• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of water-soluble magnetic nanoparticles with controllable silica coating☆

    2018-05-25 07:50:58YapingZhangBinZhenHanshengLiYaqingFeng

    Yaping Zhang *,Bin Zhen ,Hansheng Li ,Yaqing Feng

    1 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    2 School of Chemical Engineering and the Environment,Beijing Institute of Technology,Beijing 100081,China

    3 College of Chemistry and Chemical Engineering,Tianjin University of Technology,Tianjin 300384,China

    1.Introduction

    Magnetic nanoparticles have attracted a great attention in various fields due to magnetic responsibility[1,2].For the application of magnetic nanoparticlesin biomedical field or other hydrophilic system,such as forward osmosis system and food inspection,good dispersibility in water is essential[3–6].High performance of magnetite nanoparticles is also required,including surface chemistry suitable for further functionalization,suitable size with uniform dispersion and high magnetization.

    Many strategies have been explored to synthesize highly waterdispersible superparamagnetic magnetite nanoparticles.Co-precipitation is a common and simple route for synthesis of nanoparticles[7–9].Mauricio et al.[10]prepared highly hydrophilic magnetic nanoparticles of Fe3O4using a co-precipitation approach of Fe2+and Fe3+ions in a basified aqueous solution.However,serious agglomeration of pristine nanoparticles was found.Thermal-decomposition method has been widely researched for synthesis of monodisperse magnetic nanoparticles.But harsh conditions and expensive chemicals hinder the extensive application of the method[11,12].

    Sol–gel method[13,14],microemulsion with oil in water micelles[15,16]or reverse micelles[17]and hydro/solvent-thermal process[18]have been used to preparemagnetic nanoparticles.The sol–gel method enables to control the reaction rate and provides a way to control the size and surface properties of nanoparticles.Microemulsions are thermodynamically stable colloidal dispersions in which two immiscible liquids(typically water and oil)coexist in one phase due to the presence of a monolayer of surfactant molecules with balanced hydrophilic–lipophilic properties[19–21].Uniform nanoparticles with narrow particle size distribution could be prepared in microemulsion system.Magnetic nanoparticles prepared via a solvent-thermal process always possess complete crystallinity.In our previous work,magnetic SiO2/CoFe2O4(SCF)with core–shell structure had been prepared via a reverse microemulsion-mediated sol–gel method.The prepared SCF consist of silica matrix and uniformly dispersed cobalt ferrite nanoparticles[22].It is of great interest to find that magnetic CoFe2O4nanoparticles could be extracted from silica matrix with a thin silica coating left on the surface.The silica coating could be controlled and would supply magnetic nanoparticles with rich hydroxyl groups and remarkable biocompatibility[23,24].Compared with the magnetic nanoparticles modified by post surface modification with silane agents,the obtained magnetic nanoparticles with controllable silica coating could avoid the agglomeration caused by the post modification.

    In this work,CoFe2O4nanoparticles(CFNPs)were prepared by alkali treatment of SCF.The crystallinity,monodispersity,magnetism and water-solubility of the CFNPs were investigated in detail.And the relationship between these performances and the surface structure of CFNPs was discussed.

    2.Experimental

    2.1.Materials and reagents

    CoCl2·6H2O,n-hexane,acetone,sodium hydroxide,ethanol,hydrochloric acid and tetraethoxy silicane(TEOS)were analytically pure and purchased from Beijing Chemical Works.Triton X-100,n-hexanol,Fe(NO3)3·9H2O and methylamine solution were analytically pure and purchased from Sinopharm Chemical Reagent Co.Ltd.Water used in the experiments was de-ionized.

    2.2.Preparation of magnetic nanoparticles

    Uniform magnetic nanoparticles were prepared via alkali treatment of the magnetic silica with core–shell structure which was prepared according to the procedure reported in prior works using a reverse microemulsion-mediated sol–gel method[25,26].

    Firstly,a reverse microemulsion with CoFe2O4precursors was synthesized through a double-microemulsion method as illustrated in Fig.1.Then a TEOS solution of n-hexane was added into the reverse microemulsion.With the diffusion of TEOS molecules from hydrophobic phase into hydrophilic phase,TEOS hydrolyzed and condensed around the CoFe2O4precursors.A following solvent-thermal proceed was applied for promoting the further condensation of TEOS.The product was washed with ethanol,and calcined under air atmosphere to form magnetic silica.

    For leaching of silica,the magnetic silica was added into an aqueous solution of NaOH,and stirred at 60°C for some time to remove silica shell.Then,excess NaOH was neutralized with HCl aqueous solution.Finally,after multiple washing with water to remove the formed sodium salts,magnetic nanoparticles homogeneously dispersed in water were obtained.

    2.3.Sample characterization

    FTIR analysis was carried out on a NICOLET iS10 Fourier transform infrared spectrometer(Thermo,America)in a frequency ranged from 400 cm?1to 4000 cm?1using KBr as a reference.Thermal analysis was performed on a TG-DTA 6200(SII Nano Technology Inc.,Japan),with a heating rate of 10 °C·min?1from room temperature to 700 °C.XRD was collected on an Ultima IV X-ray diffractometer(Rigaku,Japan)with Cu Kα radiation.TEM observation was performed on a JEM-2100 transmission electron microscope(JEOL,Japan).Particle size and zeta potential analysis of particles was conducted using a Beckman Coulter DelsaTM Nano C Zeta potential&particle size analyzer.Magnetism analysis was performed on a JLDJ 9600 vibrating sample magnetometer(VSM,LD,America).

    3.Results and Discussion

    3.1.Crystallinity and monodispersity

    Calcination is indispensable for the removal of volatiles and the formation of ferrite.Thermal analysis of SCF as synthesized was carried out and the result was displayed in Fig.2.A notable mass loss,which corresponded to a broad exothermic peak from 100°C to 400°C,was caused by the volatilization of water and organic solvents.The following endothermic peak accompanied with a light mass loss between 400 °C and 600 °C was caused by the formation of cobalt ferrite phase.Generally,calcination at higher temperature induced higher degree of crystallinity and stronger magnetic responsibility.Here,SCF samples calcined at 500 °C,550 °C,600 °C,650 °C and 700°C were prepared and characterized.Fig.3 displayed the XRD patterns of these samples.As shown in the XRD patterns,the peaks at 35.44°,43.06°,56.97°and 62.59°were indexed to the 311,400,511 and 440 planes of cobalt ferrite(JCPDS PDF#22-1086),respectively.Additionally,the intensity of the characteristic peaks increased with the increase of the calcination temperature.

    Fig.2.TG-DSC curves of SCF as synthesized.

    Fig.1.Preparation process of magnetic silica.

    Fig.3.XRD patterns of SCF samples calcined at different temperature.

    Then,the five samples were treated with NaOH aqueous solution(3 mol·L?1)at 60 °C for 24 h to afford magnetic nanoparticles.Fig.4 showed the TEM images and histograms of the magnetic nanoparticles.As shown in Fig.4,the average size of the magnetic nanoparticles increased slightly from 5 nm to 8 nm as the calcination temperature increased from 500 °C to 700 °C.In addition,all of the five samples were monodisperse,which proved the protection effect of silica shell on the ferrite core.Particle size distribution of CFNPs measured by particle size analyzer was illustrated in Fig.5,and the average size of the magnetic nanoparticles increased slightly from 13 nm to 15 nm with calcination temperature increase,and the monodispersity was further proved.In conclusion,high calcination temperature favored the growth of cobalt ferrite crystal,and silica matrix prevented the sintering of nanoparticles.

    3.2.Magnetism and water-solubility

    Fig.5.Particle size distribution of CFNPs.

    Table 1 Magnetic properties of SCF samples calcined at different temperature

    Fig.4.TEM images and histograms of CFNPs.

    Fig.6.XRD pattern of CFNPs.

    Fig.7.Magnetic hysteresis loops of SCF and CFNPs.

    The five SCF samples mentioned above were characterized by VSM,and the result was listed in Table 1.It is suggested that the Ms values of the SCF samples increased from 1.314 emu·g?1to 8.296 emu·g?1with the increase of the calcination temperature from 500°C to 700°C.Thus,the magnetic nanoparticles which were obtained from the SCF calcined at 700°C were investigated in detail.As the XRD pattern shown in Fig.6,the peaks at 35.44°,43.06°,56.97°and 62.59°indexed to the 311,400,511 and 440 planes of cobalt ferrite phase,respectively,proved that the structure of the cobalt ferrite was not destroyed in alkali treatment process.The hysteresis loop of CFNPs shown in Fig.7 indicated that CFNPs were paramagnetic,and the Ms and Mr of CFNPs were 26.8596 emu·g?1and 0.0951 emu·g?1,respectively.It is obviously observed from Fig.8-a that the obtained CFNPs could be easily homogeneously dispersed in water.When an extra magnetic field was applied on the right side of the bottle,CFNPs swam to the right bottle wall.After 10 min,most of the CFNPs assembled on the right bottle wall(Fig.8-b).With the prolonging of time,more and more CFNPs assembled on the right bottle wall,and almost all of CFNPs were separated from water after 5 h(Fig.8-e).In summary,the magnetic nanoparticles are paramagnetic and well-dissolved in water,and could be easily separated from water in an external magnetic field.

    3.3.Surface structure of CFNPs

    The water solubility and monodispersity of the magnetic nanoparticles are closely related to their surface structure.For studying their surface structure,CFNPs were characterized by FTIR and the result was shown in Fig.9.The absorption peaks at 590 cm?1and 1100 cm?1were assigned to the M--O vibration(M=Fe or Co)and the symmetric O--Si--O stretching vibrations,respectively[22].It indicated that there was a silica coating on the CFNPs surface.

    Fig.9.FTIR of CFNPs.

    Usually,nanoparticles are apt to aggregate and form bulky grain.In this work,the magnetic nanoparticles kept monodisperse in water.The silica coating on the cobalt ferrite contains abundant hydrophilic silanol groups,which attract numerous water molecules in water.The hydrophilic silanol groups and the solvation of the nanoparticles facilitate the CFNPs well-dissolved and monodisperse in water.Zeta potential of CFNPs in water was also tested and the value is(?32±2.34)m V at p H=7,also indicating the stable dispersity of CFNPs in water.

    In addition,the silica coating rendered easy surface-modification of the CFNPsbecause silanol groupscould react with many organic groups,such as hydroxyl[27]and carboxyl[28].

    Finally,the leftover amount of silica coating on CFNPs was further regulated by altering the alkali concentration and alkali treating time.The relative amount of leftover silica compared with cobalt ferrite was represented by the relative peak area of the two characteristic peaks at 1100 cm?1and 590 cm?1in FTIR spectra.The result was listed in Table 2.When the samples were treated using alkali solution with high concentration or treated for long time,the peak area ratio of 1100 cm?1to 590 cm?1went down,which indicated that the leftover amount of silica reduced.

    Fig.8.Magnetic separation performance of CFNPs dispersed in water under magnetic field.

    Table 2 Relative area of the two characteristic peak of CFNPs

    In summary,the magnetic nanoparticles prepared in this work were composed of cobalt ferrite and silica.The silicalayer on the cobalt ferrite facilitates the CFNPs well-dissolved and monodisperse in water,and easily modified.The leftover amount of silica could be controlled by tuning the alkali treating time and the alkali concentration.

    4.Conclusions

    Magnetic silica with core–shell structure was prepared using a reverse microemulsion-mediated sol–gel method.Alkali treatment of the magnetic silica afforded magnetic nanoparticles which was welldissolved and monodisperse in water.High calcination temperature for the preparation of magnetic silica favored the growth of the cobalt ferrite crystal and the enhancement of the magnetic responsibility.Silica matrix prevented the sintering of the magnetic nanoparticles,and obtained magnetic nanoparticles are monodisperse.The CFNPs were composed of cobalt ferrite and a silica layer,and the leftover amount of silica could be controlled by tuning the alkali treating time and the alkali concentration.The silica layer on the cobalt ferrite facilitates the CFNPs well-dissolved and monodisperse in water,and easily modified,due to the hydrophilicity of the silanol groups,the solvation of the nanoparticles and reactivity of silanol groups with other groups.In other words,this work supplies a general method for preparing monodisperse,water-soluble,paramagnetic,highly-magnetized and easily-modified magnetic nanoparticles.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Project No:20976013).

    [1]X.D.Zhang,H.Q.Zhang,X.Liang,J.X.Zhang,W.Tao,X.B.Zhu,D.F.Chang,X.W.Zeng,G.Liu,L.Mei,Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms:Lysosome impairment,mitochondrial damage and ER stress,Mol.Pharm.13(7)(2016)2578–2587.

    [2]G.Baldi,D.Bonacchi,C.Innocenti,G.Lorenzi,C.Sangregorio,Cobalt ferritenanoparticles:The control of the particlesize and surfac estate and their effectson magnetic properties,J.Magn.Magn.Mater.311(1)(2007)10–16.

    [3]D.L.Zhao,S.C.Chen,C.X.Guo,Q.P.Zhao,X.M.Lu,Multi-functional forward osmosis draw so lutes for seawater desalination,Chin.J.Chem.Eng.24(1)(2016)23–30.

    [4]Y.Hao,R.X.Gao,D.C.Liu,G.Y.He,Y.H.Tang,Z.J.Guo,Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles,Food Chem.200(2016)215–222.

    [5]M.R.Phadatare,V.M.Khot,A.B.Salunkhe,N.D.Thorat,S.H.Pawar,Studies on polyethylene glycol coating on NiFe2O4nanoparticles for biomedical ap plications,J.Magn.Magn.Mater.324(5)(2012)770–772.

    [6]?ngela L.Andrade,M.A.Valente,J.M.F.Ferreira,J.D.Fabris,Preparation of sizecontrolled nanoparticles of magnetite,J.Magn.Magn.Mater.324(10)(2012)1753–1757.

    [7]K.J.Davis,S.Wells,R.V.Upadhyay,S.W.Charles,K.O'Grady,M.E.Hilo,T.Meaz,S.M?rup,The observation of multi-axial anisotropy in ultra fine cobalt ferrite particles used in magnetic fluids,J.Magn.Magn.Mater.149(1)(1995)14–18.

    [8]D.G.Chen,X.G.Tang,J.B.Wu,W.Zhang,Q.X.Liu,Y.P.Jiang,Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4nanoparticles by co-precipitation process,J.Magn.Magn.Mater.323(12)(2011)1717–1721.

    [9]C.Rath,P.Mohanty,A.Banerjee,Magnetic properties of nanoparticles of cobalt chromite,J.Magn.Magn.Mater.323(12)(2011)1698–1702.

    [10]M.R.Mauricio,H.R.D.Barros,M.R.Guilherme,E.Radovanovi,A.F.Rubira,G.M.D.Carvalho,Synthesis of highly hydrophilic magnetic nanoparticles of Fe3O4for potential use in biologic systems,Colloids Surf.A 417(3)(2013)224–229.

    [11]Z.P.Chen,Y.Zhang,K.Xu,R.Z.Xu,J.W.Liu,N.Gu,Stability of hydrophilic magnetic nanoparticles under biologically relevant conditions,J.Nanosci.Nanotechnol.8(12)(2009)6260–6265.

    [12]S.Mondini,S.Cenedese,G.Marinoni,G.Molteni,N.Santo,C.L.Bianchi,A.Ponti,Onestep synthesisand functionalization of hydroxyl-decorated magnetite nanoparticles,J.Colloid Interface Sci.322(1)(2008)173–179.

    [13]M.M.Ba-Abbad,A.A.H.Kadhum,A.B.Mohamad,M.S.Takriff,K.Sopian,The effect of process parameters on the size of Zn O nanoparticles synthesized via the sol–gel technique,J.Alloys Compd.550(4)(2013)63–70.

    [14]F.X.Cheng,Z.Y.Peng,C.S.Liao,Z.G.Xu,S.Gao,C.H.Yan,D.J.Wang,J.Wang,Chemical synthesis and magnetic study of nanocrystalline thin films of cobalt spinel ferrites,Solid State Commun.107(9)(1998)471–476.

    [15]M.Sanchez-Dominguez,K.Pemartin,M.Boutonnet,Preparation of inorganic nanoparticles in oil-in-water microemulsions:A soft and versatile approach,Curr.Opin.Colloid Interface Sci.17(5)(2012)297–305.

    [16]M.P.Pileni,N.Moumen,P.Veillet,Controlled preparation of nanosize cobalt ferrite magnetic particles,J.Magn.Magn.Mater.149(149)(1995)67–71.

    [17]A.T.Ngo,P.Bonville,M.P.Pileni,Nanoparticles of:Synthesis and superparamagnetic properties,Eur.Phys.J.B 9(4)(1999)583–592.

    [18]K.S.Lin,A.K.Adhikari,C.Y.Wang,P.J.Hsu,H.Y.Chan,Synthesis and characterization of nickel and zinc ferrite nanocatalysts for decomposition of CO2greenhouse effect gas,Catal.Today 13(4)(2013)2538–2548.

    [19]I.Danielsson,B.Lind man,The definition of microemulsion,Colloids Surf.3(4)(1981)391–392.

    [20]P.D.I.Fletcher,A.M.Howe,B.H.Robinson,The kinetics of solubilisate exchange between water drop lets of a water-in-oil microemulsion,J.Chem.Soc.Faraday Trans.83(4)(1987)985–1006.

    [21]S.Clark,P.D.I.Fletcher,X.Ye,Interdroplet exchange rates of water-in-oil and oil-in water microemulsion droplets stabilized by pentaoxyethylenemonododecyl ether,Langmuir 6(7)(1987)1301–1309.

    [22]Y.P.Zhang,Q.Z.Jiao,B.Zhen,Q.Wu,H.S.Li,Transesterification of glycerol trioleate catalyzed by basic ionic liquids immobilized on magnetic nanoparticles:Influence of pore diffusion effect,Appl.Catal.A Gen.453(1)(2013)327–333.

    [23]D.F.Chang,Y.F.Gao,L.J.Wang,G.Liu,Y.H.Chen,T.Wang,W.Tao,L.Mei,L.Q.Huang,X.W.Zeng,Polydopamine-based surface modification of mesoporous silica nanopar-ticles as p H-sensitive drug delivery vehicles for cancer therapy,J.Colloid Interface Sci.463(2016)279–287.

    [24]X.W.Zeng,G.Liu,W.Tao,Y.Ma,X.D.Zhang,F.He,J.M.Pan,L.Mei,G.Q.Pan,A drugself-gated mesoporous antitumor nanoplatform based on p H-sensitive dynamic covalent bond,Adv.Funct.Mater.27(11)(2017)1605985.

    [25]Y.P.Zhang,H.S.Li,B.Zhen,Q.Wu,C.H.Liu,Study on preparation and properties of mesoporous magnetic silica,Adv.Mater.Res.197-198(2011)269–272.

    [26]B.Zhen,Q.Z.Jiao,Y.P.Zhang,Q.Wu,H.S.Li,Acidic ionic liquid immobilized on magnetic mesoporous silica:Preparation and catalytic performance in esterification,Appl.Catal.A Gen.s445–446(47)(2012)239–245.

    [27]R.D.Palma,S.Peeters,M.J.V.Bael,H.V.D.Rul,K.Bonroy,W.Laureyn,J.Mullens,G.Borghs,G.Maes,Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible,Chem.Mater.19(7)(2007)1821–1831.

    [28]L.B.Feng,L.He,Y.X.Ma,Y.L.Wang,Grafting poly(methyl methacrylate)onto silica nanoparticle surfaces via a facile esterification reaction,Mater.Chem.Phys.116(1)(2009)158–163.

    www.av在线官网国产| 26uuu在线亚洲综合色| 天堂网av新在线| 精品久久国产蜜桃| 久久久久久国产a免费观看| 我要搜黄色片| 婷婷色av中文字幕| 麻豆成人av视频| 成年女人看的毛片在线观看| 国产私拍福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 精品国产一区二区三区久久久樱花 | 国产 一区 欧美 日韩| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| 久久久精品大字幕| 最近最新中文字幕大全电影3| 嘟嘟电影网在线观看| 老司机影院成人| 精品欧美国产一区二区三| 国产免费视频播放在线视频 | 特级一级黄色大片| 精品99又大又爽又粗少妇毛片| 中文字幕精品亚洲无线码一区| 禁无遮挡网站| 51国产日韩欧美| 在现免费观看毛片| 日韩一区二区三区影片| 国产一级毛片在线| 欧美另类亚洲清纯唯美| 国产色爽女视频免费观看| 又爽又黄a免费视频| 日韩欧美国产在线观看| 成人午夜精彩视频在线观看| 日韩成人伦理影院| 亚洲精华国产精华液的使用体验| 久久久欧美国产精品| 天堂av国产一区二区熟女人妻| 国产色爽女视频免费观看| 国产乱人偷精品视频| 国产 一区 欧美 日韩| 啦啦啦观看免费观看视频高清| 免费看av在线观看网站| 亚洲精品一区蜜桃| 欧美一级a爱片免费观看看| 一级爰片在线观看| 国产午夜精品论理片| 日韩欧美在线乱码| 国产精品一区二区在线观看99 | 夫妻性生交免费视频一级片| 午夜a级毛片| 在线观看美女被高潮喷水网站| 老司机影院成人| 中文在线观看免费www的网站| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 99热网站在线观看| 老司机影院成人| 亚洲人成网站高清观看| 在线观看66精品国产| 色综合亚洲欧美另类图片| av卡一久久| 中文字幕免费在线视频6| 国产成人freesex在线| 人人妻人人澡欧美一区二区| 欧美性感艳星| 老司机福利观看| 亚洲国产精品合色在线| 久久婷婷人人爽人人干人人爱| 丰满乱子伦码专区| 久久精品夜色国产| 麻豆一二三区av精品| 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 国产日韩欧美在线精品| 十八禁国产超污无遮挡网站| 中国美白少妇内射xxxbb| 国产伦在线观看视频一区| 久久久久久久久久久免费av| 不卡视频在线观看欧美| 人人妻人人看人人澡| kizo精华| 亚洲最大成人中文| 夫妻性生交免费视频一级片| 男的添女的下面高潮视频| 天堂影院成人在线观看| 国内精品宾馆在线| videossex国产| 国内精品宾馆在线| 秋霞在线观看毛片| 中文字幕免费在线视频6| 一级爰片在线观看| 一区二区三区高清视频在线| 我要搜黄色片| av黄色大香蕉| 免费看光身美女| 亚洲,欧美,日韩| 午夜免费激情av| 在线观看美女被高潮喷水网站| 美女大奶头视频| 级片在线观看| 国产精品美女特级片免费视频播放器| 欧美3d第一页| 99久久九九国产精品国产免费| 日韩一本色道免费dvd| 变态另类丝袜制服| 热99re8久久精品国产| 午夜视频国产福利| 欧美日韩在线观看h| 国产高清国产精品国产三级 | av福利片在线观看| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 欧美潮喷喷水| 日韩欧美精品v在线| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| 亚洲av不卡在线观看| 丝袜美腿在线中文| 国产美女午夜福利| 高清毛片免费看| 精品久久久久久久人妻蜜臀av| 91狼人影院| 纵有疾风起免费观看全集完整版 | 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 亚洲欧洲国产日韩| 国产高清有码在线观看视频| 国产精品嫩草影院av在线观看| 亚洲欧美日韩高清专用| 日韩一区二区三区影片| 国产精品永久免费网站| 可以在线观看毛片的网站| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 亚洲精品国产成人久久av| 丝袜美腿在线中文| 久久久国产成人免费| 亚洲av电影不卡..在线观看| 一级毛片aaaaaa免费看小| 三级经典国产精品| 哪个播放器可以免费观看大片| 麻豆国产97在线/欧美| 久久午夜福利片| 麻豆精品久久久久久蜜桃| 精品久久久久久久久久久久久| 国产在视频线在精品| 尾随美女入室| 在线天堂最新版资源| 免费播放大片免费观看视频在线观看 | 少妇丰满av| 乱人视频在线观看| 国产成人aa在线观看| 日本一本二区三区精品| 精品不卡国产一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 亚洲精品456在线播放app| 少妇的逼水好多| 天堂中文最新版在线下载 | 少妇人妻精品综合一区二区| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 亚洲精品色激情综合| 亚洲精品国产成人久久av| 水蜜桃什么品种好| 精品久久久噜噜| www.av在线官网国产| 中文字幕av成人在线电影| 久久久久久久久大av| 久久精品久久精品一区二区三区| 久久国内精品自在自线图片| 男人狂女人下面高潮的视频| 免费av观看视频| 欧美日本亚洲视频在线播放| 国产在视频线精品| 人人妻人人看人人澡| 最新中文字幕久久久久| 热99re8久久精品国产| 大香蕉久久网| 综合色av麻豆| 国产亚洲av片在线观看秒播厂 | 久久久亚洲精品成人影院| 免费观看人在逋| 日本三级黄在线观看| 亚洲欧美精品自产自拍| 久久6这里有精品| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 日韩三级伦理在线观看| 午夜福利在线在线| 亚洲色图av天堂| av播播在线观看一区| 中文欧美无线码| 欧美性猛交黑人性爽| 一夜夜www| 久久99热6这里只有精品| 看片在线看免费视频| 中文天堂在线官网| 天堂√8在线中文| 禁无遮挡网站| 国产亚洲av片在线观看秒播厂 | 午夜福利视频1000在线观看| 精品人妻熟女av久视频| 国产精品,欧美在线| 在线观看美女被高潮喷水网站| 22中文网久久字幕| 国产精品福利在线免费观看| 亚洲成人久久爱视频| 国产午夜精品论理片| 99久久中文字幕三级久久日本| 一边摸一边抽搐一进一小说| 国产精品不卡视频一区二区| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 成人午夜高清在线视频| 日韩欧美在线乱码| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| 美女被艹到高潮喷水动态| 全区人妻精品视频| 99热网站在线观看| 能在线免费看毛片的网站| 欧美成人免费av一区二区三区| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 麻豆久久精品国产亚洲av| 亚洲欧洲国产日韩| 亚洲av一区综合| 久久99热6这里只有精品| 欧美日韩国产亚洲二区| 国产一区二区三区av在线| 激情 狠狠 欧美| 日本一二三区视频观看| 天堂影院成人在线观看| 国产av码专区亚洲av| 色噜噜av男人的天堂激情| 日韩成人av中文字幕在线观看| 欧美一区二区亚洲| 中文字幕精品亚洲无线码一区| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 黑人高潮一二区| 春色校园在线视频观看| 国产在视频线在精品| 老女人水多毛片| 边亲边吃奶的免费视频| 亚洲最大成人av| 内地一区二区视频在线| 欧美日韩一区二区视频在线观看视频在线 | 日韩av在线大香蕉| 久久精品久久精品一区二区三区| 18禁在线播放成人免费| 视频中文字幕在线观看| 久久韩国三级中文字幕| 毛片女人毛片| 久久99热6这里只有精品| 亚洲人成网站在线播| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 又粗又爽又猛毛片免费看| 精品久久国产蜜桃| 中文字幕精品亚洲无线码一区| 欧美潮喷喷水| 亚洲激情五月婷婷啪啪| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 黄色日韩在线| 又粗又硬又长又爽又黄的视频| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 深爱激情五月婷婷| 国产在线男女| 国产一区二区亚洲精品在线观看| 久久久久性生活片| 午夜福利网站1000一区二区三区| 午夜福利在线观看吧| 色5月婷婷丁香| 久久人人爽人人爽人人片va| 国产综合懂色| av免费在线看不卡| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 一级毛片我不卡| 内射极品少妇av片p| 精品久久国产蜜桃| 成人一区二区视频在线观看| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 3wmmmm亚洲av在线观看| 成人二区视频| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 寂寞人妻少妇视频99o| 亚洲五月天丁香| 久久精品国产亚洲av涩爱| 国产一区二区亚洲精品在线观看| 久久久精品大字幕| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久久久免| 成人三级黄色视频| 青春草国产在线视频| 欧美精品一区二区大全| 国产真实乱freesex| 三级男女做爰猛烈吃奶摸视频| 一级二级三级毛片免费看| 国产欧美日韩精品一区二区| 色哟哟·www| 丝袜喷水一区| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级专区第一集| 能在线免费看毛片的网站| 伦理电影大哥的女人| 一级二级三级毛片免费看| 亚洲av中文字字幕乱码综合| 国产av不卡久久| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 国产综合懂色| 亚洲欧美成人综合另类久久久 | 久久久久久久久久久免费av| 人体艺术视频欧美日本| av专区在线播放| 村上凉子中文字幕在线| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| kizo精华| 黄片wwwwww| 久久久色成人| 国产伦一二天堂av在线观看| 日本wwww免费看| 日本一二三区视频观看| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 久久久久久伊人网av| 午夜激情福利司机影院| 看免费成人av毛片| 国产一区亚洲一区在线观看| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆 | 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 国产亚洲91精品色在线| 日本黄色片子视频| 国产美女午夜福利| 国产午夜精品论理片| 久久精品国产自在天天线| 春色校园在线视频观看| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 嫩草影院入口| 午夜视频国产福利| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 99久久九九国产精品国产免费| 日本wwww免费看| 成人二区视频| 日韩欧美精品v在线| 久久精品久久久久久久性| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 久久精品人妻少妇| 三级国产精品片| 日产精品乱码卡一卡2卡三| 三级毛片av免费| 午夜日本视频在线| 麻豆乱淫一区二区| 成人三级黄色视频| 老司机福利观看| av免费观看日本| 国产v大片淫在线免费观看| 国产av在哪里看| 少妇熟女欧美另类| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| av免费观看日本| 中文字幕制服av| 久久精品夜夜夜夜夜久久蜜豆| 国产精品伦人一区二区| 在线观看一区二区三区| 久久精品国产亚洲av天美| av免费观看日本| 午夜精品国产一区二区电影 | 在线免费观看不下载黄p国产| 亚洲av日韩在线播放| 99久国产av精品国产电影| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 1000部很黄的大片| 51国产日韩欧美| 汤姆久久久久久久影院中文字幕 | 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看| 国产乱人视频| 国产黄色小视频在线观看| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 国产毛片a区久久久久| 舔av片在线| 亚洲av成人精品一区久久| 亚洲精品亚洲一区二区| 六月丁香七月| 国产成人a区在线观看| 深夜a级毛片| 性色avwww在线观看| 一个人看视频在线观看www免费| 国内揄拍国产精品人妻在线| 国产老妇伦熟女老妇高清| 国产黄片美女视频| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 免费看a级黄色片| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 免费看美女性在线毛片视频| 免费人成在线观看视频色| 精品一区二区免费观看| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 高清在线视频一区二区三区 | 久久久色成人| 国产精品国产三级专区第一集| 国产成人aa在线观看| 国产亚洲5aaaaa淫片| 极品教师在线视频| 亚洲av.av天堂| 亚洲三级黄色毛片| 最近视频中文字幕2019在线8| 尾随美女入室| 成人午夜高清在线视频| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 91av网一区二区| 国产久久久一区二区三区| 色吧在线观看| 美女被艹到高潮喷水动态| 一级毛片电影观看 | 日本wwww免费看| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 一级毛片电影观看 | 亚洲av福利一区| 午夜免费男女啪啪视频观看| 成人午夜高清在线视频| 欧美日韩一区二区视频在线观看视频在线 | 国产熟女欧美一区二区| 国产精品久久久久久精品电影小说 | 亚洲国产精品专区欧美| 午夜精品一区二区三区免费看| 爱豆传媒免费全集在线观看| a级一级毛片免费在线观看| 听说在线观看完整版免费高清| 欧美日本视频| 一个人免费在线观看电影| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 亚洲av二区三区四区| 亚洲最大成人手机在线| 久久热精品热| 女的被弄到高潮叫床怎么办| 99久久中文字幕三级久久日本| 级片在线观看| 久久精品影院6| 成人毛片60女人毛片免费| 中文乱码字字幕精品一区二区三区 | 亚洲精品aⅴ在线观看| 桃色一区二区三区在线观看| 搡女人真爽免费视频火全软件| 级片在线观看| 成人特级av手机在线观看| 日韩,欧美,国产一区二区三区 | 纵有疾风起免费观看全集完整版 | 中文字幕制服av| 国产私拍福利视频在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久久午夜电影| 国产成人freesex在线| 欧美成人一区二区免费高清观看| 三级男女做爰猛烈吃奶摸视频| 久久国内精品自在自线图片| 人人妻人人澡欧美一区二区| 亚洲精品一区蜜桃| 一级毛片电影观看 | 国产成人福利小说| 久久亚洲国产成人精品v| 卡戴珊不雅视频在线播放| 中文亚洲av片在线观看爽| 51国产日韩欧美| 国产不卡一卡二| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 两性午夜刺激爽爽歪歪视频在线观看| 国产在线男女| 欧美激情在线99| 日本黄大片高清| 国产精品国产三级国产专区5o | 亚洲在线观看片| 青春草亚洲视频在线观看| 女人久久www免费人成看片 | 亚洲欧美精品专区久久| 老师上课跳d突然被开到最大视频| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 亚洲欧美日韩卡通动漫| av在线蜜桃| 啦啦啦啦在线视频资源| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一本久久精品| 日产精品乱码卡一卡2卡三| 国产在线一区二区三区精 | 在线播放国产精品三级| 亚洲国产欧美人成| 国产免费男女视频| 春色校园在线视频观看| 亚洲乱码一区二区免费版| 国产精品永久免费网站| 日韩强制内射视频| 欧美激情久久久久久爽电影| 亚洲国产精品成人久久小说| 国产精品无大码| 国产精品麻豆人妻色哟哟久久 | 在线免费观看不下载黄p国产| 一区二区三区高清视频在线| 99久国产av精品| 久久人人爽人人爽人人片va| 九草在线视频观看| 国产人妻一区二区三区在| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 国产精品蜜桃在线观看| 成人一区二区视频在线观看| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 亚洲av一区综合| 网址你懂的国产日韩在线| 亚洲va在线va天堂va国产| 22中文网久久字幕| 国产69精品久久久久777片| 亚洲精品自拍成人| 韩国av在线不卡| 中文欧美无线码| 国产91av在线免费观看| 久久久成人免费电影| 国产精品麻豆人妻色哟哟久久 | av免费在线看不卡| 国产激情偷乱视频一区二区| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 一边摸一边抽搐一进一小说| 边亲边吃奶的免费视频| 欧美3d第一页| 精品久久久久久电影网 | 亚洲av男天堂| av专区在线播放| 亚洲av一区综合| 九草在线视频观看| 亚洲精品影视一区二区三区av| 午夜视频国产福利| 色综合站精品国产| 免费av观看视频| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 国产免费福利视频在线观看| 欧美xxxx性猛交bbbb| 只有这里有精品99| 极品教师在线视频| 免费av毛片视频| 大又大粗又爽又黄少妇毛片口| 美女国产视频在线观看| 啦啦啦观看免费观看视频高清| 日韩三级伦理在线观看| 免费一级毛片在线播放高清视频| 免费观看人在逋| 边亲边吃奶的免费视频| 国产精品永久免费网站| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 久久精品国产99精品国产亚洲性色| 免费av毛片视频| 亚洲,欧美,日韩| 亚洲欧美中文字幕日韩二区| 色综合亚洲欧美另类图片| 熟妇人妻久久中文字幕3abv| 亚洲av免费高清在线观看| 国产亚洲5aaaaa淫片| 国产久久久一区二区三区| 色哟哟·www| 插逼视频在线观看| 亚洲欧美精品综合久久99| 久久久久久久午夜电影| 日本黄色视频三级网站网址| 欧美极品一区二区三区四区| 国产高清国产精品国产三级 | 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 在线免费观看不下载黄p国产| 亚洲精品,欧美精品| 99久久人妻综合| 床上黄色一级片| 久久久久久久久久成人| 性色avwww在线观看|