• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density,refractive index and liquid–liquid equilibrium data of polyethylene glycol 3000+potassium formate+water at different p H values

    2018-05-25 07:50:53FatemehAhmadiMohsenPirdashtiAbbasAliRostami

    Fatemeh Ahmadi,Mohsen Pirdashti*,Abbas Ali Rostami*

    Chemical Engineering Department,Faculty of Engineering,Shomal University,PO Box 731,Amol,Mazandaran,Iran

    1.Introduction

    One method of preparing an aqueous two-phase system(ATPS)is to use an aqueous solution which is immiscible at specific concentrations of polymer–polymer,salt–salt and polymer–salt molecular compounds[1].ATPS was first investigated by Beijerinck[2].Albertsson later investigated other aspects of ATPS,including its use in biomolecule purification(such as proteins)and cell particles[3].Studies have reported on the merits of employing the conventional method of ATPS.These include faster processing and shorter time[4],economical affordability and low material costs[5,6],low energy consumption,non-toxicity and being environmentally friendly[7,8].

    ATPS is a more efficient,powerful and flexible method to decontaminate and isolate biomolecules than alternative methods using different compounds[9–11].Vernau and Kula[12]found that ATPS effects the separation of biomolecules,including the mass of the molecules,physical properties of the polymer(hydrophobicity),type of salt and its selection,polymer system composition,p H level,temperature and distance from the stationary point.Polyethylene glycol(PEG)has used been in studies because it is affordable,is non-poisonous,burns quickly and is straightforward to control.

    Inorganic salts can be used to create ATPS with PEG phosphates.Commonly-used ones are sulfates of sodium,potassium,and ammonium salts[13].The use of the sesaltson the largescalecan cause environ mental problems[14,15].Potassium formate(K+CHOO?)is the potassium salt of formic acid(CHOOH).It rapidly dissolves in water and is present as potassium cations(K+)and formate anions(CHOO?),which are very mobile in an aquatic environment.The negative effects of formate on the environment include oxygen consumption from microbial degradation,subsurface denitrification,manganese,iron and sulfate reduction and methanogenesis as well its effect on perennial plants[16].It is widely used in the oil-drilling industry and indirect refrigeration systems as a secondary refrigerant[17],as an ice-removal agent in airport runaways and road maintenance[16],as an additive to modified triethylene glycol[18],in air-cooled absorption chillers[19],as a sustainable green hydrogen source in an organic transformation[20],as a palladium catalyst[21]and as a catalyst of ruthenium encapsulated in an aluminum oxyhydroxide-support[22].

    Formates are organic anions that can be used to produce an ATPS showing better performance with regard to environmental and toxicity issues.Some researchers have found formates as a different substance for creating an ATPS with PEG because they can prevent pollution and virulent disease and can be successfully used in biological wastewater treatment plants[23–26].Little experimental data(PEG+water+formate)is available,however,and there are many research opportunities when working on this system.Lladosa et al.[27]reported on UCON 50-HB-5100+potassium formate+water systems as measured at 298.15 K.Silverio et al.[26,14]characterized PEGs with different molecular mass(1500 and 8000)when combined with potassium phosphate.

    Our previous study[28]reported on data derived from the binodal curves and tie-lines of PEG 3000+trisodium citrate+water systems at 298.15 K and different p H values.In the current study,phase equilibrium data for PEG 3000+potassium formate ATPS was determined at 298.15 K and p H levels of 7.95,8.40 and 9.98.The binodal curves and tie-line lengths(TLLs)satisfactorily correlated.The PEGand salt compositions were then analyzed using calibration curves and the effects of p H on the binodal curve and TLL and slope of the tie-line(STL)were examined.The experiment was processed at low temperatures as an important condition for protein stability.

    2.Experimental

    2.1.Materials

    PEG with a mass average of 3000 g·mol?1and sodium hydroxide(NaOH;mass purity>0.99%)were obtained from Merck(Germany)and used without further purification.Potassium formate(KCHO2;purity pa>99.0 wt%)was supplied by Sigma-Aldrich(Darmstadt,Germany).Distilled deionized water(conductivity=17.8 μS·cm?1)was used to prepare the solutions.All chemicals were dried for at least 24 h(433.15 K for salts and 313.15 K for polymers)to eliminate the adsorbed water.

    2.2.Apparatus and procedure

    2.2.1.Analytical method

    The compositions in both phases were obtained by measuring the physical properties of refractive index(nD)and density(ρ)of binary(PEG 3000+water,potassium formate+water)and ternary(PEG 3000+potassium formate+water)systems at 298.15 K using a CETI refractometer(Belgium)with an accuracy of 0.0001 nDand using an Anton Paar oscillation U-tube densimeter(model:DMA 500,Austria)with a precision of±10?4g·cm?3.The calibration equations were calculated beforehand.Duplicate data measurement was employed and the average values of the parameters were reported.This data was correlated using Eq.(1)as:

    where Z denotes the physical properties(density or refractive indices),wpdenotes the mass fraction of the polymer,wsdenotes the mass fraction of the salt and the fitting parameters are denoted by a0to a5.The density and refractive indices of the PEG 3000+potassium formate+water systems are shown in Table S1.A practical approach employed for determination of the phase composition of PEG–salt ATPS is shown in Fig.1.

    2.2.2.Binodal curve

    The titration method was selected to ascertain the binodal curves[29].To achieve the cloud point,titration was conducted by adding the polymer(titrant)to salt solutions of specific concentrations.A binary solution of potassium formate(50%w/w)and PEG 3000(50%w/w)was prepared.The salt solution was prepared and titrated against the polymer.Special care was taken when adding the salt solution drop wise continuously to reach turbidity so as to determine the end point.To remove the turbidity,water was added over a period of time.The same method was used to obtain the other binodal.An appropriate ratio of potassium formate to sodium hydroxide was mixed so that the p H values of the salt solutions could be accurately adjusted using a p H meter(827 p H;Metrohm;Switzerland).

    2.2.3.TLL and STL

    The tie lines were obtained using the equilibrium set designed based on previously described procedures[30].Four samples were selected at each p H.Adequate amounts of PEG,salt stock and water were mixed in 15 ml graduated cylindersat 298.15 Kto prepare10 g of feed samples using an analytical balance(A&D;model GF300;Japan)with an accuracy of±10?4g.Appropriate ratios of potassium formate and sodium hydroxide were mixed so that the p H values of the salt stock could be accurately adjusted using a p H meter.

    The samples were stirred for 10 min and settled in a thermostatic bath(Memmert;model INE400;Germany)to keep the temperature constant at±1 K and allow the mixtures to settle for 24 h.The tubes were spun in a Hermle Z206A centrifuge(Germany)at 6000g for 10 min to separate the phases,which showed no turbidity or difficulty discerning the top and bottom of the samples.After the achievement of equilibrium,syringes were used to with draw the phases.Accordingly,the top phase was sampled first,with care beingtaken to leave alayer of material at least 0.5 mm thick above the interface.The bottom phase remained in the glass vessel and wasremoved with alongneedle.To determine the concentration of polymer and salt,the physical properties(density and refractive index)of the top and bottom phases were measured.The TLL was obtained using Eq.(2),which presents an observational measurement of the compositions in the two phases.

    Fig.1.Practical approach for determination of phase composition and binodal curve of PEG–salt ATPS.

    The STL was obtained using Eq.(3)as the ratio of the difference in the mass fraction of polymer and salt in both the top and bottom phases.wiis the mass fraction of the PEG and salt and top and bot denote the top and bottom phases,respectively.

    2.2.4.Binodal curve and TLL correlation

    The Pirdashti equation[28]is appropriate for recreation of the binodal curves of the systems investigated for binodal data correlation as:

    where a,b,and c denote the fitting parameters and wpand wsdenote the mass fraction of the polymer and salt,respectively.The binodal data of this expression was correlated using least-squares regression.

    The Othmer–Tobias[31](Eq.(5)),Bancroft[32](Eq.(6))and Hand[33](Eq.(7))correlations were used to control and ensure the reliability and consistency of the data derived from the tie-line.

    Table 1 Values of coefficients obtained from Eq.(1)

    where k,n,k1,and r denote the adjusted parameters.This experimental data can also be adapted to the equation provided by Guan et al.[34]as:

    where M denotes the representative molecular mass(g·mol?1)and V?denotes the effective excluded volume(EEV)of the PEG[35,36].

    Next,a simple two parameter equation was used to correlate the LLE data[34]:

    where b and k are fitting parameters that can be regarded as effective virial(or active)coefficients and the salting-out coefficient of the salt,wiis the mass fraction of the PEG and salt and top and bot denote the top and bottom phases,respectively.

    3.Results and Discussion

    3.1.Fitting parameters of calibration equation

    Table 1 shows the coefficients having the nominal values of a0,a1,a2,a3,a4.,and a5from Eq.(1).The refractive index and density of pure water at 298.15 K were 1.3323 and 0.9962,respectively.The average absolute relative deviation in this concentration range was 0.0058%for the refractive index and 0.03%for the density.

    3.2.Binodal curve

    The binodal experimental data plotted in Fig.2 are shown in Table 2.

    Fig.2 shows the effect of p H on the binodal curve of the PEG 3000+potassium formate ATPS at p H values of 7.95,8.40 and 9.98 at 298.15 K.The two-phase area broadened as the p H increased and the binodal displacement descended as the moderate p H increased.Such displacement indicates the need for lower concentrations of phase polymers for ATPS formation.Previous studies have reported similar results[37–39].

    The functions of p H are solute charging,charging the species ratio and binodal location[40].Sadeghiand Jamehbozorg[41]increased the p H and observed a behavior known as “salting-out”after studies of salt in water.One outcome of this phenomenon is a decrease in the interaction hydrogen-bond.Reasons for this could be the decrease in hydration and the solubility of the polymer because of the greater attraction of salt ions to water over the polymer[42].The polymer can be eliminated from the solution as an outcome of this process[39].

    Fig.2.Phase diagram of PEG(3000)+potassium formate(KCHO2)+H2O(3)two-phase system at T=298.15 K and p H values of 7.95(),8.40()and 9.98()experimental binodal.The solid curves represent the empirical model.

    Table 2 Binodal curve data of PEG 3000+potassium formate water system at 298.15 K for different p H values

    The data in Table 3 shows that the PEG concentration of the top phase increased as the salt composition increased at a constant PEG molecular mass.The ability of salt to increase the water structure can explain this.A decrease occurs in hydration and PEG solubility because of the stronger attraction of salt ions to water than PEG.Eventually hydrophilic PEG is salted separately and is removed from the remnant of the solution at a specific concentration.This means that the absorption of PEG and water decreased and in the two-phase system of PEG and salt,water was driven from the PEG-rich phase to the saltrich phase.This increased the PEG concentration of the PEG-rich phase and somewhat diluted the salt-rich phase(the salt concentration decreased)and the volume of the salt-rich phase increased at the expense of the PEG-rich phase[41–43].

    Fig.3 shows this binodal as compared with previous studies[14,15,26].When the molecular mass of the PEG increased,biphasic formation occurred at lower concentrations of polymer and salt.Larger heterogeneous regions were observed for PEG 8000–salt than for PEG 600–salt ATPSs.This was to be expected because as the polymer molecular mass increased,hydrophobicity increased and water solubility decreased,leading to polymer salting-out.Because the density also increased and the differences in the binodals were not significant,systems with PEG 600 and 8000 are potentially valuable for extraction purposes,mainly for the separation of target solutes.A lower density can have a positive effect on which PEG should be used.

    3.3.TLL and STL

    Table 3 shows the composition of the tie-line in the form of plots in Figs.4 and 5.The binodal curve for the PEG+potassium formate+water system at 298.15 K is also provided.

    Fig.3.Experimental binodal curves for PEG 3000+potassium formate+water()compared to PEG 600+potassium formate+water()[26],PEG 1500+potassium formate+water()and PEG 8000+potassium formate+water()[14]at 298.15 K.

    The tie-lines were obtained through correlation with each resulting set of phase compositions( final,top and bottom).Moreover,there are simultaneous phases in the composition.A bulk balancing test was conducted by initially considering the amount of the mass per phase for the top and bottom on the basis of equilibrium compounds.Volume and density measurements were used to calculate the mass of each phase.The error of the mass balance was less than<2%.Table 3 shows that an increase in p H increased the TLL and decreased the STL.

    The effects of p H on the equilibrium phase composition,TLL and STL are shown for the PEG 3000+potassium formate+water system in Table 3 and Figs.4 and 5.The STL values were not constant and slight variations can be observed for the different tie-lines of a given ATPS.It was found that the absolute value of the STL decreased as the TLL increased in this system when the p H level increased,which may bebecause of the reduction in the solution hydrodynamic volume.Comparable conduct has been shown in previous studies[14,15,26,37,44].Waziri et al.[45]and Shahbazinasab and Rahimpour[37]reported a decrease in the intrinsic viscosity of the polymer solution with a decrease in p H.

    Table 3 Phase composition,tie-line data and physical properties of PEG 3000+potassium formate+water ATPS at 298.15 K and 0.1 MPa

    Fig.4.Phase diagram and tie-line of PEG+potassium formate+water ATPS at T=298.15 K and:(a)p H 7.95;(b)p H 8.40;(c)p H 9.98.

    Note that a decrease in p H modified the polymer chains,making their structure more compact,because the intrinsic viscosity of a polymer solution was proportional to its hydrodynamic volume.Studies have shown that the concentrations of the PEG and salt-rich phases increase and decrease,respectively,following an increase in the p H of the aqueous two-phase PEG–salt system.Once more,the polydispersity of the PEG could be the main reason for this[14].The current study also examined the effects of TLL on the difference in density between the phases(Δρ)of the ATPSs.Table 3 and Fig.6 show that the Δρ increased as the TLL and p H increased.The Δρ between the phases shows a linear relationship with TLL.Similar results have been reported in previous studies[38,44,46–49].

    Fig.5.Tie-line of PEG(3000)+potassium formate+H2O ATPS at T=298.15 K and p H values of 7.95,8.40 and 9.98.Experimental tie line:()p H 7.95;()p H 8.40;()p H 9.98.

    Fig.6.Relationship between Δρ and TLL for PEG 3000+potassium formate+water at different p H values.

    3.4.Binodal curve and tie-line data correlation

    Table 4 provides the coefficients of Eq.(4)with the resulting standard deviations of the systems.

    Table 4 Values of para meters in Eq.(3)for PEG3000+potassium formate+water at different p H values

    Table 5 Values of parameters in Eqs.(5),(6)and(7)for PEG 3000+potassium formate+water at different p H values

    The standard deviations indicate that Eq.(4)could be used to correlate the binodal curves of the studied systems.The binodal curves indicate model reliability.The tie-line compositions for PEG 3000+potassium formate+water were correlated using the Othmer–Tobias(Eq.(5)),Bancroft(Eq.(6))and Hand(Eq.(7))equations,which were perfectly practiced in previous systems containing polymer–salt molecular compounds.Table 5 shows the parameter values obtained from the results.

    V*denotes the EEV of PEG.Nonlinear regression was used to calculate the EEV(Table 6).Although the performance of this model wasworse than for the Pirdashti equation,it has a more powerful the oreticalbackground(statistical geometry),enabling better measurement of the salting-out effect of the different salts.Apart from this contradictory feature,both models have been adopted for correlation of the binodal data from the polymer/polymer and polymer/salt ATPSs[14,34,36].

    Table 6 EEV parameter correlation

    Linear regression was used to find the values for b and k in Eq.(9).The fitted parameters are shown in Table 7.

    Table 7 Fitting parameter for Eq.(9)and statistics of regression

    4.Conclusions

    The current study provides newfindings on the use of liquid–liquid equilibrium datafor PEG3000+potassium formate+water systemsat p H values of 7.95,8.40,and 9.98 at 298.15 K.Although reliable and valid data on the composition and system properties are necessary to design the extraction process,such data is inaccessible.A direct relationship was found between two-phase area expansion and an increase in p H,and is likely caused by the effect of salting-out.An increase in p H decreased the slope of the equilibrium tie-lines,while the lengths of tielines increased in the biphasic system.This may bebecause of adecrease in solution hydrodynamic volume.The calibration method was applied to measure the refractive index and density of the phases.The experimental binodal data for all investigated systems satisfactorily correlated with the Pirdashti equation and the tie-line compositions were fitted to the Othmer–Tobias,Hand and Bancroft equations.The difference in density between the phases increased as the tie-line length and p H increased.It was found that tie line length and difference in density between phases vary linearly.Moreover,EEV increased following an increase in p H.PEG 3000+potassium formate at a p H of 9.98 was the ATPS with the largest EEV and heterogeneous region.

    Supplementary Material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cjche.2017.07.003.

    [1]P.A.Albertsson,Aqueous Polymer-phase Systems,Wiley,New-York,1986.

    [2]M.W.Beijerinck,über eine Eigentümlichkeit der l?slichen St?rke,Centr-Bl.f.Bakter.u,Parasitenk 2(1)(1896)698–699.

    [3]P.A.Albertsson,Partition of Cell Particles and Macromolecules,Wiley,New-York,1986.

    [4]R.Hu,X.Feng,P.Chen,M.Fu,H.Chen,L.Guo,B.Liu,F.Rapid,Highly efficient extraction and purification of membrane proteins using a micro fluidic continuous- flowbased aqueous two-phase system,J.Chromatogr.A 1218(1)(2011)171–177.

    [5]G.D.Rodrigues,L.D.Teixeira,G.M.D.Ferreira,M.D.H.da Silva,L.H.M.da Silva,R.M.M.de Carvalho,Phase diagrams of aqueous two-phase systems with organic salts and f68 triblock copolymer at different temperatures,J.Chem.Eng.Data 55(9)(2010)1158–1165.

    [6]P.A.Rosa,A.M.Azevedo,S.Sommerfeld,W.B?cker,M.R.Aires-Barros,Aqueous two phase extraction as a platform in the biomanufacturing industry,economical and environmental sustainability,Biotechnol.Adv.29(6)(2011)559–567.

    [7]I.S.B.do Nascimento,J.S.dos Reis Coimbra,J.P.Martins,L.H.M.da Silva,R.C.F.Bonomo,M.R.Pirozzi,A.Cinquini,Partitioning of glutenin flour of special wheat using aqueous two-phase systems,J.Cereal Sci.52(2)(2010)270–274.

    [8]M.Yavari,G.R.Pazuki,M.Vossoughi,S.A.Mirkhani,A.A.Seifkordi,Partitioning of alkaline protease from Bacillus licheniformis(ATCC 21424)using PEG–K2HPO4aqueous two-phase system,Fluid Phase Equilib.337(1)(2013)1–5.

    [9]Y.Lu,Selective extraction and purification of papain using polyethylene glycol(PEG 4000)/potassium citrate aqueoustwo phase,Asian J.Chem.26(12)(2014)3483–3488.

    [10]L.Yang,D.Huo,C.Hou,K.He,F.Lv,H.Fa,X.Luo,Purification of plant-esterase in PEG1000/NaH2PO4aqueous two-phase system by a two-step extraction,Process Biochem.45(10)(2010)1664–1671.

    [11]Y.M.Lu,Y.Z.Yang,X.D.Zhao,C.B.Xia,Bovine serum albumin partitioning in polyethylene glycol(PEG)/potassium citrate aqueous two-phase systems,Food Bioprod.Process.88(1)(2010)40–46.

    [12]J.Vernau,M.R.Kula,Extraction of proteins from biological raw materials using aqueous PEG–citrate phase system,Biotechnol.Appl.Biochem.12(4)(1990)397–404.

    [13]D.de Araujo Sampaio,L.I.Mafra,C.I.Yamamoto,E.F.de Andrade,M.O.de Souza,M.R.Mafra,F.de Castilhos,Aqueous two-phase(polyethylene glycol+sodium sulfate)system for caffeine extraction:equilibrium diagrams and partitioning study,J.Chem.Thermodyn.98(1)(2016)86–94.

    [14]S.C.Silverio,O.Rodriguez,J.A.Teixeira,E.A.Macedo,The effect of salts on the liquid–liquid phase equilibria of PEG 600 salt aqueous two-phase systems,J.Chem.Eng.Data 58(12)(2013)3528–3535.

    [15]K.Wysoczanska,E.A.Macedo,Influence of the molecular mass of PEG on the polymer/salt phase diagrams of aqueous two-phase systems,J.Chem.Eng.Data 61(12)(2016)4229–4235.

    [16]E.Fries,J.Klasmeier,Analysis of potassium formate in airport storm water runoff by headspace solid-phase microextraction and gas chromatography–mass spectrometry,J.Chromatogr.A 1216(5)(2009)879–881.

    [17]A.Aittomiiki,A.Lahti,Potassium formate as a secondary refrigerant,Int.J.Refrig.20(4)(1997)276–282.

    [18]M.A.Isa,U.Eldemerdash,K.Nasrifar,Evaluation of potassium formate as a potential modifier of TEG for high performance natural gas dehydration process,Chem.Eng.Res.Des.91(9)(2013)1731–1738.

    [19]A.De Lucas,M.Donate,J.F.Rodríguez,Vapor pressures,densities,and viscosities of the(water+lithium bromide+sodium formate)system and(water+lithium bromide+potassium formate)system,J.Chem.Eng.Data 48(1)(2003)18–22.

    [20]B.Basu,S.Jha,M.M.H.Bhuiyan,P.Das,A simple p rotocol for direct reductive amination of aldehydes and ketones using potassium formate and catalytic palladium acetate,Synlett 14(04)(2003)555–557.

    [21]R.D.Patil,Y.Sasson,Selective transfer hydrogenation of phenol to cyclohexanone on supported palladium catalyst using potassium formate as hydrogen source under open atmosphere,Appl.Catal.A Gen.499(1)(2015)227–231.

    [22]Y.Gao,S.Jaenicke,G.K.Chuah,Highly efficient transfer hydrogenation of aldehydes and ketonesusing potassium formate over AlO(OH)-entrapped ruthenium catalysts,Appl.Catal.A Gen.484(1)(2014)51–58.

    [23]M.T.Zafarani-Moattar,Sh.Hamzehzadeh,Liquid–liquid equilibria of aqueous twophase systems containing polyethylene glycol and sodium succinate or sodium formate,Calphad 29(1)(2005)1–6.

    [24]M.T.Zafarini-Moattar,R.Sadeghi,A.A.Hamidi,Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate experiment and correlation,Fluid Phase Equilib.219(2)(2004)149–155.

    [25]T.Murugesan,M.J.Perumalsamy,Liquid?liquid equilibria of poly(ethylene glycol)2000+sodium citrate+water at(25,30,35,40,and 45)°C,J.Chem.Eng.Data 50(4)(2005)1392–1395.

    [26]S.C.Silvério,A.Wegrzyn,E.Lladosa,O.Rodríguez,E.A.Macedo,Effect of aqueous two-phase system constituents in different poly(ethylene glycol)–salt phase diagrams,J.Chem.Eng.Data 57(4)(2012)1203–1208.

    [27]E.Lladosa,S.C.Silvério,O.S.Rodríguez,J.A.Teixeira,E.A.Macedo,(Liquid+liquid)equilibria of polymer–salt aqueous two-phase systems for laccase partitioning,J.Chem.Thermodyn.55(1)(2012)166–171.

    [28]M.Pirdashti,K.Movagharnejad,A.A.Rostami,P.Akbarpour,M.Ketabi,Liquid–liquid equilibrium data,viscosities,densities,conductivities,and refractive indexes of aqueous mixtures of poly(ethylene glycol)with trisodium citrate at different p H,J.Chem.Eng.Data 60(11)(2015)3423–3429.

    [29]R.Hatti-Kaul,Methods in Biotechnology:Aqueous Two-phase Systems:Methods and Protocols,Humana Press Inc.,Totowa,2000.

    [30]M.Jayapal,I.Regupathi,T.Murugesan,Liquid–liquid equilibrium of poly(ethylene glycol)2000+potassium citrate+water at(25,35,and 45)°C,J.Chem.Eng.Data 52(1)(2007)56–59.

    [31]D.Othmer,P.Tobias,Liquid–liquid extraction data— the line correlation,Ind.Eng.Chem.34(6)(1942)693–696.

    [32]G.R.Vakili-Nezhaad,M.Mohsen-Nia,V.Taghikhani,M.Beh-poor,M.Aghahosseini,Salting-out effect of NaCl and KCl on the ternary LLE data for the systems of(water+propionic acid+isopropyl methyl ketone)and of(water+propionic acid+isobutyl methyl ketone),J.Chem.Thermodyn.36(4)(2004)341–348.

    [33]D.B.Hand,Dineric distribution,J.Phys.Chem.34(9)(1930)1961–2000.

    [34]Y.Guan,T.H.Lilley,T.E.Treffry,A newexcluded volume theory and its application to the coexistence curves of aqueous polymer two-phase systems,Macromolecules 26(15)(1993)3971–3979.

    [35]Y.Guan,T.H.Lilley,M.N.García-Lisbona,T.E.Treffry,Newapproaches to aqueous polymer systems:theory,thermodynamics and applications to biomolecular separations,Pure Appl.Chem.67(6)(1995)955–962.

    [36]M.González-Amado,E.Rodil,A.Arce,A.Soto,O.Rodríguez,The effect of temperature on polyethylene glycol(4000 or 8000)–(sodium or ammonium)sulfate aqueous two phase systems,Fluid Phase Equilib.428(1)(2016)95–101.

    [37]M.K.Shahbazinasab,F.Rahimpour,Liquid?liquid equilibrium data for aqueous two-phase systems containing PPG725 and salts at various p H values,J.Chem.Eng.Data 57(7)(2012)1867–1874.

    [38]T.S.Porto,P.A.Pess?a-Filho,B.B.Neto,J.L.Lima Filho,A.Converti,A.L.F.Porto,A.Pessoa,Removal of proteases from Clostridium perfringens fermented broth by aqueous two-phase systems(PEG/citrate),J.Ind.Microbiol.Biotechnol.34(8)(2007)547–552.

    [39]A.R.da Costa,J.S.dos Reis Coimbra,L.A.Ferreira,J.C.Marcos,I.J.B.Santos,M.D.Salda?a,J.A.C.Teixeira,Partitioning of bovine lactoferrin in aqueous two-phase system containing poly(ethylene glycol)and sodium citrate,Food Bioprod.Process.95(1)(2015)118–124.

    [40]A.Chakraborty,K.Sen,Impact of p H and temperature on phase diagrams of different aqueous biphasic systems,J.Chromatogr.A 1433(3)(2016)41–55.

    [41]R.Sadeghi,B.Jamehbozorg,The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol),Fluid Phase Equilib.280(1–2)(2009)68–75.

    [42]M.T.Zafarani-Moattar,S.Hamzehzadeh,Effect of p H on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T=298.15 K,Fluid Phase Equilib.304(1–2)(2011)110–120.

    [43]M.T.Zafarani-Moattar,A.Salabat,Thermodynamics of magnesium sulfate–polypropylene glycol aqueous two-phase system.Experiment and correlation,Fluid Phase Equilib.152(1)(1998)57–65.

    [44]M.Perumalsamy,T.Murugesan,Phasecompositions,molar mass,and temperature effect on densities,viscosities,and liquid–liquid equilibrium of polyethylene glycol and salt-based aqueous two-phase systems,J.Chem.Eng.Data 54(4)(2009)1359–1366.

    [45]S.M.Waziri,B.F.Abu-Sharkh,S.A.Ali,The effect of p H and salt concentration on the coexistence curves of aqueous two-phase systems containing a p H responsive copolymer and polyethylene glycol,Fluid Phase Equilib.205(2)(2003)275–290.

    [46]M.Pirdashti,K.Movagharnejad,S.Curteanu,E.N.Dragoi,F.Rahimpour,Prediction of partition coefficients of guanidine hydrochloride in PEG?phosphate systems using neural networks developed with differential evolution algorithm,J.Ind.Eng.Chem.27(2)(2015)268–275.

    [47]A.Rahmani,A.A.Rostami,M.Pirdashti,P.Mobalegholeslam,Liquid–liquid equilibrium and physical properties of aqueous mixtures of poly(vinyl pyrrolidone)with potassium phosphate at different p H:experiments and modeling,Korean J.Chem.Eng.34(1)(2017)1–10.

    [48]B.Shahrokhi,M.Pirdashti,P.Mobalegholeslam,A.A.Rostami,Liquid–liquid equilibrium and physical properties of aqueous mixtures of poly(ethylene glycol)with zinc sulfate at different p H values:experiment,correlation,and thermodynamic modeling,J.Chem.Eng.Data 62(3)(2017)1106–1118.

    [49]M.Pirdashti,K.Movagharnejad,P.Mobalegholeslam,S.Curteanu,F.Leon,Phase equilibrium and physical propertiesof aqueous mixtures of poly(vinyl pyrrolidone)with trisodium citrate,obtained experimentally and by simulation,J.Mol.Liq.223(1)(2016)903–920.

    日韩不卡一区二区三区视频在线| 女性被躁到高潮视频| 大香蕉久久成人网| 女性生殖器流出的白浆| 免费看不卡的av| 啦啦啦啦在线视频资源| 夜夜骑夜夜射夜夜干| 男女高潮啪啪啪动态图| 色婷婷av一区二区三区视频| 在线看a的网站| 91精品三级在线观看| 国产亚洲av片在线观看秒播厂| 人妻少妇偷人精品九色| 黑人欧美特级aaaaaa片| 桃花免费在线播放| 三级国产精品欧美在线观看| 成人综合一区亚洲| av线在线观看网站| 水蜜桃什么品种好| 99九九在线精品视频| 久久久国产一区二区| 在线观看免费日韩欧美大片 | 亚洲美女视频黄频| 91国产中文字幕| 高清午夜精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲精品久久成人aⅴ小说 | 成人综合一区亚洲| 亚洲不卡免费看| 少妇人妻精品综合一区二区| 久久国产亚洲av麻豆专区| 2018国产大陆天天弄谢| 欧美日韩成人在线一区二区| 日本免费在线观看一区| 久久久久久久久久成人| 国产不卡av网站在线观看| 久久久久久久久久久丰满| 妹子高潮喷水视频| 亚洲成人一二三区av| 亚洲色图综合在线观看| 国产成人av激情在线播放 | 男女国产视频网站| 搡女人真爽免费视频火全软件| 永久免费av网站大全| 最近中文字幕2019免费版| 成年女人在线观看亚洲视频| 亚洲无线观看免费| 18禁动态无遮挡网站| 丰满少妇做爰视频| 久久久精品94久久精品| 亚洲熟女精品中文字幕| 久久99一区二区三区| 波野结衣二区三区在线| 精品亚洲乱码少妇综合久久| 精品一区二区三区视频在线| 国产成人a∨麻豆精品| 中国三级夫妇交换| 天天操日日干夜夜撸| 色5月婷婷丁香| 久久久国产欧美日韩av| 美女视频免费永久观看网站| 2021少妇久久久久久久久久久| 久久ye,这里只有精品| 国产亚洲欧美精品永久| 日韩精品有码人妻一区| 婷婷色麻豆天堂久久| 亚洲精品aⅴ在线观看| 午夜福利在线观看免费完整高清在| 国产一区二区三区综合在线观看 | 亚洲国产毛片av蜜桃av| 18禁观看日本| 国产老妇伦熟女老妇高清| 精品一区在线观看国产| 久久久久视频综合| 日本与韩国留学比较| 美女脱内裤让男人舔精品视频| 精品一品国产午夜福利视频| 欧美 日韩 精品 国产| 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 国产精品99久久99久久久不卡 | 亚洲综合精品二区| 日韩强制内射视频| 一级毛片 在线播放| 国产成人91sexporn| 狂野欧美激情性xxxx在线观看| av又黄又爽大尺度在线免费看| 久久久久人妻精品一区果冻| 啦啦啦中文免费视频观看日本| 久久韩国三级中文字幕| 久久久久网色| 日本黄色片子视频| 亚洲av综合色区一区| 美女视频免费永久观看网站| 国产深夜福利视频在线观看| av黄色大香蕉| 成人午夜精彩视频在线观看| 黄色一级大片看看| 成年美女黄网站色视频大全免费 | 亚洲人与动物交配视频| 黑人巨大精品欧美一区二区蜜桃 | 99精国产麻豆久久婷婷| 91aial.com中文字幕在线观看| 久久久久久久久大av| 午夜老司机福利剧场| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 青春草亚洲视频在线观看| 日本黄色片子视频| 国产av码专区亚洲av| 久久人人爽人人爽人人片va| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| av免费在线看不卡| 午夜激情福利司机影院| 尾随美女入室| 日韩不卡一区二区三区视频在线| 一本大道久久a久久精品| 久久婷婷青草| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 欧美激情国产日韩精品一区| 18禁裸乳无遮挡动漫免费视频| 亚洲四区av| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 欧美日韩视频高清一区二区三区二| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 十分钟在线观看高清视频www| av不卡在线播放| 久久这里有精品视频免费| 在线观看免费日韩欧美大片 | 国产免费福利视频在线观看| 观看美女的网站| 亚洲人成网站在线播| 熟女电影av网| 成人影院久久| 高清在线视频一区二区三区| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 国内精品宾馆在线| 亚洲在久久综合| 国产成人91sexporn| 亚洲精品日本国产第一区| 97超碰精品成人国产| 久久精品国产自在天天线| 国模一区二区三区四区视频| 免费看不卡的av| 日韩伦理黄色片| 国内精品宾馆在线| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 国产亚洲精品久久久com| 国产精品国产av在线观看| 男人操女人黄网站| 亚洲国产精品成人久久小说| 亚洲在久久综合| 女人精品久久久久毛片| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 日韩强制内射视频| 久久久国产欧美日韩av| 亚洲精品日韩av片在线观看| 美女国产高潮福利片在线看| 黄色一级大片看看| 国产片内射在线| 国产欧美日韩一区二区三区在线 | 亚洲精品日本国产第一区| 18+在线观看网站| 少妇被粗大猛烈的视频| 国产片特级美女逼逼视频| 欧美人与善性xxx| 中国三级夫妇交换| 嘟嘟电影网在线观看| 日本免费在线观看一区| 久久久久久久久大av| 最近的中文字幕免费完整| 免费大片黄手机在线观看| 久久久久视频综合| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线| 日本爱情动作片www.在线观看| 国产高清三级在线| 只有这里有精品99| 热99国产精品久久久久久7| 18+在线观看网站| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 欧美日韩综合久久久久久| a级毛片免费高清观看在线播放| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 成人无遮挡网站| 精品视频人人做人人爽| 99热网站在线观看| 91精品国产九色| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品| 五月伊人婷婷丁香| 一本一本综合久久| videosex国产| 校园人妻丝袜中文字幕| 丝袜喷水一区| 最黄视频免费看| 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| 一级a做视频免费观看| 亚洲精品国产av蜜桃| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看| 日本黄色片子视频| 久久免费观看电影| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡| 伦理电影免费视频| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 五月天丁香电影| 国产免费福利视频在线观看| 国产精品久久久久久av不卡| 高清视频免费观看一区二区| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 婷婷色综合大香蕉| 国产亚洲一区二区精品| 男女啪啪激烈高潮av片| 欧美 亚洲 国产 日韩一| 欧美+日韩+精品| 亚洲国产精品专区欧美| 国产69精品久久久久777片| 亚洲国产精品一区二区三区在线| 成人无遮挡网站| 亚洲,欧美,日韩| 精品午夜福利在线看| 欧美日韩亚洲高清精品| 超色免费av| 午夜91福利影院| 国产成人午夜福利电影在线观看| 国产男女内射视频| 国产日韩欧美在线精品| 十分钟在线观看高清视频www| 成人二区视频| 免费人妻精品一区二区三区视频| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 久久 成人 亚洲| 亚洲精品一二三| 亚洲av福利一区| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 午夜激情福利司机影院| 久久久久久久久久久久大奶| 2021少妇久久久久久久久久久| 精品酒店卫生间| 日韩强制内射视频| 成人午夜精彩视频在线观看| 高清av免费在线| 十八禁高潮呻吟视频| 成人黄色视频免费在线看| 精品人妻熟女av久视频| 亚洲欧美一区二区三区黑人 | 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 国产亚洲精品久久久com| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 免费少妇av软件| 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 国产成人a∨麻豆精品| 人妻一区二区av| 精品久久久久久久久av| av黄色大香蕉| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 中文天堂在线官网| 中国国产av一级| 久久久久久人妻| 日本与韩国留学比较| 下体分泌物呈黄色| 99国产综合亚洲精品| 黄色怎么调成土黄色| 午夜免费观看性视频| 中国三级夫妇交换| 国产亚洲av片在线观看秒播厂| 看非洲黑人一级黄片| 在线观看www视频免费| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 久久久久久久久久人人人人人人| 高清不卡的av网站| 国产欧美亚洲国产| 国精品久久久久久国模美| 国产毛片在线视频| 9色porny在线观看| 熟女av电影| 男女高潮啪啪啪动态图| 欧美变态另类bdsm刘玥| 国产精品三级大全| 两个人免费观看高清视频| 一本色道久久久久久精品综合| 成年av动漫网址| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 久久99精品国语久久久| 日本黄色片子视频| 国产精品无大码| 99热全是精品| 久久久午夜欧美精品| 黄色视频在线播放观看不卡| 日本黄大片高清| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 精品久久久久久久久av| 久久久精品免费免费高清| 精品午夜福利在线看| 丝袜喷水一区| 中国三级夫妇交换| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 国产欧美日韩一区二区三区在线 | 国产一区有黄有色的免费视频| 日日撸夜夜添| 久久久久久久亚洲中文字幕| 大码成人一级视频| av在线老鸭窝| 亚洲av福利一区| 国产成人精品一,二区| 成人国语在线视频| 国产免费又黄又爽又色| 午夜久久久在线观看| 成人综合一区亚洲| 多毛熟女@视频| 精品一品国产午夜福利视频| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 成人午夜精彩视频在线观看| 国产精品一区二区在线不卡| 欧美+日韩+精品| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 91精品三级在线观看| 午夜免费鲁丝| 女人久久www免费人成看片| 黄色毛片三级朝国网站| 国产精品.久久久| 91久久精品国产一区二区成人| av有码第一页| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| av电影中文网址| 熟女电影av网| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 精品一区二区三区视频在线| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 国产一区二区三区av在线| 亚洲精品456在线播放app| 亚洲色图 男人天堂 中文字幕 | 国产亚洲av片在线观看秒播厂| 一级毛片 在线播放| 日本91视频免费播放| 免费不卡的大黄色大毛片视频在线观看| av在线老鸭窝| 色哟哟·www| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 少妇高潮的动态图| 99久久综合免费| 亚洲中文av在线| av天堂久久9| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 日韩免费高清中文字幕av| 老司机影院毛片| 高清不卡的av网站| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 乱人伦中国视频| 国产极品天堂在线| 日韩欧美精品免费久久| 91精品一卡2卡3卡4卡| 久久久久视频综合| 国产欧美另类精品又又久久亚洲欧美| 性色av一级| 91久久精品电影网| 美女内射精品一级片tv| kizo精华| xxx大片免费视频| 欧美成人午夜免费资源| 国产极品天堂在线| 午夜老司机福利剧场| 十八禁网站网址无遮挡| 伦理电影免费视频| 欧美一级a爱片免费观看看| 日本av免费视频播放| 黄色视频在线播放观看不卡| 在线天堂最新版资源| 免费大片18禁| 日本欧美视频一区| 亚洲伊人久久精品综合| 天天影视国产精品| 久久ye,这里只有精品| 亚洲在久久综合| 国产成人a∨麻豆精品| 高清午夜精品一区二区三区| 丝袜脚勾引网站| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 一区二区av电影网| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久 | 免费黄频网站在线观看国产| 一级片'在线观看视频| 久热这里只有精品99| 国产精品一区二区在线不卡| 国产在线免费精品| av不卡在线播放| 男女边摸边吃奶| 热re99久久精品国产66热6| 久久久久精品久久久久真实原创| 亚洲欧美色中文字幕在线| 国国产精品蜜臀av免费| 欧美+日韩+精品| 精品少妇内射三级| 大话2 男鬼变身卡| 久久久精品区二区三区| 国产一区二区在线观看av| 丝袜喷水一区| 中文字幕最新亚洲高清| 亚洲中文av在线| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 亚洲av不卡在线观看| 少妇人妻久久综合中文| 午夜免费观看性视频| 在线观看美女被高潮喷水网站| 色94色欧美一区二区| 热99国产精品久久久久久7| 国产黄色免费在线视频| 熟女av电影| 久久午夜综合久久蜜桃| 黄色一级大片看看| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 91精品国产九色| 我的女老师完整版在线观看| 国产精品国产av在线观看| 久久青草综合色| 精品国产一区二区三区久久久樱花| 下体分泌物呈黄色| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| av一本久久久久| 亚洲国产日韩一区二区| 春色校园在线视频观看| 汤姆久久久久久久影院中文字幕| 国产深夜福利视频在线观看| 色哟哟·www| 欧美日本中文国产一区发布| av不卡在线播放| 久久99精品国语久久久| 高清在线视频一区二区三区| 激情五月婷婷亚洲| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 日本与韩国留学比较| 久久精品国产a三级三级三级| 久久人人爽人人爽人人片va| 免费看光身美女| 中文字幕精品免费在线观看视频 | 国产精品女同一区二区软件| 最近中文字幕2019免费版| 日韩 亚洲 欧美在线| 最黄视频免费看| 夜夜爽夜夜爽视频| 黑人欧美特级aaaaaa片| 精品国产露脸久久av麻豆| 午夜激情福利司机影院| 精品久久久久久电影网| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 中文天堂在线官网| 亚洲精品国产av蜜桃| 久久人人爽人人爽人人片va| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 亚洲精品日韩av片在线观看| 精品久久久噜噜| 亚洲av电影在线观看一区二区三区| 免费高清在线观看日韩| 久久人人爽人人片av| 国产一区二区在线观看av| 久久久精品免费免费高清| 中文字幕av电影在线播放| 男女免费视频国产| 欧美成人精品欧美一级黄| 日韩中文字幕视频在线看片| 91精品三级在线观看| av不卡在线播放| 制服诱惑二区| 精品一区二区三卡| 日日爽夜夜爽网站| 国产精品 国内视频| 九九爱精品视频在线观看| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 一区二区av电影网| 免费看不卡的av| 一区二区三区免费毛片| freevideosex欧美| 国产亚洲精品第一综合不卡 | 妹子高潮喷水视频| 精品久久蜜臀av无| 成年人免费黄色播放视频| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区 | 亚洲精品国产色婷婷电影| 国产精品不卡视频一区二区| 成人18禁高潮啪啪吃奶动态图 | 69精品国产乱码久久久| 中文字幕亚洲精品专区| 少妇人妻 视频| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 亚洲av综合色区一区| 五月伊人婷婷丁香| 18禁观看日本| 男人操女人黄网站| 久久精品夜色国产| 亚洲精品视频女| 成人二区视频| 亚洲欧洲国产日韩| 在线观看人妻少妇| 久久久久久伊人网av| 日日啪夜夜爽| 亚洲精品乱久久久久久| av在线app专区| 久久久久久久久大av| 国产日韩欧美在线精品| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 日日撸夜夜添| 成人综合一区亚洲| 成人影院久久| 国产欧美亚洲国产| 嫩草影院入口| 国产有黄有色有爽视频| 我要看黄色一级片免费的| 九九在线视频观看精品| av国产久精品久网站免费入址| 色94色欧美一区二区| 嫩草影院入口| 色网站视频免费| 热99国产精品久久久久久7| 国产女主播在线喷水免费视频网站| 九色亚洲精品在线播放| 日韩av不卡免费在线播放| 国产精品99久久99久久久不卡 | 视频在线观看一区二区三区| 午夜激情福利司机影院| 亚洲激情五月婷婷啪啪| 亚洲五月色婷婷综合| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久久久按摩| 韩国av在线不卡| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 69精品国产乱码久久久| 亚洲精品国产av蜜桃| www.色视频.com| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 日本猛色少妇xxxxx猛交久久| 少妇被粗大的猛进出69影院 | 亚洲精品自拍成人| 天堂俺去俺来也www色官网| 成人手机av| 欧美成人精品欧美一级黄| 少妇被粗大猛烈的视频| 99久久人妻综合| 我的女老师完整版在线观看| 一级爰片在线观看| 亚洲内射少妇av|