譚禮斌, 袁越錦, 黃 燦, 余千英, 唐 琳, 董繼先
(1.重慶隆鑫通用動力股份有限公司 技術(shù)中心基礎(chǔ)研究所, 重慶 400039; 2.陜西科技大學(xué) 機電工程學(xué)院, 陜西 西安 710021)
旋風(fēng)分離器是一種結(jié)構(gòu)簡單、運行狀況穩(wěn)定、顆粒分離率高的凈化處理設(shè)備,目前在環(huán)境、化工行業(yè)應(yīng)用廣泛.旋風(fēng)分離器的工作原理是通過氣體在其內(nèi)部運動形成旋轉(zhuǎn)氣流,顆粒在高速旋轉(zhuǎn)氣流的帶動下由于受到離心力的作用而被分離.旋風(fēng)分離器內(nèi)部流場比較復(fù)雜,采用一般的實驗研究無法明確認識其內(nèi)部流場的分布情況,了解其分離機理.采用計算流體力學(xué)(CFD)仿真分析軟件對其內(nèi)部流場分布情況進行數(shù)值模擬研究,對了解旋風(fēng)分離器的工作原理、分離特性及結(jié)構(gòu)優(yōu)化設(shè)計都具有非常重要的指導(dǎo)意義.
國內(nèi)外許多研究學(xué)者采用科學(xué)的仿真分析技術(shù)對旋風(fēng)分離器的內(nèi)部流動情況進行了數(shù)值模擬分析和實驗研究[1-7].祝華騰等[8]采用Fluent軟件,用雷諾應(yīng)力湍流模型對不同結(jié)構(gòu)的旋風(fēng)分離器進行了模擬分析,得出增設(shè)內(nèi)部構(gòu)件可削弱二次渦對流場的影響.趙立正等[9]研究了排氣芯管直徑、插入深度及偏心位置對旋風(fēng)分離器分離特性的影響.王江云等[10]采用RSM湍流模型、DPM模型和沖蝕模型研究了旋風(fēng)分離器內(nèi)氣、固沖蝕壁面的速率.Ma L等[11]采用CFD計算方法分析了入口漩渦流處顆粒排列情況對旋風(fēng)分離器分離效率的影響.Sun X等[12]采用響應(yīng)曲面設(shè)計對Stairmand型旋風(fēng)分離器進行結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計,為旋風(fēng)分離器的結(jié)構(gòu)設(shè)計提供了一定的參考.
某公司700 m3/h沼氣池預(yù)處理設(shè)備旋風(fēng)分離器的目的是對沼氣中5 um、10 um、20 um、50 um顆粒進行分離,凈化沼氣,提高沼氣燃用性能.旋風(fēng)分離器氣體入口處方形截面速度可允許的范圍為15~25 m/s,壓力損失低于5 kPa.本文采用計算流體力學(xué)(Computational Fluid Dynamics,CFD)方法對旋風(fēng)分離器進行數(shù)值模擬,研究其對沼氣中5 um、10 um、20 um、50 um顆粒的分離率.為了提升旋風(fēng)分離器對沼氣的凈化效果,本文分析了旋風(fēng)分離器不同結(jié)構(gòu)參數(shù)對顆粒分離率的影響,提出旋風(fēng)分離器結(jié)構(gòu)優(yōu)化的方案,使沼氣中10 um以上粒徑的顆粒分離率達到90%以上.
旋風(fēng)分離器設(shè)備采用Creo3.0(美國PTC公司)建模獲得,如圖1(a)所示.采用ANSYS SPACECLAIM 2016(美國ANSYS公司的3D高效前處理軟件)對旋風(fēng)分離器設(shè)備模型進行體積抽取處理,獲得旋風(fēng)分離器的計算域模型如圖1(b)所示.采用流體分析軟件STARCCM+ 11.02(美國西遞安科公司)中網(wǎng)格劃分模塊對旋風(fēng)分離器計算域進行網(wǎng)格劃分,完成后的網(wǎng)格模型如圖1(c)所示,體網(wǎng)格數(shù)量約60萬.旋風(fēng)分離器現(xiàn)方案的參數(shù)為:筒體主體直徑269 mm,筒體長度453 mm,排氣芯管直徑168 mm,排氣芯管插入深度198 mm,顆粒收集口直徑110 mm,錐體段長度615 mm,氣體入口圓形直徑168 mm,氣體入口處方形截面尺寸為高156 mm、寬76 mm,顆粒收集器直徑300 mm、高300 mm.為了對旋風(fēng)分離器的流場分布進行詳細分析,本文構(gòu)建了相應(yīng)的截面,各截面示意圖如圖2所示.
圖1 旋風(fēng)分離器模型
圖2 各截面示意圖
旋風(fēng)分離器內(nèi)部流動為各向異性的漩渦流動,雷諾應(yīng)力模型摒棄了紊流各向同性的假設(shè),常用于模擬高速旋流、渦流等,可滿足旋風(fēng)分離器內(nèi)旋轉(zhuǎn)氣流的數(shù)值計算,因此本文采用雷諾應(yīng)力湍流模型(RSM:Reynolds Stress Model)進行氣相流場的數(shù)值模擬,氣相和顆粒相間的耦合采用拉格朗日多相流模型(LPM:Lagrangian Multiphase Model)進行求解.求解過程中運用到的基本控制方程如下:
(1)連續(xù)性方程
(1)
式(1)中:ui為流體速度,m/s;ρ為流體密度,kg/m3.
(2)動量守恒方程(N-S方程)
(2)
(3)雷諾應(yīng)力方程[13]
(3)
式(3)中:Cij表示對流項;DT,ij代表分子量粘性擴散項;DL,ij代表湍流擴散項;pij代表雷諾應(yīng)力產(chǎn)生項;φij代表壓力應(yīng)變項;εij代表粘性擴散耗散項.
顆粒運動方程由牛頓第二定律獲得[14]:
FMA+FG+FC
(4)
式(4)中:mp為顆粒質(zhì)量,kg;vp是顆粒運動速度,m/s;FD是曳力,F(xiàn)M是質(zhì)量力,F(xiàn)P是壓力梯度力,F(xiàn)BA是Basset力,F(xiàn)SA是Saffman力,F(xiàn)MA是Magnus力,F(xiàn)G是重力,F(xiàn)C是顆粒相間相互作用和顆粒相與壁面相互作用所產(chǎn)生的碰撞力或摩擦力,力的單位都為N.
本文模擬過程采用瞬態(tài)模擬,瞬態(tài)模擬的時間步長設(shè)置為0.001 s,內(nèi)迭代步數(shù)設(shè)置為10步,瞬態(tài)最大求解時間為5s.模擬過程中首先計算旋風(fēng)分離器氣相流場,氣相流場計算收斂后再激活拉格朗日多相流模型和顆粒入射源,進行顆粒相的數(shù)值模擬計算.旋風(fēng)分離器氣相入口邊界為速度入口,速度為8.8 m/s(由沼氣處理量計算獲得).沼氣為混合氣,密度約為1 kg/m3,氣體出口邊界為壓力出口,壓力為-5 kPa(實際運行工況),壁面設(shè)置為無滑移壁面.采用拉格朗日多相流模型(LPM)進行顆粒相模擬,顆粒密度為200 kg/m3,顆粒相的速度與氣體速度相同,相間無相對滑移速度.顆粒入射方式為平面入射源(part surface injection),入射平面為氣相入口面,顆粒相均勻地分布在氣體入口平面,共1 004個入射點源(點源數(shù)目是由該平面面網(wǎng)格數(shù)量決定的,對不同結(jié)構(gòu)的旋風(fēng)分離器采用相同基本網(wǎng)格控制參數(shù)進行網(wǎng)格劃分,可保證氣體入口面面網(wǎng)格數(shù)相同),每個顆粒從面網(wǎng)格中心攝入.每個點源向旋風(fēng)分離器內(nèi)部入射5個粒子,共計入射4 020個粒子(單一粒徑).為了研究5 um、10 um、20 um、50 um四種粒徑的分離率,本文共設(shè)置顆粒粒徑分別為5 um、10 um、20 um、50 um的四個入射源.
旋風(fēng)分離器壓力損失是評估旋風(fēng)分離器性能的指標之一.壓力損失的計算公式為:
(5)
式(5)中:ρg為氣體密度,kg/m3;vi為氣體入口處方形截面內(nèi)速度(氣體入口為圓形面,速度8.8 m/s,根據(jù)質(zhì)量守恒定律計算獲得氣體入口處方形截面內(nèi)速度值);α為阻力系數(shù),α可由經(jīng)驗?zāi)P陀嬎惬@得[15].
圖3表示壓力損失的計算值與經(jīng)驗?zāi)P瞳@得的理論值對比曲線圖.從圖3可以看出,計算值與Ca Model和Di Model理論值基本吻合,與其余兩個理論模型存在一定的誤差,最大誤差約為9.85%.表明本文建立的計算求解模型是有效的.圖中15 m/s為沼氣處理量700 m3/h時旋風(fēng)分離器氣體入口處方形截面內(nèi)的面平均速度值.從圖3中可以看出,在氣體入口面相同時,氣體的處理量越大,氣體入口處方形截面內(nèi)的平均速度值越大,旋風(fēng)分離器的壓力損失也越大,隨著速度的增大,壓力損失增加幅度增大,容易造成顆粒對壁面的沖擊腐蝕,降低旋風(fēng)分離器的使用周期.因此,在工程應(yīng)用中,為了保證旋風(fēng)分離器的工作性能,會對氣體的處理量(即入口速度)和壓力損失有相應(yīng)的限制范圍.
圖3 壓力損失計算值與模型理論值對比曲線
4.2.1 壓力分布
圖4表示Z=0截面的壓力分布云圖.靜壓沿徑向位置(旋風(fēng)分離器壁面至軸中心的距離)呈現(xiàn)出較好的軸對稱分布特性,靜壓隨徑向位置的減小而減小,在軸中心處的靜壓值遠低于氣體入口處的靜壓值.動壓的分布未呈現(xiàn)出類似靜壓的軸對稱性.動壓分布趨勢與氣相流場速度分布基本相同,原因是動壓與流體速度之間是直接相關(guān)的,動壓Pd=ρgv2/2.動壓分布云圖能間接反映氣相流場速度的分布規(guī)律.總壓的分布情況與靜壓分布極其類似,都呈現(xiàn)出較好的軸對稱性,總壓隨徑向位置的減小而減小,軸中心處總壓值遠低于壁面和氣體入口處的總壓值.
(a)各截面的靜壓分布云圖
(b)各截面的動壓分布云圖
(c)各截面的總壓分布云圖圖4 氣相流場的壓力分布
圖5表示壓力隨徑向位置(旋風(fēng)分離器壁面至軸中心的距離)的變化曲線圖.靜壓沿徑向位置的變化曲線呈現(xiàn)出“V”形形狀,動壓沿徑向位置的變化曲線呈現(xiàn)出“M”形狀.總壓沿徑向位置的變化趨勢與靜壓沿徑向位置的變化趨勢一致.采用面積平均法(Surface Average Method)計算出該旋風(fēng)分離器運行時產(chǎn)生的壓力損失為0.918 kPa.
(a)靜壓沿徑向位置的變化曲線圖
(b)動壓沿徑向位置的變化曲線圖
(c)總壓沿徑向位置的變化曲線圖圖5 壓力沿徑向位置的變化曲線圖
4.2.2 速度分布
圖6表示旋風(fēng)分離器氣相流場的速度分布.氣相流場的速度分布與氣相流場的動壓分布基本一致.從速度矢量圖可以看出,氣流在旋風(fēng)分離器流動主要形成了雙層漩渦流動,外部形成向下旋轉(zhuǎn)的旋流,中心則形成向上旋轉(zhuǎn)的旋流,兩者的旋轉(zhuǎn)方向相同[16].在排氣芯管附近的氣流速度比較大,分離器旋轉(zhuǎn)氣流的湍流擾動性較強.
湍動能表示單位質(zhì)量的流體在流動過程中由于湍流脈動所形成的動能,主要是由雷諾切應(yīng)力做功而產(chǎn)生的.圖7表示氣相流場的湍動能沿徑向位置的變化曲線.從圖7可以看出,旋風(fēng)分離器內(nèi)部壁面處的湍動能較小,湍動能由上往下基本呈現(xiàn)出減小的趨勢.筒體段分離空間的中心區(qū)域(Y=-0.2 m)的湍動能較大,因此該區(qū)域內(nèi)產(chǎn)生的能量損耗越大.
(a)各截面速度分布云圖
(b)各截面速度分布矢量圖
(c)各截面速度沿徑向位置的變化曲線圖圖6 氣相流場的速度分布
圖8表示氣相流場的湍動耗散率沿徑向位置的變化曲線.從圖8可以看出,旋風(fēng)分離內(nèi)部壁面處的湍動耗散率較大,中心區(qū)域的湍動耗散率較小.對比分析圖7和圖8可以看出,湍動能與湍動耗散率沿徑向位置的分布都基本呈現(xiàn)出較好的軸對稱性.湍動能與湍動耗散率分布趨勢存在差異,其原因是由于旋風(fēng)分離器內(nèi)旋轉(zhuǎn)氣流流動的各向異性特性引起的[17].
圖7 湍動能沿徑向位置的變化曲線圖
圖8 湍動耗散沿徑向位置的變化曲線
顆粒運動到排氣芯管上端面視為逃逸;顆粒運動到顆粒收集口截面視為被顆粒收集器收集.顆粒分離率的計算公式為:
(6)
式(6)中:Cc代表顆粒收集器收集到的顆粒數(shù)目;Ct表示進入旋風(fēng)分離器的顆??倲?shù).
表1為旋風(fēng)分離器現(xiàn)方案各粒徑顆粒的分離率.旋風(fēng)分離器現(xiàn)方案下各粒徑顆粒的分離率分別為39.71%、71.52%、90.77%、100%,5 um和10 um顆粒的分離效果不好.圖9表示不同顆粒密度下旋風(fēng)分離器現(xiàn)方案的顆粒分離率.從圖9可以看出,顆粒粒徑越大,分離率越好;顆粒密度越大,分離率越好.原因是顆粒粒徑越小,質(zhì)量小,在旋風(fēng)分離器中形成的離心力較小,不易被分離.同理,同一粒徑顆粒,顆粒密度越大,質(zhì)量越大,在旋風(fēng)分離器中受到的離心力作用越大,越易分離.
表1 旋風(fēng)分離器現(xiàn)方案的顆粒分離率
4.5.1 排氣芯管直徑
圖10為不同排氣芯管直徑下顆粒分離率的對比曲線.從圖10可以看出,排氣芯管直徑減小,顆粒分離率增大,排氣芯管直徑增大,顆粒分離率減小.原因是排氣芯管直徑增大,易造成芯管外壁附近處的速度變大,從而會卷吸走部分粒徑較小的顆粒,降低其分離率.排氣芯管直徑減小,旋風(fēng)分離器內(nèi)旋流面積減小,對顆粒的攜帶作用減弱,分離器軸中心處的顆粒被內(nèi)旋流帶離旋風(fēng)分離器的機率減小,促使更多的顆粒在壁面附近被捕集,最后由收集器收集,因此適當減小旋風(fēng)分離器排氣芯管直徑有利于顆粒分離[13].排氣芯管直徑為138 mm時,壓降為1.3 kPa.
圖9 不同顆粒密度下顆粒分離率曲線圖
圖10 不同排氣芯管直徑下顆粒分離率曲線圖
4.5.2 排氣芯管插入深度
圖11為不同排氣芯管插入深度下顆粒分離率的對比曲線.從圖11可以看出,排氣芯管插入深度為168 mm時,各粒徑顆粒的分離率最好.原因是排氣芯管插入深度太短容易造成"短路流",部分顆粒會跟隨短路流直接進入排氣芯管,最后逃逸,降低了顆粒分離率;排氣芯管插入深度太長,流動中會產(chǎn)生較大的壓力損失,且顆粒的分離率也會受到影響[16].排氣芯管插入深度為168 mm時,壓降為0.891 kPa.
4.5.3 顆粒收集口直徑
圖12為不同顆粒收集口直徑下顆粒分離率的對比曲線.從圖12可以看出,顆粒收集口直徑為120 mm,各粒徑顆粒的分離率有所提高,顆粒收集口直徑為100 mm、130 mm時各粒徑顆粒的分離率與原始結(jié)構(gòu)下顆粒分離率相差不大.顆粒收集口直徑為120 mm時,壓降為0.916 kPa.顆粒收集口附近的速度仍然具有較大的值,顆粒收集口附近的旋轉(zhuǎn)氣流比較劇烈,容易形成顆粒收集口處顆粒夾帶返混的現(xiàn)象,因此該旋風(fēng)分離器的收集器口存在一段直管,將從錐體段底部流出的旋轉(zhuǎn)氣流引入直管內(nèi)進一步進行顆粒分離,最后收集器口捕集更多顆粒,提高顆粒分離率[18].
圖11 不同排氣芯管插入深度下顆粒分離率曲線圖
圖12 不同顆粒收集口直徑下顆粒分離率曲線圖
4.5.4 筒體長度
圖13為不同筒體長度下顆粒分離率的對比曲線.從圖13可以看出,筒體長度增大,各粒徑顆粒的分離效率增加,增加幅度比較平緩.當筒體長度為538 mm時,顆粒分離率分別為41.08%、74.77%、93.13%、100%,壓降為0.904 kPa.采用面積平均法計算出四個結(jié)構(gòu)下的壓降分別為0.958 kPa、0.918 kPa、0.909 kPa、0.904 kPa,筒體長度增加,壓力損失降低.原因是在氣體處理量一定的情況下,筒體越短,旋風(fēng)分離器壁面產(chǎn)生的摩擦力越小,分離器內(nèi)的旋轉(zhuǎn)氣流越強,氣體進入排氣芯管中心的靜壓降低,靜壓更有效地轉(zhuǎn)換成動壓,促使壓降增大[19].
4.5.5 錐體段長度
圖14為不同錐體段長度下顆粒分離率的對比曲線.從圖14可以看出,在旋風(fēng)分離器初始結(jié)構(gòu)下減小或增加錐體長度值,對顆粒分離率幾乎沒有影響.三個錐體段長度的旋風(fēng)分離器對各粒徑顆粒的分離效果相差不大.通過修改旋風(fēng)分離器錐體段長度與筒體直徑間的相對比例值,可防止旋風(fēng)分離器內(nèi)強湍流特性的旋轉(zhuǎn)氣流將已分離的顆粒重新卷起,提高顆粒分離率.工程上,旋風(fēng)分離器錐體段的取值范圍一般為筒體直徑的1.5~2.5倍[20].
圖13 不同筒體長度下顆粒分離率曲線圖
圖14 不同錐體段長度下顆粒分離率曲線圖
4.5.6 氣體入口方形截面尺寸
采用四種不同入口方形截面尺寸進行模擬分析,得出不同氣體入口方形尺寸下顆粒分離率的對比曲線,如圖15所示.圖中“a”表示入口處方形截面的高度值,“b”表示入口處方形截面的寬度值.從圖15可以看出,氣體入口方形截面尺寸對顆粒分離率的影響最大.四種不同入口方形截面尺寸中前三種截面尺寸下的顆粒分離率相差不大,而第四種入口方形截面尺寸下各顆粒分離率明顯提升.四種不同入口方形尺寸結(jié)構(gòu)的旋風(fēng)分離器在運行中的壓力損失分別為0.858 kPa、0.918 kPa、0.996 kPa、1.6 kPa.造成這種現(xiàn)象的原因是前三種入口方形截面面積一致,氣體處理量相同的情況下速度分布基本相同,產(chǎn)生的離心力場相差不大,因此顆粒分離率和壓力損失變化不明顯;而第四種入口方形截面面積較旋風(fēng)分離器初始結(jié)構(gòu)減小,在氣體處理量一定的情況下,入口方形面積減小,速度增大,離心力場越大,顆粒越易被分離.同時,速度增大,壓力損失增大,過大的壓力損失易造成旋風(fēng)分離器壁面的沖擊腐蝕,影響旋風(fēng)分離器的使用壽命[21].入口方形高度為134 mm,寬為54 mm時,各粒徑顆粒的分離率明顯增大,5 um、10 um、20 um、50 um的顆粒分離率分別為51.86%、94.62%、100%、100%.
圖15 不同入口方形尺寸下顆粒分離率曲線圖
綜合分析旋風(fēng)分離器各結(jié)構(gòu)參數(shù)對顆粒分離率的影響的模擬結(jié)果,得到氣體入口處方形截面尺寸對顆粒分離率的影響最大,排氣芯管直徑、顆粒收集口直徑對顆粒分離率的影響較大,筒體長度、排氣芯管插入深度對顆粒分離率有一定影響,而現(xiàn)結(jié)構(gòu)下改動錐體段長度對顆粒分離率的影響不明顯.為滿足10 um及以上粒徑顆粒的分離率,依據(jù)旋風(fēng)分離器的不同結(jié)構(gòu)參數(shù)對顆粒分離率的影響程度,提出以下三個優(yōu)化方案(Opt):
(1)排氣芯管直徑為138 mm,氣體入口方形截面尺寸為高134 mm、寬54 mm,顆粒收集口直徑為120 mm.
(2)排氣芯管直徑為138 mm,顆粒收集口直徑為120 mm,筒體長度為538 mm,排氣芯管插入深度為168 mm.
(3)在(2)的基礎(chǔ)上增改:氣體入口方形截面尺寸為高134 mm、寬54 mm.
表2為旋風(fēng)分離器三個優(yōu)化方案各粒徑顆粒的分離率.三個優(yōu)化方案各粒徑顆粒的分離率都有明顯的提升,其中Opt1、Opt3中10 um及以上粒徑顆粒的分離率均達98%以上,壓降分別為2.213 kPa、2.082 kPa,壓降增大的原因是該兩個方案中都改動了入口處方形截面尺寸大小,面積減小,截面內(nèi)平均速度增大,造成壓力損失增大;Opt2中10 um粒徑顆粒的分離率為86.5%,基本符合沼氣預(yù)處理設(shè)備旋風(fēng)分離器對顆粒分離率的提升目標.該旋風(fēng)分離器的運行時壓降允許范圍為低于5kPa,因此,在壓降允許的范圍內(nèi),確定優(yōu)化方案一為旋風(fēng)分離器的最佳優(yōu)化方案.
表2 旋風(fēng)分離器優(yōu)化方案(Opt)的顆粒分離率
(1)采用RSM模型和LPM模型對旋風(fēng)分離器內(nèi)氣固兩相耦合流動機理及顆粒運動機理進行了瞬態(tài)模擬研究,驗證了RSM模型可有效地模擬旋風(fēng)分離器內(nèi)各向異性的高速強漩渦流動,壓力損失計算值與經(jīng)驗?zāi)P屠碚撝祷疚呛?,表征本文所?gòu)建的旋風(fēng)分離器計算域模型可有效地模擬旋風(fēng)分離器氣固兩相耦合流動過程.
(2)對旋風(fēng)分離器內(nèi)氣相流場模擬結(jié)果分析,得出旋風(fēng)分離器氣相流場中靜壓和總壓分布基本一致,都呈現(xiàn)出較好的軸對稱性,靜壓值和總壓值沿徑向位置的變化曲線呈現(xiàn)“V”型,靜壓值和總壓值隨徑向位置的減小而減小,軸心處的靜壓值和總壓值遠低于壁面處的靜壓值和總壓值.氣相流場中的動壓分布與速度分布趨勢基本相同,沿徑向位置的變化曲線呈現(xiàn)“M”型.湍動能與湍動耗散率沿徑向位置的分布都基本呈現(xiàn)出較好的軸對稱性.
(3)氣相和顆粒相的耦合模擬結(jié)果顯示5 um、10 um、20 um、50 um顆粒的分離率分別為39.71%、71.52%、90.77%、100%,5 um和10 um顆粒的分離效果不好,顆粒粒徑越大,顆粒分離率越好,顆粒密度越大,對應(yīng)的顆粒分離率也越大.
(4)通過分析旋風(fēng)分離器各結(jié)構(gòu)參數(shù)對顆粒分離率的影響,得出氣體入口處方形截面尺寸對顆粒分離率的影響最大,排氣芯管直徑、顆粒收集口直徑對顆粒分離率的影響較大,筒體長度、排氣芯管插入深度對顆粒分離率的影響較小,現(xiàn)結(jié)構(gòu)下改動錐體段長度對顆粒分離率的影響不明顯.
(5)依據(jù)旋風(fēng)分離器各結(jié)構(gòu)參數(shù)對顆粒分離率的影響程度,提出了三個優(yōu)化方案并驗證了各方案下顆粒的分離率,優(yōu)化方案一改動排氣芯管直徑為138 mm、氣體入口處方形截面尺寸為高134 mm寬54 mm、顆粒收集口直徑為120 mm,各顆粒分離效率最好,10 um及以上粒徑顆粒的分離率均達98%以上,壓降為2.213 kPa,在旋風(fēng)分離器運行允許的壓降范圍內(nèi).
[1] 吳廣強,孫振雷,劉 偉.旋風(fēng)分離器的安全性能分析及數(shù)值模擬[J].通用機械,2017(5):77-80.
[2] 蘇 偉,武晶晶,于建奇,等.旋風(fēng)分離器的氣相流場的性能分析及數(shù)值模擬[J].機械制造與自動化,2017,46(3):161-163.
[3] 劉 旭,朱海雷.旋風(fēng)分離器數(shù)值模擬[J].壓縮機技術(shù),2016(2):53-57.
[4] 李 鐵,鄭 瀚,宋濟洋,等.旋風(fēng)分離器數(shù)值模擬及結(jié)構(gòu)優(yōu)化研究進展[J].礦山機械,2014(11):10-13.
[5] 雷 蕾,袁隆基.循環(huán)流化床鍋爐旋風(fēng)分離器性能特性數(shù)值模擬[J].江蘇大學(xué)學(xué)報(自然科學(xué)版),2015,36(2):148-152.
[6] Rahimian M H.Multiphase flow and tromp curve simulation of dense medium cyclones using computational fluid dynamics[J].Journal of Mining & Environment,2013,4(1):67-76.
[7] Luan Y,Sun H.Experimental and numerical study on the resistance performance of an axial flow cyclone separator[J].Mathematical Problems in Engineering,2015,2015:1-9.
[8] 祝華騰,陳光輝,王偉文,等.不同結(jié)構(gòu)的旋風(fēng)分離器二次渦的數(shù)值模擬和分析[J].高?;瘜W(xué)工程學(xué)報,2017,31(5):1 062-1 071.
[9] 趙立正,原奇鑫,康志忠,等.超臨界循環(huán)流化床旋風(fēng)分離器結(jié)構(gòu)優(yōu)化數(shù)值模擬[J].鍋爐技術(shù),2016,47(3):31-37.
[10] 王江云,馮留海,張 果,等.單入口雙進氣道旋風(fēng)分離器內(nèi)沖蝕特性[J].石油學(xué)報(石油加工),2016,32(2):289-296.
[11] Ma L,Fu P B,Wu J P,et al.CFD simulation study on particle arrangements at the entrance to a swirling flow field for improving the separation efficiency of cyclones[J].Aerosol & Air Quality Research,2015,15(6S):2 456-2 465.
[12] Sun X,Kim S,Yang S D,et al .Multi-objective optimization of a stairmand cyclone separator using response surface methodology and computational fluid dynamics[J].Powder Technology,2017,320:51-65.
[13] 鄭建祥,周天鶴.旋風(fēng)分離器排氣管縮口半徑優(yōu)化的數(shù)值模擬[J].流體機械,2015,43(12):28-32.
[14] 馬 欣,徐洋洋,徐 洋,等.排氣管外延伸長度對旋風(fēng)分離器性能的影響[J].過程工程學(xué)報,2016,16(6):915-921.
[15] 錢付平,章名耀.旋風(fēng)分離器分離性能的經(jīng)驗?zāi)P团c數(shù)值預(yù)測[J].東南大學(xué)學(xué)報(自然科學(xué)版),2005,35(1):35-39.
[16] 劉 琳.旋風(fēng)分離器內(nèi)氣固兩相流數(shù)值模擬與穩(wěn)定性研究[D].杭州:浙江理工大學(xué),2016.
[17] 張海紅.旋風(fēng)分離器流場與分離性能的數(shù)值模擬研究[D].鄭州:鄭州大學(xué),2004.
[18] 韓 婕,劉阿龍,彭東輝,等.旋風(fēng)分離器兩相流動數(shù)值模擬研究進展[J].天然氣化工(C1化學(xué)與化工),2012,37(5):55-61.
[19] 王樂勤,郝宗睿,王循明,等.筒體長度對旋風(fēng)分離器內(nèi)流場影響的數(shù)值模擬[J].工程熱物理學(xué)報,2009,30(2):223-226.
[20] 董 敏,劉淑良,楊洪征.結(jié)構(gòu)參數(shù)和操作參數(shù)對旋風(fēng)分離器性能的影響[J].選煤技術(shù),2013(6):93-96.
[21] 李 琴,鄒 康,劉海東,等.基于顆粒受力的旋風(fēng)分離器沖蝕機理的研究[J].流體機械,2017,45(3):42-47.