• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi-/multi-modal pore formation of PLGA/hydroxyapatite composite scaffolds by heterogeneous nucleation in supercritical CO2 foaming☆

    2018-05-25 07:50:57XinXinYixinGuanShanjingYao

    Xin Xin,Yixin Guan*,Shanjing Yao

    College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    Bone tissue engineering(bTE)has been a hot research field to regenerate osseous tissue[1,2].For osteogenesis,there are two basic development pathways,i.e.direct ossification and endochondral ossification[3].Small poresranging in theorder of 100μm favor hypoxic conditions and induce osteochondral formation before osteogenesis,while large pores with the pore size of >300 μm can lead to direct osteogenesis via a process analogous to intramembranous ossification[4].Furthermore,the presence of micro-pores,with pore size ranging from 1 to 50 μm,may promote the transport of nutrient and metabolic waste in the interior of the pore structure[5].Hence,fabrication of scaffolds with bi-/multi-modal pores is very important and imperative.

    There are two typical methods to fabricate bi-/multi-modal porous scaffolds,i.e.solvent casting/particle leaching and supercritical CO2(scCO2)foaming.Between them,solvent casting/particle leaching is one of the most popular and traditional methods to prepare scaffolds,in which salt particles are used as porogen[6].And scaffolds can be obtained easily by evaporating solvent and washing out of porogen.This method,however,is limited in tissue engineering to some extent due to the use of organic solvents.Under this situation,scCO2foaming has its own advantages in preparing tissue engineering scaffolds without the use of organic solvents and high temperature[7].Mooney et al.[8] firstly applied scCO2foaming to prepare tissue engineering scaffolds in 1990s.Bimodal porous scaffolds were successfully prepared by scCO2foaming when combining with particle leaching[9,10].Also an interesting phenomenon was observed that particles might serve to facilitate heterogeneous nucleation in scCO2foaming process,although NaCl was not an ideal nucleation agent[11,12].

    The process of scCO2foaming consists of three main aspects:dissolution of CO2into polymer,nucleation at the moment of depressurization,and the growth of pores[8].According to classical nucleation theory,both of heterogeneous and homogeneous nucleation were emerging in the course of nucleation when the third phase existed[13,14].In general,the activation energy for heterogeneous nucleation,which is relevant with interfacial tension of the third phase in foaming system,is much lower than that of homogeneous nucleation.Namely,gas nuclei formed by heterogeneous nucleation emerged earlier than those formed by homogeneous nucleation[15].Then CO2diffused into gasnuclei to form pores.Therefore,gasnuclei formed by heterogeneous nucleation had a longer period to growlarge pores.Most importantly,these earlier small pores facilitated the coalescence of neighboring pores to form large pores,while the pores rupture could lead to micro-pores within the pore walls[16].Thus,bi-/multi-modal porous scaffolds can be fabricated by simple scCO2foaming if an efficient nucleation agent is used.

    Ceramics,a kind of bioactive substances,is often used as an additive to fabricate tissue engineering scaffoldsin theprocessof scCO2foaming.It was reported that hydroxyapatite(HA)and β-tricalcium phosphate(β-TCP)could also act as heterogeneous nucleation agent in the foamingprocess[17–19].Asweknow,bioactive HAorβ-TCPare natural components of bone,which can interact with the surrounding bone[20,21].PLGA scaffolds with HA or β-TCP as filler were biocompatible and osteoconductive in bone cell culture[22].Hence,the addition of HA or β-TCP particles served as the third phase in scCO2foaming not only facilitate the fabrication of bi-/multi-modal porous scaffolds,but also can guide cells growth subsequently[17].In this paper,bi-/multi modal porous PLGA/HA composite scaffolds will be fabricated by simple scCO2foaming,in which HA particles are used as the third phase to reinforce the process of heterogeneous nucleation.PLGA scaffolds obtained are biocompatible and osteoconductive due to the addition of HA.The effects of HA addition amount,soaking temperature,pressure,and depressurization rate on the structure of scaffolds will be studied in detail.Specially,bi-/multi-modal pore formation is discussed considering the nucleation theory.This novel solvent-free scCO2foaming method has great potential in fabricating bi-/multimodal bone tissue engineering scaffolds incorporated by bioactive substances under mild conditions.

    2.Materials and Methods

    2.1.Materials

    PLGA(lactide:glycolide=85:15,Mw=140 k Da,polydispersity index(PDI)=1.73)in a granular form was purchased from Shenzhen Esun Industrial Co.,Ltd.(Shenzhen,China).Hydroxyapatite(HA)was purchased from Shanghai Rebone Biomaterials Co.,Ltd.(Shanghai,China).Carbon dioxide(99.9%purity)was supplied by Hangzhou Jingong Gas Co.Ltd.(Zhejiang,China).All other chemicals were of reagent grade and utilized without further purification.

    2.2.Preparation of PLGA samples

    Firstly,PLGA microspheres were produced by emulsion-solvent evaporation[12].Concretely,PLGA granules weredissolved in dichloromethane to obtain 10%(g·ml?1,w/v)PLGA solution,which was then mixed with 1%polyvinyl alcohol(PVA)aqueous solution and processed by shearing.After evaporation of dichloromethane,PLGA microspheres were collected by centrifugation and freeze-drying.Secondly,hydroxyapatite particles used as heterogeneous nucleation agent were mixed with PLGA microspheres in a certain proportion by a glass bead breaker(MM 200,Retsh,Germany).Finally,the physical mixtures of PLGA microspheres and HA particles were mold-pressed at 10 MPa in a die for 1 min to get cylindrical flakes.The thickness of the samples was limited to 2 mm with a diameter of 13 mm by 0.3 g.

    2.3.The scCO2 foaming process

    Supercritical system(SFE-500MR-2-FMC 10,Thar,USA)was applied in the foaming process,which was mainly consisted of an autoclave of 100 ml[12].In this experiment,PLGA flakes with different HA fractions were placed in theautoclave and equilibrated for 2 h.Temperature fluctuation was controlled to be±1°C and pressure fluctuation±1 MPa.After scCO2foaming,the porous scaffolds could be removed from the autoclave and stored in a desiccator for further analysis.

    2.4.Characterization of porous PLGA scaffolds

    The pore morphologies of porous scaffolds were firstly observed by scanning electron microscopy(SEM)(SU8010,Hitachi,Japan).The scaffolds were freeze-fractured in liquid nitrogen,sputter-coated with platinum.The pore sizes of PLGA scaffolds were then analyzed by image processing analysis software(Image Pro Plus 6.0,Media Cybernetics,USA)after obtaining SEM images.

    The interconnected porosities of scaffolds were obtained using mercury intrusion porosimetry(AutoPore IV 9500 V1.07,Micromeritics,USA).The total porosities of scaffolds could be calculated from the density of PLGA before and after foaming,by Eq.(1):

    where ρ1and ρ2were the density of PLGA before and after foaming respectively[23].

    The static compression properties of scaffolds were measured using a material testing machine(Zwick/Roell Z2.5,Zwick/Roell,Germany).The compression modulus(E)was the slope of the initial linear part by depicting the curve of stress versus strain.All compression experiments were performed in triplicates and the averages were used.

    3.Results and Discussion

    3.1.The operating parameters of scCO2 foaming

    Prior to scCO2foaming,the morphologies of PLGA microspheres obtained and HA rawparticles were observed and the SEM images are shown in Fig.1.The diameter of spherical PLGA micro-particles was in the order of 10 μm,and the size of HA particles was similar to that of PLGA microparticles.In this case,it was relatively easy to achieve uniform mixing for PLGA matrix and HA particles.

    For scCO2foaming process,soaking temperature and pressure had a significant effect on CO2solubility and diffusivity in PLGA matrix.At the moment of depressurization,the number of gasnucleimainly depended on the degree of CO2supersaturation,i.e.the depressurization rate of foaming system.Specifically,the HA amount acting as a nucleation agent could have a profound effect on the pore structure of scaffolds.Hence,it wasnecessary to discusstheeffectsof the HAaddition amount,soaking temperature,pressure and depressurization rate on the pore structure of scaffolds in order to fabricate bi-/multi-modal porous PLGA scaffolds with ideal properties.The operating parameters of scCO2foaming are listed in Table 1.

    Fig.1.SEM images of PLGA microspheres obtained and HA rawparticles.(a)PLGA microparticles;(b)HA particles.

    Table 1 Summary of operating parameters of scCO2 foaming

    3.2.HA particles as the heterogeneous nucleation agent in scCO2 foaming

    HA is a bioactive substance and can also act as a heterogeneous nucleation agent in scCO2foaming[21,22].As we know,gas nuclei formed by both heterogeneous and homogeneous nucleation grewto pores.With the addition of HA as the third phase,gas nuclei formed by heterogeneous nucleation increased accordingly.Namely,those early pores due to heterogeneous nucleation merged with neighboring pores to form large pore,while pore rupture led to small pores or even micro-poreswithin thelargepore walls.Finally,bi-/multi-modal porous scaffolds could be fabricated.

    The effect of HA addition on pores tructure should be well investigated to fabricate bi-/multi-modal PLGA scaffolds.SEM images and pore size at different amounts of HA are shown in Figs.2 and 3(a)respectively,and bimodal porous scaffolds were successfully prepared,in which small pores were in the walls of large pores.With the increase of HA from 5%to 20%,the size of large pores decreased from(995±226)μm to(409 ± 102)μm,and the size of small pores also decreased from(104± 66)μm to(62± 29)μm.Besides,the thickness of pore wall firstly increased from(15± 4)μm to(53± 22)μm,and then decreased to(29±8)μm.According to the classical nucleation theory,two competitions existed at the same time during foaming process[13,14,24,25].The first one was the competition between gas diffusing to form gas nuclei and gas diffusing into nucleated pores.And the second one was between gas diffusing out of the skin and gas diffusing into nucleated pores[17].With the increase of HA addition amount in flakes,the nucleation sites provided by HA particles increased to strengthen the heterogeneous nucleation,which could restrain the diffusivity of CO2into nucleated pores to form larger pores to some extent given CO2solubility kept constant.Therefore with the increase of HA addition amount from 5%to 20%,the size of large pores and small pores both decreased,while the number of pores increased[17,26,27].Moreover,HA addition amount had an effect on the thickness of pore wall,which is relevant with mechanical property of scaffolds.

    3.3.Fabrication of bi-/multi-modal PLGA porous scaffolds by scCO2 foaming

    3.3.1.The effect of soaking temperature on the pore structure of scaffolds

    As shown in Figs.3(b)and 4,bimodal porous PLGA scaffolds were well prepared by scCO2foaming at 5%HA addition amount,soaking pressure of 9 MPa,depressurization rate of 4.5–6 MPa·min?1with different soaking temperatures.With the soaking temperature increase from 35°C to 45°C,the size of large pores decreased from(456±182)μm to(370±111)μm,and then increased to(611±223)μm at 55°C.In the whole process,the size of small pores increased from(64±24)μm to(112 ± 29)μm,and the pore walls were relatively thin with several micrometers.

    The CO2solubility decreases with the increase of soaking temperature,while the diffusivity of CO2in PLGA is enhanced[26,28].Even though there are less CO2dissolved in PLGA available for nucleation and pore growth at higher temperature,the growth rate of pores increases due to the increased CO2diffusivity and less gas nuclei.So scaffolds with large pores could be easily prepared at high temperature,for example 55°C.According to this work,bone tissue engineering scaffolds with bimodal porous structure could be success fully fabricated at a near ambient temperature of 35°C.The low temperature makes scCO2foaming an ideal method to incorporate thermal sensitive bioactive substances into scaffolds such as protein as bone growth factor.

    3.3.2.The effect of soaking pressure on the pore structure of scaffolds

    As shown in Figs.3(c)and 5,it is very inspiring that multimodal porous,bimodal microporous,and cellular scaffolds were all obtained by altering the soaking pressure.With the increase of soaking pressure from 7.5 MPa to 9 MPa,multimodal porous scaffolds were successfully prepared.And the size of large pores increased from(385±149)μm to(458± 177)μm,while the size of small pores and micro-pores kept nearly constant.Continually,when the pressure increased to 12 MPa,bimodal microporous scaffolds were fabricated.And the size of small pores was(148±39)μm,while the size of micro-pores was(20±5)μm.Cellular scaffolds only with micro-pores were obtained when the pressure increased further to 15 MPa.

    Fig.2.The effects of addition of HA as a heterogeneous nucleation agent on the pore structure of PLGA scaffolds.(a)HA amount of 5%;(b)HA amount of 10%;(c)HA amount of 20%(temperature of 55 °C,pressure of 9 MPa,depressurization rate of 1.5 MPa·min?1).

    Fig.3.The pore size of scaffolds fabricated at different sc CO2 foaming process.(a)Effect of HAamount(run 1–3);(b)effect of soaking temperature(run 4–6);(c)effect of soaking pressure(run 7–10);(d)effect of depressurization rate(run 11–14).

    Fig.4.The effects of soaking temperature on the pore structure of PLGA scaffolds.(a)Temperature of 35 °C;(b)temperature of 45 °C;(c)temperature of 55 °C(HA amount of 5%,soaking pressure of 9 MPa,depressurization rate of 4.5–6 MPa·min?1).

    Fig.5.The effects of soaking pressure on the pore structure of PLGA scaffolds.(a)Pressure of 7.5 MPa;(b)pressure of 12 MPa;(c)pressure of 15 MPa(HA amount of 5%,soaking temperature of 35 °C,depressurization rate of 4.5–6 MPa·min?1).

    Fig.6.The effects of depressurization rate on the pore structure of PLGA scaffolds.(a)Depressurization rate of 3–6 MPa·min?1;(b)depressurization rate of 0.3 MPa·min?1;(c)depressurization rate of 0.1 MPa·min?1(HA amount of 5%,soaking temperature of 55 °C,soaking pressure of 9 MPa).

    CO2solubility in PLGA increased with the elevation of pressure,while the energy barrier for nucleation decreased exponentially[26,29].Namely,more gas nuclei formed at the moment of depressurization,when more CO2was dissolved into PLGA at high soaking pressure.As aresult,cellular scaffolds with a high density of pores could be fabricated at high soaking pressure,for example 15 MPa.However,bi-/multi modal porous bone tissue engineering scaffolds could be fabricated at mild soaking pressure.In other words,low CO2solubility was available to prepare porous bone tissue engineering scaffolds in the process of scCO2foaming using HA as the heterogeneous agent.

    3.3.3.The effect of depressurization rate on the pore structure of scaffolds

    The effects of depressurization rate on PLGA scaffolds are shown in Figs.3(d)and 6,and bimodal porous scaffolds were fabricated at 5% HA addition amount,soaking temperature of 55°Cand soaking pressure of 9 MPa with different depressurization rates.The size of small pores increased from(112± 29)μm to(230± 102)μm,and thickness of pore wall increased to(133± 82)μm with the decrease of depressurization rate from 3–6 MPa·min?1to 0.1 MPa·min?1;while the size of large pores didn't diminish evidently.

    There are two competitions in scCO2foaming system as mentioned above.On the one hand,the degree of CO2supersaturation was decreased to nucleate less by slowing depressurization rate,thus more CO2diffused into nucleated pores to form large pores[17,28].And at low depressurization rate,nucleated pores had enough time to merge and rupture to form bimodal porous structure with thick pore wall,which could enhance mechanical strength of scaffolds to some extent[26].On the other hand,there were more CO2diffusing out of the polymer skin when the depressurization rate decreased.Besides,the decrease of temperature in autoclave and the vitrification of PLGA suppressed the growth of pores,especially at low depressurization rate[30].In a whole,the pore structure and pore size of scaffolds were decided by the net effect of above factors.

    3.4.The porosity and compression modulus of porous PLGA scaffolds

    The porosity and compression modulus of prepared PLGA porous scaffolds under different depressurization rates are shown in Table 2.The total porosity calculated from the density of PLGA before and after foaming decreased from(96.55±0.11)% to 75.61%with the decrease of depressurization rate to 0.1 MPa·min?1,while the interconnected porosity measured by mercury intrusion porosimetry decreased from(83.08±2.42)%to(52.53±2.69)%.The compression modulus of scaffolds varied between(2.67±0.37)and(18.15±5.16)MPa.

    Table 2 The porosity and compression modulus of porous PLGA scaffolds

    Generally,low porosity facilitates osteogenesis by suppressing cell proliferation and forcing cell aggregation in vitro,while high porosity stimulates greater bone ingrowth in vivo[4].Bone tissue engineering scaffolds with ideal properties should meet the requirements of porosity and mechanical property simultaneously,and the compression modulus of scaffolds fabricated in this work could satisfy the basic requirement of soft tissue(0.4–350 MPa)and hard tissue(10–1500 MPa)respectively at different depressurization rates[31].

    4.Conclusions

    Bi-/multi-modal porous PLGA/HA composite scaffolds used in bone tissue engineering were successfully prepared by supercritical CO2foaming.Specifically,HA particles were introduced as the heterogeneous nucleation agent,which would be helpful to cells proliferation and differentiation.Scaffolds with different pore structure could be obtained by controlling soaking temperature,pressure,depressurization rate and the addition amount of HA.The scCO2foaming was favorable to fabricate bone tissue engineering scaffolds due to the presence of HA particles,which facilitated the coalescence and rupture of pores to form bi-/multi-modal pore structure during the process of pore growth.Porosity and compression modulus of scaffolds fabricated by sc CO2foaming could satisfy the basic requirement of bone tissue engineering scaffolds.Solvent-free sc CO2foaming is a green method to prepare tissue engineering scaffolds,and thermal sensitive bioactive substances,i.e.proteins,can be incorporated into scaffolds by scCO2foaming under mild operation conditions.

    [1]A.J.Salgado,O.P.Coutinho,R.L.Reis,Bone tissue engineering:State of the art and future trends,Macromol.Biosci.4(2004)743–765.

    [2]R.Langer,J.Vacanti,Tissue engineering,Science 260(1993)920–926.

    [3]N.Harada,Y.Watanabe,K.Sato,S.Abe,K.Yamanaka,Y.Sakai,T.Kaneko,T.Matsushita,Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold,Biomaterials 35(2014)7800–7810.

    [4]V.Karageorgiou,D.Kaplan,Porosity of 3D biomaterial scaffolds and osteogenesis,Biomaterials 26(2005)5474–5491.

    [5]A.Salerno,S.Zeppetelli,E.Di Maio,S.Iannace,P.A.Netti,Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared viagasfoaming and NaClreverse templating,Biotechnol.Bioeng.108(2011)963–976.

    [6]H.Y.Mi,X.Jing,L.S.Turng,Fabrication of porous synthetic polymer scaffolds for tissue engineering,J.Cell.Plast.51(2014)165–196.

    [7]R.A.Quirk,R.M.France,K.M.Shakesheff,S.M.Howdle,Supercritical fluid technologies and tissue engineering scaffolds,Curr.Opin.Solid State Mater.Sci.8(2004)313–321.

    [8]D.J.Mooney,D.F.Baldwin,N.P.Suh,L.P.Vacanti,R.Langer,Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid)without the use of organic solvents,Biomaterials 17(1996)1417–1422.

    [9]A.Salerno,S.Zeppetelli,E.Di Maio,S.Iannace,P.A.Netti,Architecture and properties of bi-modal porous scaffolds for bone regeneration prepared via supercritical CO2foaming and porogen leaching combined process,J.Supercrit.Fluids 67(2012)114–122.

    [10]L.D.Harris,B.S.Kim,D.J.Mooney,Open pore biodegradable matrices formed with gas foaming,J.Biomed.Mater.Res.42(1998)396–402.

    [11]A.Salerno,S.Iannace,P.A.Netti,Graded biomimetic osteochondral scaffold prepared via CO2foaming and micronized NaCl leaching,Mater.Lett.82(2012)137–140.

    [12]X.Xin,Q.Q.Liu,C.X.Chen,Y.X.Guan,S.J.Yao,Fabrication of bimodal porous PLGA scaffolds by supercritical CO2foaming/particle leaching technique,J.Appl.Polym.Sci.33(2016)43644.

    [13]J.Colton,N.Suh,The nucleation of microcellular thermoplastic foam with additives.Part I:Theoretical considerations,Polym.Eng.Sci.27(1987)485–492.

    [14]J.Colton,N.Suh,The nucleation of microcellular thermoplastic foam with additives.Part II:Experimental results and discussion,Polym.Eng.Sci.27(1987)493–499.

    [15]J.Colton,N.Suh,Nucleation of microcellular foam theory and practice,Polym.Eng.Sci.27(1987)500–503.

    [16]I.Tsivintzelis,E.Pavlidou,C.Panayiotou,Biodegradable polymer foams prepared with supercritical CO2–ethanol mixtures as blowing agents,J.Supercrit.Fluids 42(2007)265–272.

    [17]L.M.Mathieu,T.L.Mueller,P.E.Bourban,D.P.Pioletti,R.Muller,J.A.Manson,Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering,Biomaterials 27(2006)905–916.

    [18]L.Mathieu,P.Bourban,J.Manson,Processing of homogeneous ceramic/polymer blends for bioresorbable composites,Compos.Sci.Technol.66(2006)1606–1614.

    [19]M.Salarian,W.Z.Xu,Z.Wang,T.K.Sham,P.A.Charpentier,Hydroxyapatite-TiO2-based nanocomposites synthesized in supercritical CO2for bone tissue engineering:Physical and mechanical properties,ACS Appl.Mater.Interfaces 6(2014)16918–16931.

    [20]A.M.Ng,K.K.Tan,M.Y.Phang,O.Aziyati,G.H.Tan,M.R.Isa,B.S.Aminuddin,M.Naseem,O.Fauziah,B.H.Ruszymah,Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone,J.Biomed.Mater.Res.A 85(2008)301–312.

    [21]M.Bhamidipati,A.M.Scurto,M.S.Detamore,The future of carbon dioxide for polymer processing in tissue engineering,Tissue Eng.Part B Rev.19(2013)221–232.

    [22]L.M.Mathieu,M.O.Montjovent,P.E.Bourban,D.P.Pioletti,J.A.Manson,Bioresorbable composites prepared by supercritical fluid foaming,J.Biomed.Mater.Res.A 75(2005)89–97.

    [23]G.P.Chen,T.Ushida,T.Tateishi,A biodegradable hybrid sponge nested with collagen microsponges,J.Biomed.Mater.Res.51(2000)273–279.

    [24]N.S.Ramesh,Don H.Rasmussen,G.A.Campbell,The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing lowglass transition particles.Part I:Mathematical modeling and numerical simulation,Polym.Eng.Sci.34(1994)1685–1697.

    [25]N.S.Ramesh,Don H.Rasmussen,G.A.Campbell,The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing lowglass transition particles.Part II:Experimental results and discussion,Polym.Eng.Sci.34(1994)1698–1706.

    [26]I.Tsivintzelis,A.G.Angelopoulou,C.Panayiotou,Foaming of polymers with supercritical CO2:An experimental and theoretical study,Polymer 48(2007)5928–5939.

    [27]E.Reverchon,S.Cardea,Supercritical fluids in 3-D tissue engineering,J.Supercrit.Fluids 69(2012)97–107.

    [28]H.Y.Tai,M.L.Mather,D.Howard,W.X.Wang,L.J.White,J.A.Crowe,S.P.Morgan,A.Chandra,D.J.Williams,S.M.Howdle,K.M.Shakesheff,Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing,Eur.Cells Mater.14(2007)64–77.

    [29]J.J.Barry,H.S.Gidda,C.A.Scotchford,S.M.Howdle,Porous methacrylate scaffolds:Supercritical fluid fabrication and in vitro chondrocyte responses,Biomaterials 25(2004)3559–3568.

    [30]C.Marrazzo,E.Di Maio,S.Iannace,Conventional and nanometric nucleating agents in poly(ε-caprolactone)foaming:Crystals vs.bubbles nucleation,Polym.Eng.Sci.48(2008)336–344.

    [31]S.J.Hollister,Porous scaffold design for tissue engineering,Nat.Mater.4(2005)518–524.

    蜜臀久久99精品久久宅男| 夜夜骑夜夜射夜夜干| 黄网站色视频无遮挡免费观看| 精品人妻一区二区三区麻豆| 国产一区二区三区综合在线观看 | 久久国内精品自在自线图片| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 婷婷色综合大香蕉| 久久午夜综合久久蜜桃| 青春草国产在线视频| 少妇精品久久久久久久| 欧美日韩综合久久久久久| 欧美精品一区二区免费开放| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 自线自在国产av| 亚洲成av片中文字幕在线观看 | 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 美国免费a级毛片| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 国产av码专区亚洲av| 欧美人与性动交α欧美精品济南到 | 26uuu在线亚洲综合色| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| 精品99又大又爽又粗少妇毛片| 深夜精品福利| 国产黄频视频在线观看| 青青草视频在线视频观看| 大香蕉97超碰在线| av在线老鸭窝| 亚洲国产精品一区二区三区在线| 多毛熟女@视频| 久久久久网色| 成年动漫av网址| 成年美女黄网站色视频大全免费| 日本猛色少妇xxxxx猛交久久| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲 | 一二三四在线观看免费中文在 | 看十八女毛片水多多多| 最新中文字幕久久久久| av在线播放精品| 美女视频免费永久观看网站| 不卡视频在线观看欧美| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 两个人免费观看高清视频| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久久免| 老司机影院毛片| 亚洲天堂av无毛| 中国国产av一级| 黄色视频在线播放观看不卡| 国产亚洲av片在线观看秒播厂| 欧美日本中文国产一区发布| 亚洲国产av新网站| 人妻人人澡人人爽人人| 亚洲精品一区蜜桃| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 亚洲精品久久午夜乱码| 成年av动漫网址| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 99热全是精品| 欧美激情极品国产一区二区三区 | 在线观看一区二区三区激情| 午夜福利在线观看免费完整高清在| 亚洲国产精品专区欧美| 丰满少妇做爰视频| 少妇精品久久久久久久| 午夜福利网站1000一区二区三区| 男女国产视频网站| a级毛片黄视频| 免费人成在线观看视频色| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 一边摸一边做爽爽视频免费| 色5月婷婷丁香| 91aial.com中文字幕在线观看| 免费av中文字幕在线| 人妻少妇偷人精品九色| 国产一区二区三区综合在线观看 | 午夜精品国产一区二区电影| 久久国产精品男人的天堂亚洲 | 中文字幕av电影在线播放| 亚洲精品成人av观看孕妇| 韩国精品一区二区三区 | 在线观看国产h片| 丰满少妇做爰视频| 国产精品一二三区在线看| 欧美精品高潮呻吟av久久| 免费大片黄手机在线观看| 男女免费视频国产| 国产一区二区在线观看av| 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 久久久久久久亚洲中文字幕| 人妻一区二区av| 90打野战视频偷拍视频| 国产永久视频网站| 婷婷色麻豆天堂久久| 男人操女人黄网站| 又粗又硬又长又爽又黄的视频| www.熟女人妻精品国产 | 亚洲在久久综合| 精品国产一区二区三区久久久樱花| 亚洲精品视频女| 99香蕉大伊视频| 欧美少妇被猛烈插入视频| 中文字幕av电影在线播放| 51国产日韩欧美| 80岁老熟妇乱子伦牲交| 久久99精品国语久久久| 观看美女的网站| 成人二区视频| 欧美最新免费一区二区三区| 免费av中文字幕在线| 超碰97精品在线观看| 日韩成人伦理影院| 十分钟在线观看高清视频www| av不卡在线播放| 在线观看免费视频网站a站| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 国产乱人偷精品视频| 成年美女黄网站色视频大全免费| 黄片播放在线免费| 亚洲第一av免费看| 男人操女人黄网站| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 在线看a的网站| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 18禁国产床啪视频网站| av片东京热男人的天堂| 韩国高清视频一区二区三区| 色94色欧美一区二区| 精品午夜福利在线看| 久久人人爽人人片av| 岛国毛片在线播放| 一级毛片 在线播放| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 久久久久久伊人网av| 9热在线视频观看99| 在线精品无人区一区二区三| 国产男人的电影天堂91| 国产精品一二三区在线看| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 搡老乐熟女国产| 美国免费a级毛片| 九九爱精品视频在线观看| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| 一级毛片 在线播放| 啦啦啦中文免费视频观看日本| 久久久久精品性色| 国产欧美日韩一区二区三区在线| 免费看不卡的av| 寂寞人妻少妇视频99o| 亚洲国产欧美日韩在线播放| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 在线观看三级黄色| 999精品在线视频| 精品国产一区二区三区久久久樱花| 97在线视频观看| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| 9色porny在线观看| 精品亚洲成a人片在线观看| 亚洲精品乱码久久久久久按摩| 国产精品女同一区二区软件| 国产亚洲精品第一综合不卡 | av在线播放精品| 韩国av在线不卡| 免费少妇av软件| 精品酒店卫生间| 街头女战士在线观看网站| 日本猛色少妇xxxxx猛交久久| 美国免费a级毛片| av在线app专区| 精品酒店卫生间| 制服诱惑二区| 制服诱惑二区| 成年人午夜在线观看视频| 久热这里只有精品99| 国产精品成人在线| 久久国内精品自在自线图片| 伦理电影大哥的女人| 有码 亚洲区| 久久久久久久国产电影| 男女啪啪激烈高潮av片| 大香蕉97超碰在线| 黄色配什么色好看| 午夜久久久在线观看| 久久久久久久国产电影| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| 日韩电影二区| 日韩精品有码人妻一区| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 欧美日韩视频高清一区二区三区二| 日日啪夜夜爽| 国产一区二区三区av在线| 日韩欧美精品免费久久| 少妇高潮的动态图| av天堂久久9| 在线观看人妻少妇| 波多野结衣一区麻豆| 精品一区二区三区视频在线| 成人亚洲欧美一区二区av| 国产片内射在线| videos熟女内射| 最新的欧美精品一区二区| 精品少妇内射三级| 亚洲国产日韩一区二区| 一级a做视频免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲av中文av极速乱| 精品卡一卡二卡四卡免费| 国产精品不卡视频一区二区| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 男的添女的下面高潮视频| 久久久久久久精品精品| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 黄色 视频免费看| 欧美精品一区二区大全| 99久久综合免费| 亚洲欧美成人精品一区二区| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 成人毛片60女人毛片免费| 校园人妻丝袜中文字幕| 尾随美女入室| 一级毛片电影观看| 国产精品久久久av美女十八| 国产成人免费观看mmmm| 香蕉精品网在线| 永久免费av网站大全| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 亚洲成国产人片在线观看| 蜜桃国产av成人99| 日本与韩国留学比较| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 男女高潮啪啪啪动态图| 秋霞伦理黄片| 18禁裸乳无遮挡动漫免费视频| 久久久久久久大尺度免费视频| 久久99一区二区三区| 啦啦啦在线观看免费高清www| a级毛色黄片| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 宅男免费午夜| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久99热这里只频精品6学生| 欧美精品高潮呻吟av久久| 日韩精品有码人妻一区| 中文字幕制服av| av网站免费在线观看视频| 热re99久久国产66热| 国产毛片在线视频| 国国产精品蜜臀av免费| 亚洲第一av免费看| 国产一区亚洲一区在线观看| 国产高清三级在线| 最近最新中文字幕免费大全7| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男| 免费av中文字幕在线| 蜜桃国产av成人99| 18在线观看网站| 五月天丁香电影| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 宅男免费午夜| 久久影院123| 亚洲第一av免费看| xxx大片免费视频| 狠狠精品人妻久久久久久综合| a级毛片在线看网站| 99久国产av精品国产电影| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 又黄又粗又硬又大视频| 亚洲丝袜综合中文字幕| 只有这里有精品99| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区三区影片| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 性色avwww在线观看| 一区二区日韩欧美中文字幕 | 亚洲精品久久久久久婷婷小说| 成人影院久久| a级毛色黄片| 天天操日日干夜夜撸| 一本久久精品| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 亚洲国产欧美在线一区| 国产亚洲av片在线观看秒播厂| 看非洲黑人一级黄片| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 高清不卡的av网站| 色94色欧美一区二区| 久久国产亚洲av麻豆专区| 国产探花极品一区二区| 久久 成人 亚洲| 日韩,欧美,国产一区二区三区| 国产日韩一区二区三区精品不卡| 尾随美女入室| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 97在线视频观看| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 久久久久精品久久久久真实原创| 美女视频免费永久观看网站| 亚洲天堂av无毛| 青春草国产在线视频| 男女啪啪激烈高潮av片| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 狂野欧美激情性bbbbbb| 国产永久视频网站| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 亚洲色图 男人天堂 中文字幕 | 母亲3免费完整高清在线观看 | 精品99又大又爽又粗少妇毛片| 日韩中字成人| 久久精品国产亚洲av天美| 精品一区二区三区四区五区乱码 | 欧美人与性动交α欧美精品济南到 | 在现免费观看毛片| 22中文网久久字幕| 一边摸一边做爽爽视频免费| 欧美日韩视频精品一区| 妹子高潮喷水视频| 亚洲天堂av无毛| 亚洲成人一二三区av| 国产精品偷伦视频观看了| 秋霞在线观看毛片| 日本色播在线视频| av线在线观看网站| 七月丁香在线播放| tube8黄色片| 少妇人妻久久综合中文| 精品亚洲成国产av| 一边亲一边摸免费视频| 久热这里只有精品99| 国产精品免费大片| 亚洲,欧美精品.| 9色porny在线观看| 伦理电影大哥的女人| 精品卡一卡二卡四卡免费| 美女脱内裤让男人舔精品视频| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 天天操日日干夜夜撸| 51国产日韩欧美| 2022亚洲国产成人精品| 丰满饥渴人妻一区二区三| 日本色播在线视频| 日日啪夜夜爽| 亚洲成国产人片在线观看| 国产色婷婷99| 中国国产av一级| 捣出白浆h1v1| 久久午夜福利片| 欧美日韩一区二区视频在线观看视频在线| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 色婷婷av一区二区三区视频| 黄色 视频免费看| 大香蕉久久成人网| 狂野欧美激情性bbbbbb| 香蕉丝袜av| 啦啦啦中文免费视频观看日本| 巨乳人妻的诱惑在线观看| 日韩伦理黄色片| 久久久久精品性色| 国产精品一区二区在线观看99| 97在线视频观看| 亚洲欧美色中文字幕在线| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 久久青草综合色| 另类亚洲欧美激情| 日日撸夜夜添| 九九爱精品视频在线观看| 街头女战士在线观看网站| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 高清欧美精品videossex| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区黑人 | 亚洲国产看品久久| 欧美性感艳星| 亚洲人成77777在线视频| 在现免费观看毛片| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 亚洲中文av在线| 一区二区三区四区激情视频| 亚洲国产毛片av蜜桃av| 又大又黄又爽视频免费| 少妇熟女欧美另类| 国产免费福利视频在线观看| 啦啦啦视频在线资源免费观看| 18+在线观看网站| 各种免费的搞黄视频| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 91久久精品国产一区二区三区| 日韩电影二区| 精品久久久久久电影网| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 99国产精品免费福利视频| 欧美精品av麻豆av| 97超碰精品成人国产| 中文字幕最新亚洲高清| 免费看不卡的av| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 亚洲国产精品一区二区三区在线| 国产69精品久久久久777片| 草草在线视频免费看| 国产又爽黄色视频| 久久热在线av| 九九在线视频观看精品| 久久精品夜色国产| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 午夜久久久在线观看| 捣出白浆h1v1| 色婷婷久久久亚洲欧美| 只有这里有精品99| 丝瓜视频免费看黄片| 十分钟在线观看高清视频www| 久久毛片免费看一区二区三区| 亚洲欧美日韩卡通动漫| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| 亚洲国产av影院在线观看| 亚洲人成网站在线观看播放| 啦啦啦视频在线资源免费观看| 亚洲av日韩在线播放| 少妇熟女欧美另类| 国产成人91sexporn| 另类亚洲欧美激情| 日日摸夜夜添夜夜爱| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 久久久久视频综合| 99re6热这里在线精品视频| 99久久综合免费| a级毛片在线看网站| 精品99又大又爽又粗少妇毛片| 又粗又硬又长又爽又黄的视频| 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 日韩人妻精品一区2区三区| 中文字幕亚洲精品专区| 国产精品国产三级国产av玫瑰| 国产又色又爽无遮挡免| 国产成人a∨麻豆精品| 国产精品 国内视频| 亚洲国产成人一精品久久久| 精品午夜福利在线看| 国产探花极品一区二区| 在线 av 中文字幕| 香蕉国产在线看| 一个人免费看片子| 美女xxoo啪啪120秒动态图| 在线天堂最新版资源| 激情视频va一区二区三区| 日本vs欧美在线观看视频| 少妇被粗大的猛进出69影院 | 亚洲成av片中文字幕在线观看 | 另类精品久久| 少妇的丰满在线观看| 国产探花极品一区二区| 国产片特级美女逼逼视频| 69精品国产乱码久久久| 久久精品熟女亚洲av麻豆精品| 校园人妻丝袜中文字幕| 国产成人精品无人区| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 久久精品国产亚洲av涩爱| 一本大道久久a久久精品| 国产精品一国产av| 美女中出高潮动态图| 国产免费视频播放在线视频| 欧美精品一区二区大全| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 久久久久国产网址| 国产精品99久久99久久久不卡 | 一区在线观看完整版| 国产淫语在线视频| 一区二区三区四区激情视频| 最近最新中文字幕大全免费视频 | 午夜激情久久久久久久| 日本黄色日本黄色录像| 97人妻天天添夜夜摸| 亚洲欧美成人综合另类久久久| 午夜福利乱码中文字幕| videossex国产| 街头女战士在线观看网站| 日本91视频免费播放| 国产综合精华液| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久久久免| 夫妻午夜视频| 色94色欧美一区二区| 青春草国产在线视频| 我的女老师完整版在线观看| 久久久久精品人妻al黑| 日韩 亚洲 欧美在线| 99热网站在线观看| 99国产精品免费福利视频| a 毛片基地| 亚洲av.av天堂| 蜜桃在线观看..| 国内精品宾馆在线| 亚洲欧洲国产日韩| 亚洲人成网站在线观看播放| 婷婷色综合www| av播播在线观看一区| 又黄又爽又刺激的免费视频.| 色视频在线一区二区三区| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 久久热在线av| 边亲边吃奶的免费视频| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 在线看a的网站| 中文字幕亚洲精品专区| 午夜久久久在线观看| 99视频精品全部免费 在线| 如何舔出高潮| 中文字幕最新亚洲高清| 亚洲av日韩在线播放| 久久久久久久国产电影| 欧美国产精品一级二级三级| 中文字幕另类日韩欧美亚洲嫩草| 三上悠亚av全集在线观看| 久久影院123| 亚洲第一区二区三区不卡| 自线自在国产av|