作用,抑制了植物對(duì)另一些礦質(zhì)元素的吸收,從而造成礦質(zhì)營(yíng)養(yǎng)脅迫[2],鹽脅迫的內(nèi)在表現(xiàn)主要是滲透效應(yīng)和離子毒害,往往對(duì)植物造成的傷害也高于總鹽含量[3],因此,快速、準(zhǔn)確地獲取土壤鹽分離子含量是避免作物鹽堿脅迫和鹽漬化土壤改良的關(guān)鍵。
已有的研究中基于高光譜的土壤鹽分含量反演精度差異較大,如WENG等[10]建立的鹽分高光譜定量估測(cè)模型決定系數(shù)為0.89,ZHANG等[11]研究的決定系數(shù)為0.58,屈永華等[9]研究的決定系數(shù)為0.73,盧霞[12]測(cè)定的決定系數(shù)為0.56。綜上所述,利用高光譜技術(shù)能夠建立土壤反射特征和鹽分含量、離子組成的擬合關(guān)系[13],但因成土母質(zhì)、樣品干燥方式、粒徑大小、建模方法等因素的不同,其預(yù)測(cè)精度差異較大?;诖?,本文以新疆鹽漬化土壤為研究對(duì)象,分析不同土壤干燥處理、過(guò)篩粒徑所獲取的土壤光譜特征與鹽分離子含量的擬合關(guān)系,探究如何利用高光譜反射特征提高土壤鹽分離子含量反演的準(zhǔn)確性,以期為鹽漬化土壤的高光譜定量監(jiān)測(cè)提供理論依據(jù),也為新疆鹽漬化土壤的改良利用奠定基礎(chǔ)。
新疆高溫干燥和強(qiáng)烈蒸發(fā)條件,決定了土壤的上升水流占優(yōu)勢(shì)。在自然條件下,土壤的淋溶過(guò)程和脫鹽過(guò)程十分微弱,土壤中的可溶性鹽,借助毛管水上行積聚于表層,導(dǎo)致土壤普遍積鹽,形成大面積的鹽土。鹽土的鹽分組成與母巖的類型和成分有密切的聯(lián)系,為了獲取更具有代表性、典型性、鹽分離子組成豐富的樣品,在查閱大量資料的基礎(chǔ)上,土壤樣品采集于新疆維吾爾自治區(qū)的北疆和南疆鹽分含量較重的農(nóng)田,其中采集北疆博樂(lè)地區(qū)80個(gè),昌吉地區(qū)120個(gè),南疆阿克蘇地區(qū)84個(gè),喀什地區(qū)68個(gè),和田地區(qū)72個(gè),石河子墾區(qū)104個(gè),共計(jì)528個(gè)土壤樣品。為了更好地驗(yàn)證鹽分離子擬合模型的精度,將石河子墾區(qū)104個(gè)土樣不作為建模和外部檢驗(yàn)樣本,用于模型構(gòu)建后檢驗(yàn)?zāi)P偷钠者m性。
土壤樣品采集于地表0~5 cm土層,分別在每一個(gè)采樣點(diǎn)的東、西、南、北4個(gè)方向,5 m范圍內(nèi)隨機(jī)再采集1個(gè)土樣,5個(gè)土樣混合后作為該采樣點(diǎn)待測(cè)樣品,質(zhì)量約2 kg。采集后迅速封裝在自封袋中,拍攝樣點(diǎn)周邊自然景觀并記錄采集土壤樣品的經(jīng)緯度坐標(biāo),帶回實(shí)驗(yàn)室后去除礫石及動(dòng)植物殘骸等雜質(zhì)。去雜后的424個(gè)土壤樣品(除石河子墾區(qū)土樣)分為T(mén)1、T2和T3 3種處理,T1保持鮮樣狀態(tài),T2為自然風(fēng)干,T3為干燥箱105~110℃干燥,T1處理過(guò)2 mm篩,T2和T3處理研磨后分別過(guò)2、1、0.15 mm篩,處理后的土壤樣品待測(cè)光譜反射數(shù)值。土壤鹽分含量及離子組成測(cè)定方法參見(jiàn)文獻(xiàn)[14]。
表1 土壤鹽分含量和離子組成描述性統(tǒng)計(jì)分析Tab.1 Descriptive statistical analysis of soil salt content and ion composition
采用美國(guó)ASD 公司 Field Spec Pro FR 型光譜儀進(jìn)行土壤樣品測(cè)試,其波長(zhǎng)范圍350~2 500 nm,其中350~1 000 nm、1 000~2 500 nm波段光譜分辨率分別為3、10 nm,采樣間隔分別為1.4、2 nm。取制備好的土壤樣品放置于半徑5 cm、深1.5 cm(認(rèn)為是光學(xué)上無(wú)限厚)的黑色盛樣皿內(nèi),土壤裝填容重約 1.4 g/cm3。光譜測(cè)定在暗室中進(jìn)行,采用200 W鹵素?zé)糁糜谀繕?biāo)兩側(cè),光源入射角度25°,距離目標(biāo)30 cm,8°視場(chǎng)角的傳感器探頭置于離土壤樣本表面15 cm的垂直上方,探頭接收光譜的區(qū)域?yàn)橹睆?.1 cm的圓,小于盛樣皿的面積,探頭接收的均為土壤的反射光譜。測(cè)試之前先以白板進(jìn)行定標(biāo),每個(gè)土樣采集10條光譜曲線,算術(shù)平均后得到該土樣的實(shí)際反射光譜數(shù)據(jù)。
在進(jìn)行光譜數(shù)據(jù)變換和篩選的基礎(chǔ)上,選取與土壤鹽分離子顯著相關(guān)波段多的變換形式,采用支持向量機(jī)(Support vector machine,SVM)構(gòu)建鹽漬土鹽分離子含量光譜反演模型。設(shè)定SVM類型為4(即v- SVR),核函數(shù)類型為 2(即 RBF),采用訓(xùn)練集交叉驗(yàn)證和網(wǎng)格搜索法(Grid search)進(jìn)行參數(shù)尋優(yōu),依據(jù)均方差最小原則確定懲罰參數(shù)C和RBF核參量g的值;相關(guān)計(jì)算用Matlab R2012a 軟件的libsvm 3.11工具箱實(shí)現(xiàn)。
圖1 土壤鹽分離子含量與光譜特征相關(guān)性Fig.1 Correlation of soil salt ions content and spectral characteristics
光譜分析技術(shù)在分析土壤成分含量以及理化特征參數(shù)方面表現(xiàn)出良好的預(yù)測(cè)能力。在土壤水分[18]、鹽分[7-8]、有機(jī)質(zhì)[19-20]、氮素含量等[21-24]方面已開(kāi)展了大量的研究,但土壤樣品的光譜測(cè)試大都經(jīng)過(guò)風(fēng)干、過(guò)篩等預(yù)處理,以消除土壤含水率和粒徑對(duì)光譜測(cè)量結(jié)果造成的影響[13]。KIRSHNAN等[25]將土壤樣品采集、風(fēng)干、去雜和過(guò)篩后,放入105℃干燥箱干燥24 h,然后測(cè)定土壤樣品的光譜特征參數(shù),所構(gòu)建的土壤有機(jī)質(zhì)光譜反演模型決定系數(shù)R2達(dá)到0.873;DALAL等[26]對(duì)采集后的土壤樣品經(jīng)風(fēng)干、粉碎,過(guò)2 mm和0.25 mm篩預(yù)處理,分析土壤近紅外光譜與土壤含水率、有機(jī)碳和全氮含量的相關(guān)性,發(fā)現(xiàn)土壤粒徑越細(xì)光譜特征參數(shù)對(duì)土壤屬性反演精度越高;土壤的光譜反射率隨著粒徑的增大吸光度顯著增大,其反射率降低[27],土壤光譜反射率與土壤粒徑呈負(fù)相關(guān)關(guān)系,土壤粒徑小于0.15 mm時(shí),反射率增長(zhǎng)趨勢(shì)更為明顯[28];武紅旗等[29]比較了未研磨和過(guò)2 mm篩的土樣的光譜特征,利用光譜參數(shù)擬合土壤有機(jī)質(zhì)含量的精度,結(jié)果表明過(guò)2 mm土樣所建立的有機(jī)質(zhì)含量預(yù)測(cè)模型精度較高;朱琦等[30]分析了土壤樣品過(guò)20、40、60、80、100目篩所建立的土壤全氮含量光譜反演模型,顯示粒徑小的土樣模型預(yù)測(cè)精度較高。本研究中土壤取鮮樣的光譜反演模型精度較差,不能夠預(yù)測(cè)土壤鹽分離子含量,主要是因?yàn)橥寥浪志哂休^寬泛的光譜吸收帶,隨土壤含水率的增加反射率呈指數(shù)下降趨勢(shì)[31],對(duì)其他土壤屬性光譜特征的掩蓋作用明顯[32];從土樣風(fēng)干、干燥和粒徑組成上來(lái)看,干燥處理后利用光譜反演鹽分離子含量模型的預(yù)測(cè)能力較好,粒徑在0.15 mm處理擬合精度較高。
表2 土壤鹽分離子含量反演的模型構(gòu)建Tab.2 Models of hyperspectral inversion for soil salt ions content
圖2 K+、Na+、Ca2+和離子含量擬合模型的檢驗(yàn)Fig.2 Model checking of soil K+, Na+, Ca2+ and
1 郗金標(biāo),張福鎖,毛達(dá)如,等.新疆鹽漬土分布與鹽生植物資源[J].土壤通報(bào),2005,36(3): 299-303.
XI Jinbiao, ZHANG Fusuo, MAO Daru, et al. Saline-soil distribution and halophyte resources in Xinjiang [J]. Chinese Journal of Soil Science, 2005, 36(3): 299-303. (in Chinese)
2 郭全恩.土壤鹽分離子遷移及其分異規(guī)律對(duì)環(huán)境因素的響應(yīng)機(jī)制[D].楊凌:西北農(nóng)林科技大學(xué),2010.
GUO Quanen. The response mechanism of soil salt ion transfer and diversity rule to environment factors and risk analysis [D]. Yangling: Northwest A&F University, 2010. (in Chinese)
3 張永峰,殷薄.混合鹽堿脅迫對(duì)苗期紫花苜??寡趸富钚约氨┖康挠绊慬J].草業(yè)學(xué)報(bào), 2009,18(1): 46-50.
ZHANG Yongfeng, YIN Bo. Influences of salt and alkali mixed stresses on antioxidative activity and MDA content ofMedicagosativaat seedling stage [J]. Acta Prataculturae Sinica, 2009, 18(1): 46-50. (in Chinese)
4 BEN-DOR E,BANIN A.Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties [J]. SSSAJ, 1995, 59(2):364-372.
5 ENDOVITSKY A P, MINKINA T M, KALINICHENKO V P, et al. The association of ions in the soil solution of saline soils[J]. American Journal of Agricultural & Biological Science, 2014, 9(2): 238-244.
6 魏昌龍,趙玉國(guó),李德成,等.基于相似光譜匹配預(yù)測(cè)土壤有機(jī)質(zhì)和陽(yáng)離子交換量[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):81-88.
WEI Changlong, ZHAO Yuguo, LI Decheng, et al. Prediction of soil organic matter and cation exchange capacity based on spectral similarity measuring[J]. Transactions of the CSAE, 2014,30(1):81-88. (in Chinese)
7 彭杰,劉煥軍,史舟,等. 鹽漬化土壤光譜特征的區(qū)域異質(zhì)性及鹽分反演[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(17): 167-174.
PENG Jie, LIU Huanjun, SHI Zhou, et al. Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion[J]. Transactions of the CSAE, 2014, 30(17):167-174. (in Chinese)
8 SRIVASTAVA R, SETHI M, YADAV R K, et al. Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the indo-gangetic plains of haryana, India[J]. Journal of the Indian Society of Remote Sensing, 2017,45(2):307-315.
9 屈永華,段小亮,高鴻永,等.內(nèi)蒙古河套灌區(qū)土壤鹽分光譜定量分析研究[J].光譜學(xué)與光譜分析, 2009, 29(5): 1362-1366.
QU Yonghua, DUAN Xiaoliang, GAO Hongyong, et al. Quantitative retrieval of soil salinity using hyperspetral data in the region of Inner Mongolia Hetal irrigation district [J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1362-1366. (in Chinese)
10 WENG Y L, GONG P, ZHU Z L. Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River delta of China [J]. International Journal of Remote Sensing, 2008, 29(19): 5511-5531.
11 ZHANG T T, ZENG S L, GAO Y, et al. Using hyperspectral vegetation indices as a proxy to monitor soil salinity[J]. Ecological Indicators, 2011, 11(6): 1552-1562.
12 盧霞.濱海鹽土鹽分含量與其光譜特征的關(guān)系研究[J].水土保持通報(bào),2012,32(5):186-190.
LU Xia. Relationship between saline concentration and its reflectance spectra for seashore saline soil [J]. Bulletin of Soil and Water Conservation, 2012, 32(5): 186-190. (in Chinese)
13 李民贊,鄭立華,安曉飛,等. 土壤成分與特性參數(shù)光譜快速檢測(cè)方法及傳感技術(shù)[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2013,44(3):73-87.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20130315&flag=1.DOI:10.6041/j.issn.1000-1298.2013.03.015.
LI Minzan, ZHENG Lihua, AN Xiaofei, et al.Fast measurement and advanced sensors of soil parameters with NIR spectroscopy [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 73-87. (in Chinese)
14 鮑士旦. 土壤農(nóng)化分析[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.
15 呂真真,劉廣明,楊勁松.新疆瑪納斯河流域土壤鹽分特征研究[J].土壤學(xué)報(bào),2013,50(2): 289-295.
Lü Zhenzhen, LIU Guangming, YANG Jingsong. Soil salinity characteristics of manas river valley in Xinjiang [J].Acta Pedologica Sinica, 2013, 50(2): 289-295. (in Chinese)
16 向紅英,柳維揚(yáng),彭杰,等. 基于連續(xù)統(tǒng)去除法的南疆水稻土有機(jī)質(zhì)含量預(yù)測(cè)[J].土壤,2016,48(2): 389-394.
XIANG Hongying, LIU Weiyang, PENG Jie, et al. Predicting organic matter content in paddy soil using method of continuum removal in southern Xinjiang, China [J]. Soils, 2016, 48(2): 389-394. (in Chinese)
17 劉亞秋,陳紅艷,王瑞燕,等. 基于可見(jiàn)/近紅外光譜的黃河口區(qū)土壤鹽分及其主要離子的定量分析[J].中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(10): 1925-1935.
LIU Yaqiu, CHEN Hongyan, WANG Ruiyan, et al. Quantitative analysis of soil salt and its main ions based on visible/near infrared spectroscopy in estuary area of Yellow River [J]. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935. (in Chinese)
18 王海江,張花玲,任少亭,等. 基于高光譜反射特性的土壤水鹽狀況預(yù)測(cè)模型研究[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014, 45(7):133-138.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20140721&flag=1. DOI:10.6041/j.issn.1000-1298.2014.07.021.
WANG Haijiang, ZHANG Hualing, REN Shaoting, et al. Prediction model of soil water-salt based on hyperspectral reflectance characteristics[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 133-138. (in Chinese)
19 侯艷軍,塔西甫拉提·特依拜,買(mǎi)買(mǎi)提·沙吾提,等. 荒漠土壤有機(jī)質(zhì)含量高光譜估算模型[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(16): 113-120.
HOU Yanjun, TASHPOLAT·Tiyip, MAMAT·Sawut, et al. Estimation model of desert soil organic matter content using hyperspectral data [J]. Transactions of the CSAE, 2014, 30(16): 113-120. (in Chinese)
20 孫建英,李民贊,唐寧,等. 東北黑土的光譜特性及其與土壤參數(shù)的相關(guān)性分析[J]. 光譜學(xué)與光譜分析, 2007, 27(8): 1502-1505.
SUN Jianying,LI Minzan,TANG Ning,et al.Spectral characteristics and their correlation with soil parameters of black soil in northeast China [J]. Spectroscopy and Spectral Analysis, 2007, 27(8):1502-1505. (in Chinese)
21 盧艷麗,白由路,王磊,等. 黑土土壤中全氮含量的高光譜預(yù)測(cè)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(1): 256-261.
LU Yanli, BAI Youlu, WANG Lei, et al. Determination for total nitrogen content in black soil using hyperspectral data[J].Transactions of the CSAE, 2010, 26(1): 256-261. (in Chinese)
22 張娟娟,田永超,姚霞,等. 基于高光譜的土壤全氮含量估測(cè)[J]. 自然資源學(xué)報(bào), 2011, 26(5): 881-890.
ZHANG Juanjuan, TIAN Yongchao, YAO Xia, et al. Estimating soil total nitrogen content based on hyperspectral analysis technology [J]. Journal of Natural Resources, 2011, 26(5): 881-890. (in Chinese)
23 徐麗華,謝德體,魏朝富,等. 紫色土土壤全氮和全磷含量的高光譜遙感預(yù)測(cè)[J]. 光譜學(xué)與光譜分析, 2013, 33(3): 723-727.
XU Lihua, XIE Deti, WEI Chaofu, et al. Prediction of total nitrogen and total phosphorus concentrations in purple soil using hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2013,33(3):723-727.(in Chinese)
24 張瑤,李民贊,鄭立華,等.基于近紅外光譜分析的土壤分層氮素含量預(yù)測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):121-126.
ZHANG Yao, LI Minzan, ZHENG Lihua, et al. Prediction of soil total nitrogen content in different layers based on near infrared spectral analysis[J]. Transactions of the CSAE, 2015, 31(9): 121-126. (in Chinese)
25 KIRSHNAN P,ALEXANDER J D,BUTLER B J,et al.Reflectance technique for predicting soil organic matter[J]. SSSAJ, 1980,44(6) :1282-1285.
26 DALAL R C, HENRY R J. Simultanous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. SSSAJ, 1986,50(1): 120-123.
27 鮑一丹,何勇,方慧,等.土壤的光譜特征及氮含量的預(yù)測(cè)研究[J].光譜學(xué)與光譜分析,2007,27(1):62-65.
BAO Yidan, HE Yong, FANG Hui, et al. Spectral characterization and N content prediction of soil with different particle size and moisture content [J]. Spectroscopy and Spectral Analysis, 2007, 27(1): 62-65. (in Chinese)
28 馬創(chuàng),申廣榮,王紫君,等.不同粒徑土壤的光譜特征差異分析[J].土壤通報(bào),2015,46(2): 292-298.
MA Chuang, SHEN Guangrong, WANG Zijun, et al.Analysis of spectral characteristics for different soil particle sizes [J]. Chinese Journal of Soil Science, 2015, 46(2): 292-298. (in Chinese)
29 武紅旗,范燕敏,何晶,等.不同粒徑土壤的反射光譜對(duì)荒漠土壤有機(jī)質(zhì)含量的響應(yīng)[J].草地學(xué)報(bào),2014,22(2):266-270.
WU Hongqi, FAN Yanmin, HE Jing, et al.Response of soil hyperspectral characteristics of different particle sizes to soil organic matter [J]. Acta Agrectir Sinica, 2014, 22(2):266-270. (in Chinese)
30 朱琦,董桂梅,楊仁杰,等.土壤粒度差異對(duì)光譜法檢測(cè)土壤全氮含量的影響研究[J].天津農(nóng)學(xué)院學(xué)報(bào), 2015, 22(4): 29-32.
ZHU Qi, DONG Guimei, YANG Renjie, et al. Influences of soil particle size difference on detecting total nitrogen contents in soil by spectrometry [J]. Journal of Tianjin Agricultural College, 2015, 22(4): 29-32.(in Chinese)
31 何挺,王靜,程燁,等. 土壤水分光譜特征研究[J]. 土壤學(xué)報(bào), 2006, 43(6): 1027-1032.
HE Ting, WANG Jing, CHENG Ye, et al. Spectral features of soil moisture [J].Acta Pedologica Sinica, 2006, 43(6): 1027-1032. (in Chinese)
32 劉秀英,王力,宋榮杰,等.黃綿土風(fēng)干過(guò)程中土壤含水率的光譜預(yù)測(cè)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):266-272.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150439&flag=1.DOI:10.6041/j.issn.1000-1298.2015.04.039.
LIU Xiuying, WANG Li, SONG Rongjie, et al. Prediction of soil moisture content in air-drying loess using spectral data[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4):266-272. (in Chinese)
33 代希君,張艷麗,彭杰,等. 土壤水溶性鹽基離子的高光譜反演模型及驗(yàn)證[J].農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(22): 139-145.
DAI Xijun, ZHANG Yanli, PENG Jie, et al. Prediction and validation of water-soluble salt ions content using hyperspectral data [J]. Transactions of the CSAE, 2015, 31(22): 139-145. (in Chinese)
34 張俊華,秦君琴,李明.基于土壤光譜特征的寧夏銀北地區(qū)鹽堿地鹽分預(yù)測(cè)研究[J].水土保持通報(bào), 2013, 33(5): 123-129, 164.
ZHANG Junhua, QIN Junqin, LI Ming. Prediction of soil salt content based on spectral characteristics of soil in Northern Yinchuan City, Ningxia Hui Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2013, 33(5): 123-129, 164. (in Chinese)