丁偉森徐崢吳人照童曄玲魯盈
1.浙江中醫(yī)藥大學(xué) 杭州 310053 2.浙江省中醫(yī)藥研究院 3.浙江省立同德醫(yī)院
系統(tǒng)性紅斑狼瘡(systemic lupus erythematosus,SLE)是一種自身免疫功能紊亂所導(dǎo)致的系統(tǒng)性疾病,其中狼瘡腎炎(lupus nephritis,LN)是SLE最常見和最嚴(yán)重的臟器損害。LN作為慢性腎臟?。╟hronic kidney disease,CKD)的一種,具有疾病活動(dòng)與緩解交替、病程長(zhǎng)、病情易反復(fù)及并發(fā)癥多等特點(diǎn)[1-2]。糖皮質(zhì)激素是目前國(guó)內(nèi)外公認(rèn)的控制狼瘡活動(dòng),改善病情的一線藥物[3],它能快速緩解急性炎癥狀態(tài)、改善腎實(shí)質(zhì)損傷,在LN緩解期治療中發(fā)揮重要作用,極大地提高了患者的近期生存率[4]。但是,長(zhǎng)期激素應(yīng)用加之慢性炎癥加劇了患者脂代謝紊亂[5-6],導(dǎo)致動(dòng)脈粥樣硬化發(fā)生的風(fēng)險(xiǎn)大幅升高,嚴(yán)重威脅著患者的遠(yuǎn)期生存,尤其是激素耐藥的難治性LN患者。
LN的中醫(yī)病機(jī)中“瘀血”占有十分重要地位[7],“瘀血”在動(dòng)脈粥樣硬化形成中同樣占據(jù)著重要地位,如在冠心病常見中醫(yī)證候要素中“瘀血”位居首位,血脂異常則是瘀血證相關(guān)危險(xiǎn)因素之一[8-9]。活血化瘀中藥可通過調(diào)節(jié)脂質(zhì)代謝、穩(wěn)定動(dòng)脈粥樣硬化斑塊以及抗炎、抗血小板聚集等多種途徑發(fā)揮抗動(dòng)脈粥樣硬化的作用,其中三七是最常被選用的藥物[10-12]。研究證明,三七主要有效成分三七皂苷(Panax notoginseng saponin,PNS)能顯著下調(diào)狼瘡患者外周血淋巴細(xì)胞多藥耐藥基因編碼蛋白P-糖蛋白(P-glycoprotein,P-gp)的表達(dá),緩解激素耐藥[13];進(jìn)一步研究證實(shí)沉默信息調(diào)節(jié)因子相關(guān)酶1(silent information regulation factor related enzyme 1,SIRT1)是調(diào)控 P-gp 表達(dá)的關(guān)鍵因子[14-15]。因此,深入研究活血化瘀中藥調(diào)控LN激素耐藥和改善脂代謝紊亂的機(jī)制具有重要意義。
本研究擬在前期研究基礎(chǔ)上,從脂代謝角度出發(fā),選擇脂代謝調(diào)控的關(guān)鍵靶點(diǎn)之一的過氧化物酶增殖體活化受體γ(peroxidase activated receptor gamma,PPARγ)為切入點(diǎn),初步研究其與SIRT1的相關(guān)性,進(jìn)一步探索PNS在調(diào)控LN小鼠激素耐藥和脂代謝紊亂中的效應(yīng)以及相關(guān)作用機(jī)制。
1.1 實(shí)驗(yàn)動(dòng)物 NZB/WF1 LN小鼠,雌雄各半,體質(zhì)量20~24g,委托南京大學(xué)-南京生物醫(yī)藥研究院從美國(guó) Jackson Laboratory進(jìn)口 [許可證號(hào):SCXK(蘇)2017-0008],飼養(yǎng)于浙江省中醫(yī)藥研究院動(dòng)物中心[許可證號(hào):SYXK(浙)2014-0003]。飼養(yǎng)條件:溫度(21±1)℃,濕度 50%~60%,自由飲水,標(biāo)準(zhǔn)普通飼料喂養(yǎng)。實(shí)驗(yàn)動(dòng)物飼養(yǎng)、使用、標(biāo)本處置和操作均按照3R原則給予人道主義關(guān)懷。動(dòng)物經(jīng)適應(yīng)性飼養(yǎng)7d后進(jìn)行尿液代謝檢測(cè),測(cè)定24h尿蛋白含量。
1.2 主要試劑及儀器 小鼠紅細(xì)胞裂解液購(gòu)于碧云天生物技術(shù)有限公司(批號(hào):20161015),注射用甲潑尼龍琥珀酸鈉購(gòu)于輝瑞制藥有限公司(40mg/支,批號(hào):20160904),PNS(血塞通注射液)購(gòu)于廣西梧州制藥(集團(tuán))股份有限公司(批號(hào):20160707),PPARγ siRNA和 PPARγ慢病毒質(zhì)粒均委托吉瑪制藥技術(shù)有限公司(上海)合成和制備(批號(hào):20161128、20170727),RNA提取試劑盒、Trizol試劑、RNA逆轉(zhuǎn)錄試劑盒、熒光定量RT-PCR反應(yīng)試劑盒均購(gòu)于TAKARA寶生物工程有限公司(批號(hào):20170325、20170228、20170304、20170214),兔抗小鼠PPARγ及SIRT1抗體(一抗)、兔抗小鼠三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)體A1(adenosine triphosphate binding cassette transporter A1,ABCA1)流式檢測(cè)抗體、FITC標(biāo)記羊抗兔IgG多克隆二抗均購(gòu) 于 Abcam 公 司 ( 批 號(hào) :20170207、20170218、20170910、20170215),細(xì)胞胞質(zhì)蛋白和核蛋白提取試劑盒為碧云天生物技術(shù)有限公司產(chǎn)品(批號(hào):20170211),Cholesterol/Cholesteryl Ester Assay 試 劑盒購(gòu)于Abcam公司(批號(hào):20170618)。流式細(xì)胞儀購(gòu)于Beckman Coulter公司,Roche 480Ⅱ型RT-PCR儀為Roche公司產(chǎn)品,F(xiàn)lour Chem E高靈敏化學(xué)發(fā)光凝膠成像分析系統(tǒng)為ProteinSimple公司產(chǎn)品,Biotek Epoch 2酶標(biāo)儀購(gòu)于美國(guó)伯騰公司,Nikon TS100倒置熒光顯微鏡為Nikon公司產(chǎn)品。
1.3 方法
1.3.1 細(xì)胞模型制備 在生物安全柜中,采用密度梯度法分離NZB/WF1小鼠脾淋巴細(xì)胞,將淋巴細(xì)胞懸液加入24孔細(xì)胞培養(yǎng)板中,每孔培養(yǎng)體系為1mL,細(xì)胞濃度106個(gè)/mL。除對(duì)照組外,各孔均加入終濃度2μg·mL-1的甲基強(qiáng)的松龍,在 37℃、5%CO2培養(yǎng)箱中培養(yǎng),分別于0、24、72h觀察細(xì)胞形態(tài)變化,72h后收集細(xì)胞,以流式細(xì)胞術(shù)檢測(cè)P-gp蛋白表達(dá),Western blot檢測(cè)SIRT1蛋白表達(dá)。參考文獻(xiàn)[14-16]的結(jié)果,本實(shí)驗(yàn)中以SIRT1蛋白表達(dá)增高表示NZB/WF1小鼠脾淋巴細(xì)胞激素耐藥誘導(dǎo)成功。
1.3.2 siRNA和慢病毒質(zhì)粒轉(zhuǎn)染 根據(jù)產(chǎn)品試劑盒及說明書進(jìn)行操作。PPARγ序列:上游:5'-GCAAGAGAUCACAGAGUAUTT-3', 下 游 :5'-AUACU-CUGUGAUCUCUUGCTT-3'。慢病毒滴度:5×108TU·mL-1。轉(zhuǎn)染72h后檢測(cè),感染復(fù)數(shù)(multiplicity of infection,MOI)值=10時(shí)說明已達(dá)到良好的轉(zhuǎn)染和表達(dá)效率。
1.3.3 分組及干預(yù) 將小劑量甲基強(qiáng)的松龍誘導(dǎo)產(chǎn)生激素耐藥的淋巴細(xì)胞,分為模型組(LN小鼠脾淋巴細(xì)胞激素耐藥組)、PPARγ siRNA+PNS組、PPARγ質(zhì)粒轉(zhuǎn)染組和PNS組,并將未誘導(dǎo)激素耐藥的NZB/WF1小鼠脾淋巴細(xì)胞作為對(duì)照組,每組設(shè)3個(gè)復(fù)孔。siRNA終濃度2μg·mL-1。慢病毒質(zhì)粒按照MOI=10,即病毒數(shù):細(xì)胞數(shù)=10:1加入每孔。PNS終濃度根據(jù)前期研究確定為200μg·mL-1[14]。培養(yǎng)72h后,提取各組細(xì)胞進(jìn)行后續(xù)檢測(cè)。
1.3.4 檢測(cè)方法
1.3.4.1 Real-time PCR法檢測(cè)各組淋巴細(xì)胞PPARγ和SIRT1 mRNA表達(dá) 參照Trizol抽提試劑盒及說明書,提取干預(yù)72h后的脾淋巴細(xì)胞總RNA進(jìn)行逆轉(zhuǎn)錄反應(yīng)。引物擴(kuò)增設(shè)計(jì)見表1。逆轉(zhuǎn)錄反應(yīng)條件:37℃ 15min,85℃ 5s,4℃保存。PCR 反應(yīng)條件:95℃30min,1 個(gè)循環(huán);95℃ 5s,60℃ 30s,共 40 個(gè)循環(huán);95℃ 15s,60℃ 1min,95℃ 15s,1 個(gè)循環(huán)。將各組逆轉(zhuǎn)錄產(chǎn)物應(yīng)用Roche 480Ⅱ PCR儀進(jìn)行反應(yīng)后得出Mean CT值,采用2-△△Ct法進(jìn)行數(shù)據(jù)分析。
1.3.4.2 Western blot檢測(cè)各組淋巴細(xì)胞PPARγ和SIRT1蛋白表達(dá) 按照試劑盒說明書分別提取胞質(zhì)蛋白和核蛋白。以牛血清白蛋白為標(biāo)準(zhǔn),以BCA法進(jìn)行蛋白定量。取適量蛋白樣品,10%SDS-PAGE電泳(300V,40min),300mA 轉(zhuǎn)膜 2h,放入 5%脫脂牛奶中室溫震蕩封閉1h;一抗4℃過夜。TBST反復(fù)洗膜后,將膜與二抗進(jìn)行孵育,室溫?fù)u床震蕩1h,TBST洗膜后ECL顯色,凝膠圖像分析系統(tǒng)測(cè)定各帶吸光度(A)值作定量分析。
表1 引物序列Fig.1 Primer sequence
1.3.4.3 熒光分光光度計(jì)檢測(cè)各組淋巴細(xì)胞膽固醇酯的含量 將培養(yǎng)72h后的各組細(xì)胞用預(yù)冷PBS洗1~2次,Nonidet P40處理細(xì)胞,離心后轉(zhuǎn)移橙色層液相至新的離心管,置于50℃烘箱中30min,每孔加入200μL Cholesterol Assay Buffer,震蕩溶解,37℃ 5%CO2培養(yǎng)箱孵育1h后,熒光分光分度計(jì)按照Ex/Em=535/585nm,測(cè)定OD值。
1.3.4.4 流式細(xì)胞儀檢測(cè)各組淋巴細(xì)胞ABCA1蛋白表達(dá) 提取培養(yǎng)72h后的各組細(xì)胞,以100μL含1%疊氮化鈉和10%胎牛血清的PBS重懸,加入兔抗小鼠ABCA1抗體(一抗),室溫孵育30min。離心后PBS洗3次。用100μL含5%牛血清白蛋白的PBS重懸,加入FITC標(biāo)記的羊抗兔IgG多克隆抗體(二抗),室溫避光孵育30min。離心后PBS洗3次。PBS 500μL重懸,流式細(xì)胞儀檢測(cè)。
1.4 統(tǒng)計(jì)學(xué)分析 采用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料以±s表示。兩組間均數(shù)比較采用方差分析,行正態(tài)性與方差齊性檢驗(yàn)。多組間比較方差齊時(shí)采用LSD-t檢驗(yàn),方差不齊時(shí)采用Dunnett’s T3檢驗(yàn)。計(jì)數(shù)資料組間比較采用χ2檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 各組小鼠脾淋巴細(xì)胞PPARγ和SIRT1 mRNA表達(dá)比較 與對(duì)照組比較,模型組PPARγ mRNA表達(dá)降低,SIRT1 mRNA 表達(dá)增高(P<0.05);與模型組比較,PPARγ siRNA+PNS組、PPARγ質(zhì)粒轉(zhuǎn)染組和PNS組PPARγ mRNA表達(dá)均上調(diào),而SIRT1 mRNA表達(dá)均下調(diào)(P<0.05),其中PPARγ質(zhì)粒轉(zhuǎn)染組與PNS組比較,SIRT1 mRNA表達(dá)差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。見表2。
2.2 各組小鼠脾淋巴細(xì)胞PPARγ和SIRT1蛋白表達(dá)比較 與對(duì)照組比較,模型組中PPARγ蛋白表達(dá)降低,SIRT1蛋白表達(dá)增高(P<0.05);與模型組比較,PPARγ質(zhì)粒轉(zhuǎn)染組、PNS組PPARγ蛋白表達(dá)均增高(P<0.05),而PPARγ siRNA+PNS組PPARγ蛋白表達(dá)無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05);與模型組比較,PPARγ siR-NA+PNS組、PPARγ質(zhì)粒轉(zhuǎn)染組和PNS組中SIRT1蛋白表達(dá)均降低(P<0.05)。見圖1、表3。2.3 各組LN小鼠脾淋巴細(xì)胞內(nèi)膽固醇酯含量比較與對(duì)照組比較,模型組和PPARγ siRNA+PNS組細(xì)胞
表2 各組小鼠脾淋巴細(xì)胞中PPARγ及SIRT1 mRNA表達(dá)(±s,n=3)Tab.2 Expression of PPAR gamma and SIRT1 mRNA in spleen lymphocytes of mice in each group(±s,n=3)
表2 各組小鼠脾淋巴細(xì)胞中PPARγ及SIRT1 mRNA表達(dá)(±s,n=3)Tab.2 Expression of PPAR gamma and SIRT1 mRNA in spleen lymphocytes of mice in each group(±s,n=3)
注:與對(duì)照組比較,*P<0.05;與模型組比較,#P<0.05;與 PPARγ siRNA+PNS 組比較,△P<0.05;與 PPARγ 質(zhì)粒轉(zhuǎn)染組比較,▲P<0.05。Note:Compared with control group,*P<0.05;compared with model group,#P<0.05;compared with PPARγ siRNA and PNS group,△P<0.05;compared with PPARγ plasmid transfection group,▲P<0.05.
2.1584±0.0024*0.1037±0.0061*#0.0097±0.0033*#△0.0074±0.0092*#△1±0.0064組別 n mRNA相對(duì)表達(dá)量PPARγ SIRT1模型組PPARγ siRNA+PNS組PPARγ質(zhì)粒轉(zhuǎn)染組PNS組對(duì)照組3 3 3 3 3 0.0083±0.0042*0.0197±0.0085*#2.9281±0.0035*#△1.7654±0.0071*#△▲1±0.0053
圖1 各組小鼠脾淋巴細(xì)胞中PPARγ及SIRT1蛋白表達(dá)Fig.1 Expression of PPAR gamma and SIRT1 protein in spleen lymphocytes of mice in each group
表3 各組小鼠脾淋巴細(xì)胞中PPARγ及SIRT1蛋白表達(dá)(±s,n=3)Tab.3 Expression of PPAR gamma and SIRT1 protein in spleen lymphocytes of mice in each group(±s,n=3)
表3 各組小鼠脾淋巴細(xì)胞中PPARγ及SIRT1蛋白表達(dá)(±s,n=3)Tab.3 Expression of PPAR gamma and SIRT1 protein in spleen lymphocytes of mice in each group(±s,n=3)
注:與對(duì)照組比較,*P<0.05;與模型組比較,#P<0.05;與 PPARγ siRNA+PNS 組比較,△P<0.05;與 PPARγ 質(zhì)粒轉(zhuǎn)染組比較,▲P<0.05。Note:Compared with control group,*P<0.05;compared with model group,#P<0.05;compared with PPARγ siRNA and PNS group,△P<0.05;compared with PPARγ plasmid transfection group,▲P<0.05.
組別 n蛋白相對(duì)表達(dá)PPARγ/β-Actin SIRT1/β-Actin 0.99±0.03*0.87±0.02*#0.42±0.09*#△0.33±0.06*#△▲0.52±0.05模型組PPARγ siRNA+PNS組PPARγ質(zhì)粒轉(zhuǎn)染組PNS組對(duì)照組3 3 3 3 3 0.24±0.07*0.22±0.08*0.76±0.06*#△0.75±0.04*#△0.32±0.06
內(nèi)膽固醇酯含量降低(P<0.05);而PPARγ質(zhì)粒轉(zhuǎn)染組、PNS組細(xì)胞內(nèi)膽固醇酯含量升高(P<0.05)。與模型組比較,PPARγ質(zhì)粒轉(zhuǎn)染組、PNS組細(xì)胞內(nèi)膽固醇酯的含量均增高(P<0.05);但PPARγ siRNA+PNS組與模型組比較無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05)。見表4。
表4 各組小鼠脾淋巴細(xì)胞內(nèi)膽固醇酯表達(dá)(±s,n=3)Tab.4 Cholesteryl ester expression in spleen lymphocytes of mice in each group(±s,n=3)
表4 各組小鼠脾淋巴細(xì)胞內(nèi)膽固醇酯表達(dá)(±s,n=3)Tab.4 Cholesteryl ester expression in spleen lymphocytes of mice in each group(±s,n=3)
注:與對(duì)照組比較,*P<0.05;與模型組比較,#P<0.05;與 PPARγ siRNA+PNS 組比較,△P<0.05;與 PPARγ 質(zhì)粒轉(zhuǎn)染組比較,▲P<0.05。Note:Compared with control group,*P<0.05;compared with model group,#P<0.05;compared with PPARγ siRNA and PNS group,△P<0.05;compared with PPARγ plasmid transfection group,▲P<0.05.
組別OD值0.762±0.071*0.824±0.045*2.347±0.032*#△2.036±0.087*#△▲1.413±0.035模型組PPARγ siRNA+PNS組PPARγ質(zhì)粒轉(zhuǎn)染組PNS組對(duì)照組
2.4 各組小鼠脾淋巴細(xì)胞ABCA1蛋白表達(dá)比較與對(duì)照組比較,模型組、PPARγ siRNA+PNS組ABCA1蛋白表達(dá)增高,PPARγ質(zhì)粒轉(zhuǎn)染組和PNS組ABCA1蛋白表達(dá)降低(P<0.05);與模型組比較,PPARγ siRNA+PNS組、PPARγ質(zhì)粒轉(zhuǎn)染組、PNS組中ABCA1蛋白表達(dá)均降低(P<0.05),其中PNS組ABCA1蛋白表達(dá)下降程度最高(P<0.05)。見圖2。
三七是五加科多年生草本植物,具有止血、散瘀、定痛等作用,為活血化瘀,止血生新的要藥。作為活血化瘀藥的代表,它既能化瘀又能補(bǔ)虛,正符合SLE本虛標(biāo)實(shí)的病機(jī)特點(diǎn),也是臨床上治療LN的常用藥。PNS是三七主要有效活性成分之一。既往研究表明,PNS具有調(diào)節(jié)脂代謝的作用[17]。藥理學(xué)研究還發(fā)現(xiàn),其具有抗血栓形成、抗缺血性損傷、抗血小板聚集、擴(kuò)張小血管、改善腎血管微循環(huán)、增加腎血流量等作用[18]。本研究中證實(shí)PNS能夠降低激素耐藥LN小鼠脾淋巴細(xì)胞中SIRT1表達(dá),結(jié)合前期研究結(jié)果[14-16],再次證實(shí)PNS通過SIRT1/叉頭轉(zhuǎn)錄因子(forkhead transcription factor 1,F(xiàn)oxO1)/多藥耐藥-1(multidrug resistance-1,MDR-1)/P-gp 信號(hào)通路降低 SIRT1 和P-gp表達(dá),逆轉(zhuǎn)LN鼠脾淋巴細(xì)胞激素耐藥。
PPARγ是一類配體依賴的核受體轉(zhuǎn)錄因子,同時(shí)也是重要的激素受體,主要位于脂肪細(xì)胞、血管平滑肌細(xì)胞中,在淋巴細(xì)胞和巨噬細(xì)胞中也有分布[19]。研究證實(shí),PPARγ是細(xì)胞脂代謝調(diào)控的關(guān)鍵靶標(biāo)之一,主要參與細(xì)胞內(nèi)脂質(zhì)的合成[20-21]。SIRT1作為一種輔酶Ⅰ依賴性的Ⅲ類組蛋白去乙?;?,其底物就包括PPARγ[22]。在代謝性疾病領(lǐng)域的研究已證實(shí)PPARγ和SIRT1之間關(guān)系密切[23-24]。SIRT1通過對(duì)PPARγ的作用,促進(jìn)“褐變”的白色脂肪組織分化和細(xì)胞內(nèi)脂質(zhì)合成[25]。在對(duì)慢性疾病防御機(jī)制的研究中發(fā)現(xiàn),抑制SIRT1能夠減輕成人高氧化應(yīng)激和炎癥反應(yīng)[26]。本研究采用PNS和慢病毒質(zhì)粒干預(yù)PPARγ,結(jié)果顯示PNS既能提高激素耐藥LN小鼠脾淋巴細(xì)胞內(nèi)PPARγ表達(dá),也能降低SIRT1表達(dá),且對(duì)SIRT1表達(dá)的調(diào)控與PPARγ相關(guān),一方面改善了LN淋巴細(xì)胞的激素耐藥,另一方面調(diào)控了由PPARγ介導(dǎo)的細(xì)胞內(nèi)脂代謝。
圖2 各組小鼠脾淋巴細(xì)胞中ABCA1蛋白表達(dá)Fig.2 Expression of ABCA1 protein in spleen lymphocytes of mice in each group
研究發(fā)現(xiàn),LN患者外周血總膽固醇、甘油三酯、低密度脂蛋白膽固醇水平較正常人群和不伴L(zhǎng)N的患者增高[27]。眾所周知,長(zhǎng)療程使用糖皮質(zhì)激素可致LN患者外周血血脂水平升高。課題組在前項(xiàng)研究中也觀察到,LN小鼠激素耐藥模型外周血甘油三酯水平明顯升高。研究證實(shí),淋巴細(xì)胞內(nèi)存在脂質(zhì)代謝過程,而且細(xì)胞內(nèi)的脂質(zhì)調(diào)控水平與血清有所不同[28-29]。本項(xiàng)實(shí)驗(yàn)結(jié)果表明,激素耐藥LN小鼠脾淋巴細(xì)胞內(nèi)存在脂代謝紊亂,PNS可以提高細(xì)胞內(nèi)膽固醇酯含量,改善脂代謝紊亂,維持正常脂質(zhì)水平。ABCA1是一類依賴三磷酸腺苷(adenosine triphosphate,ATP)的轉(zhuǎn)運(yùn)體膜蛋白。作為參與介導(dǎo)細(xì)胞內(nèi)膽固醇流出的關(guān)鍵蛋白,ABCA1通過修飾細(xì)胞膜脂筏或直接激活信號(hào)通路介導(dǎo)脂質(zhì)流出,發(fā)揮抗炎功能[30],它能結(jié)合細(xì)胞表面貧脂或無(wú)脂的載脂蛋白A-Ⅰ(apolipoprotein A-Ⅰ,apoA-Ⅰ),促進(jìn)高密度脂蛋白生成,啟動(dòng)膽固醇逆向轉(zhuǎn)運(yùn)(reverse cholesterol transport,RCT)過程,對(duì)防止動(dòng)脈粥樣硬化形成具有重要意義[31-32]。本研究通過檢測(cè)細(xì)胞內(nèi)膽固醇酯含量和ABCA1蛋白表達(dá),結(jié)果顯示激素耐藥LN小鼠脾淋巴細(xì)胞內(nèi)膽固醇酯合成減少,含量降低,細(xì)胞內(nèi)脂代謝出現(xiàn)紊亂;同時(shí)細(xì)胞內(nèi)RCT過程異常激活,膽固醇外流增加。PNS干預(yù)能降低耐藥小鼠脾淋巴細(xì)胞內(nèi)ABCA1蛋白表達(dá),提高細(xì)胞內(nèi)膽固醇酯含量,結(jié)合前文所述PNS能提高耐藥模型細(xì)胞內(nèi)PPARγ表達(dá),揭示PNS可能通過多個(gè)作用途徑改善細(xì)胞內(nèi)脂代謝紊亂,維持細(xì)胞內(nèi)脂質(zhì)水平。
綜上所述,激素耐藥LN小鼠脾淋巴細(xì)胞內(nèi)存在脂代謝紊亂,PNS能通過上調(diào)PPARγ表達(dá),降低SIRT1表達(dá);并抑制ABCA1蛋白高表達(dá)和提高細(xì)胞內(nèi)膽固醇酯含量,起到既逆轉(zhuǎn)激素耐藥又改善脂質(zhì)代謝紊亂的雙重效應(yīng)。本研究結(jié)果表明以三七為代表的活血化瘀類中藥存在多方面的作用,為臨床運(yùn)用中藥逆轉(zhuǎn)LN激素耐藥,提高療效,防治動(dòng)脈粥樣硬化,改善患者遠(yuǎn)期預(yù)后及生存質(zhì)量提供了科學(xué)依據(jù)。
[1]Baraka E,Dein M E,Farouk H,et al.Hyperhomocysteinemiaand metabolic syndrome are risk factorsfor sub-clinical atherosclerosis in women with systemic lupus erythematosus[J].Egyptian Rheumatologist,2014,37(2):67-74.
[2]Frieri M,Stampfl H.Systemic lupus erythematosus and atherosclerosis:Review of the literature[J].Autoimmun Rev,2015,15(1):16-21.
[3]Mina R,von Scheven E,Ardoin S P,et al.Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus[J].Arthritis Care Res,2012,64(3):375-383.
[4]Ruiz-Irastorza G,Danza A,Khamashta M.Glucocorticoid use and abuse in SLE[J].Rheumatology(Oxford),2012,51(7):1145-1153.
[5]Tselios K,Koumaras C,Gladman D D,et al.Dyslipidemia in systemic lupus erythematosus:just another comorbidity[J].Semin Arthritis Rheum,2016,45(5):604-610.
[6]Al Gadban M M,Alwan M M,Smith K J,et al.Accelerated vascular disease in systemic lupus erythematosus:role of macrophage[J].Clin Immunol,2015,57(2):133-144.
[7]李麗麗,王翔鵬,向陽(yáng).狼瘡性腎炎病因病機(jī)探析[J].風(fēng)濕病與關(guān)節(jié)炎,2017,6(11):58-60.LI Lili,WANG Xiangpeng,XIANG Yang.Etiology and pathogenesis of lupus nephritis[J].Rheumatism and Arthritis,2017,6(11):58-60.
[8]孫銘鴻,張艷,肖陽(yáng),等.冠心病不同類型與中醫(yī)病機(jī)辨證的關(guān)系[J].中西醫(yī)結(jié)合心腦血管病雜志,2017,15(4):507-508.SUN Minghong,ZHANG Yan,XIAO Yang,et al.The relationship between different typesofcoronary artery disease and traditionalChinese medicine pathogenesis differentiation[J].Chin J Integr Med Cardio,2017,15(4):507-508.
[9]時(shí)莉曉,高鑄燁,楊巧寧,等.冠心病主要危險(xiǎn)因素與血瘀證的相關(guān)性研究[J].中西醫(yī)結(jié)合心腦血管病雜志,2014,12(6):646-648.SHI Lixiao,GAO Zhuye,YANG Qiaoning,et al.Association of main risk factor with blood stasis syndrome in coronary artery disease[J].Chin J Integr Med Cardio,2014,12(6):646-648.
[10]Qiao Y,Zhang P J,Lu X T,et al.Panax notoginseng saponins inhibits atherosclerotic plaque angiogenesis by down-regulating vascular endothelial growth factor and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 expression[J].Chin J Integr Med,2015,21(4):259-265.
[11]Yang X,Xiong X,Wang H,et al.Protective effects of Panax notoginseng saponins on cardiovascular diseases:a comprehensive overview ofexperimentalstudies[J].Evid Based Complement Alternat Med,2014,2014:204840.
[12]Liu Y,HaoF,ZhangH,etal.Panaxnotoginseng saponins promote endothelial progenitor cell mobilization and attenuate atherosclerotic lesions in apolipoprotein E knockout mice[J].Cell Physiol Biochem,2013,32(4):814-826.
[13]魯盈,楊汝春,張華琴,等.三七皂苷對(duì)系統(tǒng)性紅斑狼瘡患者外周血淋巴細(xì)胞P-糖蛋白及激素效應(yīng)的影響[J].中華風(fēng)濕病雜志,2011,15(1):38-41.LU Ying,YANG Ruchun,ZHANG Huaqin,et al.The effects of Panax notoginseng saponins on P-glycoprotein and the function of glucocorticoid in lymphocytes of systemic lupus erythematosus patients[J].Chin J Rheumatol,2011,15(1):38-41.
[14]李躍進(jìn),魯盈.三七皂苷逆轉(zhuǎn)P-gp介導(dǎo)狼瘡鼠淋巴細(xì)胞激素耐藥機(jī)制及效應(yīng)的研究[C]//浙江省醫(yī)學(xué)會(huì)腎臟病學(xué)分會(huì).2014浙江省腎臟病學(xué)術(shù)年會(huì)論文匯編.杭州:浙江省醫(yī)學(xué)會(huì)腎臟病學(xué)分會(huì),2014:422.LI Yuejin,LU Ying.Study on the mechanism and effect of Panax notoginseng saponins in reversing P-gp mediated drug resistance of lymphocytic hormone in lupus mice[C]//Branch of Nephrology of Zhejiang Provincial Medical Association.2014 Zhejiang Academy of Nephrology Annual Conference Paper Compilation.Hangzhou:Branch of Nephrology of Zhejiang Provincial Medical Association,2014:422.
[15]林京蓮,任澤民,童曄玲,等.SIRT1在P-gp介導(dǎo)的狼瘡腎炎小鼠激素耐藥中的作用及三七皂苷的干預(yù)作用[C]//中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì).2016年中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì)學(xué)術(shù)年會(huì)論文摘要匯編.上海:中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì),2016:25.LIN Jinglian,REN Zemin,TONG Yeling,et al.The role of SIRT1 in the hormone resistance of P-gp mediated lupus nephritis mice and the intervention of Panax notoginseng saponins[C]//China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee.Abstract of the Thesis of Compilation of 2016 Annual Conference of China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee.Shanghai:China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee,2016:25.
[16]林京蓮,陳宇,童曄玲,等.三七皂苷對(duì)激素耐藥NZB/WF1狼瘡鼠腎損傷和免疫學(xué)指標(biāo)的影響[C]//中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì).2016年中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì)學(xué)術(shù)年會(huì)論文摘要匯編.上海:中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)腎臟疾病專業(yè)委員會(huì),2016:36.LIN Jinglian,CHEN Yu,TONG Yeling,et al.Effect of Panax notoginseng saponins on renal injury and immunological indexes of steroid resistant NZB/WF1 lupus mice[C]//China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee.Abstract of the ThesisofCompilation of2016 AnnualConference of China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee.Shanghai:China of Traditional Chinese and Western Medicine Association of Kidney Disease Committee,2016:36.
[17]王瑩,褚揚(yáng),李偉,等.三七中皂苷成分及其藥理作用的研究進(jìn)展[J].中草藥,2015,46(9):1381-1392.WANG Ying,CHU Yang,LI Wei,et al.Advances in the study ofsaponin and pharmacologicaleffectsin pseudo-ginseng[J].Journal of Chinese herbal medicine,2015,46(9):1381-1392.
[18]喬春玲,丁艷芬,楊崇仁.三七總皂苷藥理研究進(jìn)展[J].中國(guó)現(xiàn)代中藥,2012,14(11):25-30.QIAO Chunling,DING Yanfen,YANG Chongren.Pharmacological research progress of Panax notoginseng saponin[J].Journal of Modern Chinese Medicine,2012,14(11):25-30.
[19]Hsu W H,Lee B H,Hsu Y W,et al.Inhibition of Th2 cytokine production in T cells by monascin via PPAR-γ activation[J].J Agri Food Chem,2013,61(34):8126-8133.
[20]Bajaj M,Suraamornkul S,Hardies L J,et al.Effects of peroxisome proliferator-activated receptor(PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus[J].Diabetologia,2007,50(8):1723-1731.
[21]Thomas A W,Davies N A,Moir H,et al.Exercise-associated generation of PPARγ ligands activates PPARγ signaling events and upregulates genes related to lipid metabolism[J].J Appl Physiol,2012,112(5):806-815.
[22]Chang H C,Guarente L.SIRT1 and other sirtuins in metabolism[J].Trends Endocrinol Metab,2014 ,25(3):138-145.
[23]Hwang J S,Lee W J,Kang E S,et al.Ligand-activated peroxisome proliferator-activated receptor-δ and-γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1[J].Cell Death Dis,2014,5(10):e1432.
[24]Han L,Zhou R,Niu J,et al.SIRT1 is regulated by a PPARγ-SIRT1 negative feedback loop associated with senescence[J].Nucleic Acids Res,2010,38(21):7458-7471.
[25]Imai S,Yoshino J.The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing[J].Diabetes Obes Metab,2013 ,15(Suppl 3):26-33.
[26]Uribarri J,Cai W,Pyzik R,et al.Suppression of native defense mechanisms,SIRT1 and PPARγ,by dietary glycoxidants precedes disease in adult humans;relevance to lifestyle-engendered chronic diseases[J].Amino Acids,2014,46(2):301-309.
[27]阮小貞,陶怡.狼瘡腎炎患者血脂水平的研究探討[J].熱帶醫(yī)學(xué)雜志,2014,14(6):737-740.RUAN Xiaozhen,TAO Yi.Study on the level of blood lipid in patients with lupus nephritis[J].Journal of Tropical Medicine,2014,14(6):737-740.
[28]Xie Q B,Liang Y,Yang M,et al.DEPTOR-mTOR signaling is critical for lipid metabolism and inflammation homeostasis of lymphocytes in human PBMC culture[J].J Immunol Res,2017,2017:5252840.
[29]高雅楠.Gly14-Humanin對(duì)β細(xì)胞凋亡的保護(hù)作用及對(duì)糖代謝和脂代謝的相關(guān)調(diào)控作用[D].長(zhǎng)春:吉林大學(xué),2015:27-29.GAO Yanan.The protective effect of Gly14-Humanin on the apoptosis of beta cells and the related regulation of glucose metabolism and lipid metabolism[D].Changchun:Jilin University,2015:27-29.
[30]Zhao G J,Yin K,Fu Y C,et al.The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids[J].Mol Med,2012,18(1):149-158.
[31]路倩,陳五軍,尹凱,等.動(dòng)脈粥樣硬化中膽固醇外流的研究進(jìn)展[J].生物化學(xué)與生物物理進(jìn)展,2011,39(4):319-326.LU Qian,CHEN Wujun,YIN Kai,etal.Research progress on cholesterol efflux in atherosclerosis[J].Prog Biochem Biophys,2011,39(4):319-326.
[32]Chang Y C,Lee T S,Chiang A N.Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages[J].J Lipid Res,2012,53(9):1840-1850.