• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative experimental study on reactive crystallization of Ni(OH)2 in an airlift-loop reactor and a stirred reactor☆

    2018-05-25 07:50:56TianrongCaoWeipengZhangJingcaiChengChaoYang

    Tianrong Cao ,Weipeng Zhang *,Jingcai Cheng ,Chao Yang ,*

    1 Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 Nanjing Jiuzhang Chemical Technology Co.Ltd.,Nanjing 21180,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    As an important unit operation,crystallization is widely used in the production of basic chemicals,pharmaceuticals,pigments and ceramic powders[1–4].By now,diversified stirred tanks prevail as crystallizers owing to their good mixing performance and technical maturity[5].However,secondary nucleation and crystal attrition are unavoidable due to the existence of mechanical agitation by impellers[6].As for an airlift-loop reactor(ALR),there are no moving mechanical parts in the reactor,and the shear rate is moderate and relatively uniform throughout the reactor volume.Therefore,it is widely used in fermentation,biofuel production and wastewater bio-treatment,to take the advantage of low extent of damage to microbes[7,8].In view of these excellent properties,ALR has been considered as a new prospective crystallizer[6,9–13].

    To date,there are only a few papers on the crystallization in ALRs.Soare et al.[13]studied the secondary nucleation in an airlift crystallizer and found it was flexible in controlling the size of crystalline products by manipulating seed load and air flow rate.Rigopoulos and Jones[10]proposed a model for simulating the semi-batch agglomerative gas–liquid precipitation of CaCO3by CO2absorption into lime in an airlift reactor.By comparison with the crystallization of L-ascorbic acid in a stirred crystallizer,Lakerveld et al.[6]found that an air-lift crystallizer can suppress secondary nucleation at a higher super-saturation.As for the study on liquid–liquid reactive crystallization in an ALR,fewre ports have been found in the literature.Therefore,the objective of this work is to study the process of reactive crystallization in an airlift-loop reactor.

    Asan important crystalline material for advanced energy conversion and storage,nickel hydroxide(Ni(OH)2)is extensively used as cathode material in rechargeable alkaline batteries[14–22].There have been many reports exploring the preparation and crystallizing mechanism of Ni(OH)2in stirred tanks.E et al.[22]explored the precipitation of nickel hydroxide in astirred tank by online measure ment and got useful data on preparing Ni(OH)2with small size and small sizespan.Pengand Shen[23]came up with the template growth mechanism of spherical Ni(OH)2in a continuous stirred-tank reactor(CSTR).Borho[24]explored the crystallite aggregation and simulated the process of aggregation in a stirred column.Shen et al.[25]investigated the microstructures of spherical Ni(OH)2particles and found that spherical particles were more stable during the charge/discharge cycles compared with the conventional non-spherical ones.Cai[26]studied the production of spherical Ni(OH)2using an oscillatory baffled crystallizer and indicated that tap density of Ni(OH)2had great Influence on electronic properties.Bigger tap density means bigger capacity per volume of Ni(OH)2particles,which makes the electronic properties better.Watanabe and Kikuoka[27]proposed that the nickel hydroxide of small size showed better charge–discharge behavior due to its faster proton diffusion.On the whole,the experimental data and theoretical analyses on preparation of Ni(OH)2in stirred tanks are abundant and the electro-chemical properties of Ni(OH)2particles with spherical shape,small size and big tap density are preferred.In light of this knowledge basis,the precipitation of Ni(OH)2is chosen as the model reaction to study the reactive crystallization in an ALR.

    In this paper,the conditions for preparing sphere-like Ni(OH)2in an ALR are explored first by the orthogonal experiment.Then,the Ni(OH)2particles are analyzed by the scanning electron microscope(SEM),X-ray diffraction(XRD),laser particle analyzer,tap densitometer and optical microscope.The temporal evolution of size and tap density of Ni(OH)2particles is characterized by comparison with those prepared in astir red tank.On this basis,the evolution process of Ni(OH)2particles in the ALR is elaborated.

    2.Experimental

    2.1.Setup and procedure

    The experiment was conducted in two reactors,i.e.,an ALR and a stirred tank.A schematic diagram of the ALR is shown in Fig.1.The reactor is composed of an outer cylinder of diameter D1=200 mm and height of H1=400 mm,a draft tube of diameter D2=120 mm and height of H2=300 mm,and an air distributor.The clearance between the reactor bottom and the draft tube is 50 mm.As for the stirred tank,it is a cylinder with the same diameter of the ALR and an up-pumping 45°six-pitched-blade turbine(PBTU).

    The formation of Ni(OH)2proceeds through the following reactions[22]:

    Fig.1.Schematic diagram of the ALR under investigation.1—inlet A;2—inlet B;3—over flow;4—thermometer;5—sample tap;6—gas distributor.

    With the addition of ammonium hydroxide,most of Ni2+ions are complexed with NH3to form[Ni(NH3)n]2+,which decreases the super-saturation of Ni(OH)2.

    The main reactant stream A contains NiSO4,and the reactant stream B contains NH3and NaOH(0.2 mol·L?1).All chemicals are of analytical grade.Two streams are fed separately through two inlets.Distilled water is used throughout the experiment.The experimental procedure is described as below.

    Before the start of an experimental run,distilled water is heated to the required temperature in an electric kettle and then added into the reactor,and air begins to bubble in through the distributor.After the temperature is stabilized,the NH3and NaOH(0.2 mol·L?1)solution is added into the reactor to adjust p H value.Then,NiSO4is added into the reactor with the feed rate of 55 ml·h?1and reaction begins to happen.Besides,the NH3and NaOH(0.2 mol·L?1)solution is added continuously throughout the whole process to maintain the p H value.Samples are taken every 4 h for tests including XRD,PSD(particle size distribution),SEM and tap density.

    2.2.Experimental design

    Preparation of spherical Ni(OH)2particles in an ALR is relevant to many factors and has not been explored so far.For this purpose,an orthogonal experiment is performed firstly following the design of L25(56),which is shown in Table 1,and the experimental factors and levels are listed in Table 2.

    Table 1 The orthogonal table of L25(56)

    Table 2 The table of factors and levels

    Fig.2.SEM images of Ni(OH)2 in T6.

    Fig.3.Tap density of Ni(OH)2 particles in two reactors(1—ALR and reaction time of 8 h,2—ALR and 20 h,3—stirred tank and 20 h).

    Through the orthogonal experiment,the conditions for preparing spherical Ni(OH)2particles can be obtained.Then,the contrast experiment in a stirred tank under the same conditions is conducted.

    3.Results and Discussion

    3.1.Conditions for preparing spherical particles in ALR

    Ni(OH)2particles with sphere-like morphology have been proved to present better electronic properties,such as higher storage[22].Compared with other samples,the ones prepared in T6(abbreviation of Test 6)have the highest sphericity,as shown in Fig.2.Therefore,the conditions of T6 are selected for studying the process of reactive crystallization.

    Fig.5.The PSD in ALR and stirred tank.

    3.2.Factors in fluencing tap density

    Though the morphology of Ni(OH)2prepared in T6 is spherical,the tap density(0.2233 g·cm?3)is too small,while there ported tap density of Ni(OH)2prepared in conventional stirred tanks reaches up to 1 g·cm?3[16,18].To find out the reason,an experimental run in a stirred tank with the same conditions of T6 has been done.

    Fig.4.SEM images of Ni(OH)2 in two reactors.

    Fig.6.Micro structures of Ni(OH)2 prepared in two reactors when time is 20 h.

    Fig.7.Variation of tap density of Ni(OH)2 with time in an ALR and a stirred tank.

    For particles,its tap density can be expressed by[26]

    where ρ represents the tap density,ρ0represents the real density,f represents the voidage in crystallites which depends on the phase of Ni(OH)2,g represents the void fraction in particles,and ε represents the void content between particles which depends on the shape,size and size distribution[28].

    From Fig.3,it can be seen that the tap density of Ni(OH)2prepared in a stirred tank is much higher than that prepared in an ALR.According to Eq.(3),there are 5 factors in fluencing the tap density,i.e.,the shape,particle size,size distribution,the phase of Ni(OH)2and void content g,which are examined and analyzed one by one.

    Fig.8.Variation of XRD patterns of Ni(OH)2 prepared in an ALR and a stirred tank with time.

    Fig.9.The size of crystallite varying with time in an ALR and a stirred tank.

    Fig.10.The micros tructure of Ni(OH)2 in 4 tests.

    Peng[28]showed that the spherical Ni(OH)2had a higher tap density.Fig.4 shows the SEM pictures wherein particles prepared in an ALR are closer to spheres compared with the ones prepared in a stirred tank.That means the tap density should be higher in an ALR.However,the higher tap density in a stirred tank suggests that shape isn't the main reason for the lower tap density in an ALR.

    The size and size distribution of Ni(OH)2are shown in Fig.5.The particle size in the stirred tank is smaller than that in an ALR for the same preparation time of 20 h,but larger than that in an ALR for a shorter preparation time of 8 h.No matter which samples from the ALR,the tap density is lower than that prepared in a stirred tank.This indicates that the size isn't the main reason for the lower tap density prepared in an ALR.The PSDs of all samples are similar(close to the normal distribution)except the PSD of samples in an ALR(t=20 h)which have 2 peaks.Research[26]shows that the tap density of particles which are made up with small particles and big particles is bigger than ones which just haveonepeak.Even though,the tap density of particles prepared in an ALR when time is 20 h is still lower than the ones prepared in a stirred tank.Therefore,we can infer that the size distribution is also not the main reason.

    Fig.11.The sizes of crystallitesin 4 tests(1—Test 5,2—Test 9,3—in astirred tank,4—T6).

    Fig.12.The tap densities of 4 tests(1—Test 5,2—Test 9,3—in a stirred tank,4—T6).

    Microstructures of Ni(OH)2particles prepared in an ALR and a stirred tank are shown in Fig.6.It can be seen that the voids(g in Eq.(3))in particles prepared in an ALR are bigger than those prepared in a stirred tank.Thus,the key to the tap density of Ni(OH)2seems to be the growth of crystallites in particles.And the process of crystallization can be described as below.The crystallites aggregate together randomly to form many voidsin particles.Then the crystallites in particles can go on growing up to fill up the voids so that the tap density increases.

    To verify the guess proposed above,the tap density of Ni(OH)2in an ALR and a stirred tank against time has been measured firstly.The data in Fig.7 show that the tap density in a stirred tank grows up steadily with time while the one in an ALR keeps constant or even decreases slightly.

    If the guess proposed above is right,the sizes of crystallites will vary with time following the same trend with tap density.Then,all of these samples are measured by XRD and the sizes of crystallites are also obtained by Jade(a software used to analyze XRD data)based on the data of XRD.The XRD patterns and the sizes of crystallites have been shown in Figs.8 and 9.From Fig.8,it can be found that all samples prepared in both reactors are β-Ni(OH)2,while peaks of the sample from a stirred tank are sharper.According to Fig.9,the sizes of crystallites vary with time following the same trend with tap density regardless of whether in an ALR or a stirred tank,which indicates that the guess above is right.

    To further verify that the claim made above is suitable to the particles in an ALR,two more samples prepared in an ALRby orthogonal experiment,which have similar micros tructure with the ones prepared in a stirred tank,are chosen to be compared with the samples of T6 and the ones prepared in astir red tank.The micro structure of them is shown in Fig.10.

    Then,all of theses amples are measured by XRD and the sizes of crystallites are shown in Fig.11.According to Fig.11,the sizes of crystallites from the highest to the lowest are the samples prepared in a stirred tank,Test 5,Test 9 and Test 6.The tap densities of these 4 samples are shown in Fig.12 and the results confirm again our claim that the bigger the sizes of the cryst allites are,the higher the tap density is.In summary,it can beconcluded that the growth of tap density depends on the size of crystallites.

    Fig.13.Microstructure of Ni(OH)2 varying with time in an ALR.

    As for the big difference of tap density of Ni(OH)2particles in an ALR and a stirred tank,it can be attributed to the different driving forces to fluid movement in two crystallizers.Under the same operation conditions in two crystallizers,volatilization of ammonium hydroxide in an ALR is quicker in contrast with stirred tank owing to the gas flow.The volatilization of ammonia makes the concentration of NH4+decrease and Ni2+increase in the solution,which promotes greatly the nucleation but less the growth of crystallites.Therefore,the size of crystallites in Test 6 doesn't change much along with time,while crystallites growup quickly in a stirred tank,which finally causes the difference of tap density.

    3.3.Ripening of Ni(OH)2 particles

    The shape and morphology of Ni(OH)2with the variation of time in an ALR and a stirred tank have been shown in Figs.13 to 16.In an ALR,the shape of Ni(OH)2particles varies from the irregular shape to the spherical one,the surface gets smoother and the boundary between small particles disappears gradually.As for the particles in astirred tank,the shape of them doesn't change much,the surface maintains the structure with much inter-space,and the boundary is obvious with the whole process though the small particles grow up gradually.In contrast,the conditions in an ALR are more advantageous for preparing spherical Ni(OH)2particles.

    To explain this difference,the mechanism of ripening should beintroduced firstly.The Gibbs–Thomson effect[23,29],i.e.,the equilibrium concentration at the surface of a cluster,is used in a truncated Taylor's series form as

    where the index GTstands for Gibbs–Thomson,r is the cluster radius,c∞is the equilibrium solubility at the in finite cluster radius,γ is the surface tension of the cluster,vMis the atomic volume of the material,k is the Boltzmann constant and T is the temperature.

    According to Eq.(4),every particle or bulge on surface has its own equilibrium concentration.The smaller the radius is,the bigger the equilibrium concentration is.As the super-saturation decreases with time,the solution concentration is easy to get smaller than the equilibrium concentration.This induces the small particles or bulge in solution to dissolve[23].In other words,small particles will disappear and the surface will get smoother,which is the phenomenon of ripening.

    Based on the analysis on ripening above,it can be known that the degree of ripening depends on the value of super-saturation in solution.The super-saturation decreases quicker in an ALR owing to the volatilization of ammonium hydroxide under the effect of gas.Therefore,the solution concentration is easier to get smaller than the equilibrium concentration in an ALR and the ripening of Ni(OH)2particles is quicker.

    3.4.The effect of mixing on Ni(OH)2 particles in an ALR

    Mixing in there action crystallization plays akey role in the quality of the products.Mixing effect in ALR mainly depends on the gas flow,which Influences liquid circulation velocity much.This section discusses the Influence of gas flow on growth of Ni(OH)2crystallites by a single factor experiment.Fig.17 shows the size of Ni(OH)2crystallite varying with gas flow.With the increasing of gas flow,the crystallite son 3 lattice planes get bigger.

    Zhang[30]reports that macro-mixing time decreases with the increasing of super ficial gas velocity in an ALR.One important step of crystallization from an aqueous solution[31]is the bulk diffusion of hydrated ions through the diffusion boundary and adsorption layers:the mechanism is linearly dependant on concentration gradient and inversely on diffusion layer thickness(or crystal size).With the increasing of gas flow,turbulence in the bulk liquid phase is enhanced,the boundary layer becomes thinner,thus mass transfer efficiency gets higher,which decreases the thickness of diffusion boundary and promotes the growth of crystallites.Therefore,the size of crystallite gets bigger with the increasing of gas flow.

    Fig.14.Microstructure of Ni(OH)2 varying with time in a stirred tank.

    Fig.15.Morphology of Ni(OH)2 varying with time in an ALR.

    Fig.16.Morphology of Ni(OH)2 varying with time in a stirred tank.

    Fig.17.The size of crystallite varying with gas flow.

    3.5.Growth process of Ni(OH)2 particles

    There are a few reports describing the growth process of Ni(OH)2.However,there still lack some convincing explanations.Shangguan et al.[20]thought the formation process of spherical Ni(OH)2mainly included three steps:nucleation,aggregation and crystal growth.Peng and Shen[23]proposed the template growth mechanism of spherical Ni(OH)2,namely the growth on the crystallite templates stretching in the radius direction is free and quick,while the growth rate for crystallites in other directions is confined due to lower monomer concentration and tends to dissolve.But,no one shows the connection between the growth of tap density and the growth of Ni(OH)2particles.

    Based on the analysis above and the conclusion in Section 3.2,we add two supplements to the growth process of Ni(OH)2as outlined in Fig.18.

    The improved understanding of the growth process of Ni(OH)2mainly includes 2 points as shown in Figs.19 and 20.The first one is about the growth of particle size.It can be seen that the sizes of particles are at the level of μm from Fig.5,while the sizes of crystallites are at the scale of tens of nm as shown in Fig.9.This difference between particles and crystallites indicates that the growth of particles doesn't depend on the growth of crystallites.Then,the aggregation of crystallites can be visualized from Fig.6.Based on these phenomena,it can be suggested which indicates the transmission of light color is good.With the tap density becoming bigger,the color of samples becomes darker,which indicates that the transmission of light is reduced.The phenomenon evidences the decrease of voids visually and confirms the deduction in Fig.20.

    Fig.18.The formation process of Ni(OH)2 particles.

    Fig.19.The growth process of particle size.

    Besides,ripening occurs in the whole process and the shape of Ni(OH)2particles will vary from irregular to spherical slowly.

    4.Conclusions

    The growth process of Ni(OH)2particles in an ALR is studied in this work by analyzing micros tructure,shape,size and tap density of particles.Comparing with the experimental results in a stirred tank,the following conclusions can be drawn from this work.

    (1)The growth of tap density mainly depends on the size of crystallites.The bigger the size of crystallites is,the bigger the tap density is.

    (2)Mixing in the reaction crystallization plays a key role in the quality of the products.With the increasing of gas flow,the crystallites on 3 lattice planes get bigger.

    (3)The ALR has more advantageous ripening conditions for preparing spherical Ni(OH)2particles compared with the stirred tank.

    (4)The phenomenological growth process of Ni(OH)2particles has been supplemented with more details.Based on this work,the growth of particle size mainly depends on the aggregation of numerous crystallites,while the growth of tap density mainly relies on the size of individual crystallites.that the growth of particles depends on the aggregation of crystallites,as expressed by Fig.19.

    The second one is about the growth of tap density,which is shown in Fig.20.The sheet crystallites aggregate together randomly to form many voids in particles.Then the crystallites in a particle go on growing up to take up the voids between crystallites so that the particle density increases.

    This process can also be proved by Fig.21,which shows the microscope image of 2 samples with different tap densities.It can be seen that the samples are white when the tap density is 0.2233 g·cm?3,

    Nomenclature

    CNiSO4concentration of NiSO4,mol·L?1

    D1diameter of outer cylinder in an ALR,mm

    D2diameter of draft tube in an ALR,mm

    H1height of outer cylinder in an ALR,mm

    H2height of draft tube in an ALR,mm

    qggas flow rate,L·min?1

    T temperature,°C

    t reaction time,h

    VNH3volume of ammonium hydroxide per liter alkaline liquor,ml

    VNaOHvolume of NaOH solution,L

    Fig.20.The growth process of tap density.

    Fig.21.Microscope images of two samples with different tap densities.

    [1]B.Yu.Shekunov,P.York,Crystallization processes in pharmaceutical technology and drug delivery design,J.Cryst.Growth 211(2000)122–136.

    [2]E.L.Paul,H.H.Tung,M.Midler,Organic crystallization processes,Powder Technol.150(2)(2005)133–143.

    [3]Z.Q.Yu,J.W.Chew,P.S.Chow,R.B.H.Tan,Recent advances in crystallization control,Chem.Eng.Res.Des.85(7)(2007)893–905.

    [4]D.A.Berry,K.M.Ng,Synthesis of reactive crystallization processes,AIChE J.43(7)(1997)1737–1750.

    [5]D.Logashenko,T.Fischer,S.Motz,E.D.Gilles,G.Wittum,Simulation of crystal growth and attrition in a stirred tank,Comput.Vis.Sci.9(3)(2006)175–183.

    [6]R.Lakerveld,J.J.H.Krochten,H.J.M.Kramer,An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer,Cryst.Growth Des.14(7)(2014)3264–3275.

    [7]Q.S.Huang,C.Yang,G.Z.Yu,Z.-S.Mao,3-D simulations of an internal airlift loop reactor using a steady two- fluid model,Chem.Eng.Technol.30(7)(2007)870–879.

    [8]M.?im?ík,A.Mota,M.C.Ruzicka,A.Vicente,J.Teixeira,CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor,Chem.Eng.Sci.66(14)(2011)3268–3279.

    [9]J.Bao,K.Koumatsu,K.Furumoto,M.Yoshimoto,K.Fukunaga,K.Nakao,Optimal operation of an integrated bioreaction–crystallization process for continuous production of calcium gluconate using external loop airlift columns,Chem.Eng.Sci.56(2001)6165–6170.

    [10]S.Rigopoulos,A.Jones,Modeling of semibatch agglomerative gas–liquid precipitation of CaCO3in a bubble column reactor,Ind.Eng.Chem.Res.42(2003)6567–6575.

    [11]D.H.Jenkins,Salting-out crystallisation using NH3in a laboratory-scale gas lift reactor,Can.J.Chem.Eng.87(6)(2009)869–878.

    [12]P.Gonzalez-Contreras,J.Weijma,C.J.N.Buisman,Bioscorodite crystallization in an airlift reactor for arsenic removal,Cryst.Growth Des.12(5)(2012)2699–2706.

    [13]A.Soare,R.Lakerveld,J.Royen,G.Zocchi,A.I.Stankiewicz,H.J.M.Kramer,Minimization of attrition and breakage in an airlift crystallizer,Ind.Eng.Chem.Res.51(33)(2012)10895–10909.

    [14]Y.Wang,Q.S.Zhu,H.G.Zhang,Fabrication of β-Ni(OH)2and NiO hollowspheres by a facile template-free process,Chem.Commun.(2005)5231–5233.

    [15]D.B.Kuang,B.X.Lei,Y.P.Pan,X.Y.Yu,C.Y.Su,Fabrication of novel hierarchical β-Ni(OH)2and NiO microspheres via an easy hydrothermal process,J.Phys.Chem.C 113(2009)5508–5513.

    [16]X.J.Han,P.Xu,C.Q.Xu,L.Zhao,Z.B.Mo,T.Liu,Study of the effects of nanometer β-Ni(OH)2in nickel hydroxide electrodes,Electrochim.Acta 50(14)(2005)2763–2769.

    [17]J.X.Ren,Z.Zhou,X.P.Gao,J.Yan,Preparation of porous spherical α-Ni(OH)2and enhancement of high-temperature electrochemical performances through yttrium addition,Electrochim.Acta 52(3)(2006)1120–1126.

    [18]E.Shangguan,Z.R.Chang,H.W.Tang,X.-Z.Yuan,H.J.Wang,Synthesis and characterization of high-density non-spherical Ni(OH)2cathode material for Ni–MH batteries,Int.J.Hydrog.Energy 35(18)(2010)9716–9724.

    [19]M.Aghazadeh,A.N.Golikand,M.Ghaemi,Synthesis,characterization,and electrochemical properties of ultra fine β-Ni(OH)2nanoparticles,Int.J.Hydrog.Energy 36(14)(2011)8674–8679.

    [20]E.Shangguan,Z.R.Chang,H.W.Tang,X.-Z.Yuan,H.J.Wang,Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2as cathode materials for Ni–metal hydride batteries,J.Power Sources 196(18)(2011)7797–7805.

    [21]S.Presto,D.Giraud,A.Testino,C.Bottino,M.Viviani,V.Buscaglia,Growth of polycrystalline nickel hydroxidefilms from aqueous solution,solution chemistry,deposition methods, film morphology and texture,Thin Solid Films 552(2014)1–9.

    [22]W.W.E,J.C.Cheng,C.Yang,Z.-S.Mao,Experimental study by online measurement of the precipitation of nickel hydroxide:effects of operating conditions,Chin.J.Chem.Eng.23(5)(2015)860–867.

    [23]M.X.Peng,X.Q.Shen,Template growth mechanism of spherical Ni(OH)2,J.Cent.S.Univ.Technol.14(2007)310–314.

    [24]K.Borho,The importance of population dynamics from the perspective of the chemical process industry,Chem.Eng.Sci.57(2002)4257–4266.

    [25]X.Q.Shen,M.X.Peng,M.X.Jing,Y.H.Wei,Study on structural characteristics of spherical Ni(OH)2electrode active material,J.Funct.Mater.36(11)(2005)1798–1801(1805).

    [26]Y.Q.Cai,Research on Spherical Ni(OH)2Production Using a Oscillatory Baf fled Crystallizer Master Thesis Zhejiang Univ.,Hangzhou,China,2012.

    [27]T.Kikuoka,K.Watanabe,Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries,J.Appl.Electrochem.25(1995)219–226.

    [28]M.X.Peng,Formation Mechanism of the Microstructures and the Electrochemical Performance for Spherical Nickel Hydroxide Ph.D.Thesis Central South Univ.,Changsha,China,2004.

    [29]H.Xia,M.Zinke-Allmang,Rate equation approach to the late stages of cluster ripening,Physica A 261(1998)176–187.

    [30]W.P.Zhang,Investigation of Macro-and Micro-mixing in Multiphase Loop Reactors Ph.D.Thesis,The University of Chinese Academy of Sciences,Beijing,China,2013.

    [31]C.Sist,Precipitation of Nickel Hydroxide from Sulphate Solutions Using Supersaturation Control Ph.D.Thesis McGill University,Montreal,Canada,2004.

    日韩av免费高清视频| 美女脱内裤让男人舔精品视频| 看免费成人av毛片| 欧美老熟妇乱子伦牲交| 97在线人人人人妻| 亚洲欧美日韩另类电影网站| 成年人午夜在线观看视频| 亚洲综合精品二区| 五月天丁香电影| 一边摸一边做爽爽视频免费| 高清欧美精品videossex| 亚洲精品aⅴ在线观看| 亚洲欧美一区二区三区黑人| 中文天堂在线官网| 久久性视频一级片| 日韩不卡一区二区三区视频在线| 国产亚洲午夜精品一区二区久久| 精品久久蜜臀av无| 一边亲一边摸免费视频| 亚洲 欧美一区二区三区| 亚洲欧美中文字幕日韩二区| 欧美乱码精品一区二区三区| a 毛片基地| 少妇 在线观看| 亚洲精品一区蜜桃| 国产午夜精品一二区理论片| 国产欧美亚洲国产| 国产精品av久久久久免费| 久久精品国产亚洲av高清一级| 欧美日韩成人在线一区二区| 国产成人91sexporn| 欧美日韩视频高清一区二区三区二| 99久久99久久久精品蜜桃| 一二三四在线观看免费中文在| 国产乱人偷精品视频| 久久精品aⅴ一区二区三区四区| 亚洲,欧美精品.| 丝袜喷水一区| 国产一区有黄有色的免费视频| 韩国精品一区二区三区| 久久久国产欧美日韩av| 欧美激情 高清一区二区三区| www.av在线官网国产| 男女边摸边吃奶| 最黄视频免费看| 国产精品亚洲av一区麻豆 | 桃色一区二区三区在线观看| 中文字幕最新亚洲高清| 搡老熟女国产l中国老女人| 亚洲欧美日韩另类电影网站| 国产精品久久久久久亚洲av鲁大| 日本精品一区二区三区蜜桃| 欧美日韩乱码在线| 国产精品美女特级片免费视频播放器 | 国产一区二区在线av高清观看| 18禁美女被吸乳视频| 99在线视频只有这里精品首页| 精品午夜福利视频在线观看一区| 国产精品野战在线观看| 久久精品91蜜桃| 91字幕亚洲| 一区福利在线观看| 国产亚洲欧美在线一区二区| 电影成人av| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 香蕉久久夜色| 悠悠久久av| 久久天堂一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 国内精品久久久久久久电影| 法律面前人人平等表现在哪些方面| 久久午夜综合久久蜜桃| 国产免费男女视频| 亚洲成人免费电影在线观看| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区三| 在线观看一区二区三区| 美女免费视频网站| 亚洲精品久久成人aⅴ小说| 国产欧美日韩精品亚洲av| 淫秽高清视频在线观看| 在线观看午夜福利视频| 在线播放国产精品三级| 黄色 视频免费看| 天堂√8在线中文| 99香蕉大伊视频| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| 男女下面进入的视频免费午夜 | 久久精品亚洲精品国产色婷小说| 国产免费男女视频| 女性被躁到高潮视频| 国产视频一区二区在线看| 午夜视频精品福利| 午夜视频精品福利| 国产又爽黄色视频| 欧美日本中文国产一区发布| 成人亚洲精品一区在线观看| 国产精品av久久久久免费| 人成视频在线观看免费观看| 在线观看日韩欧美| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 成人精品一区二区免费| 成人永久免费在线观看视频| 9色porny在线观看| 一本大道久久a久久精品| 久热爱精品视频在线9| 免费在线观看影片大全网站| av中文乱码字幕在线| 99re在线观看精品视频| 91精品三级在线观看| 久久人妻熟女aⅴ| 午夜福利视频1000在线观看 | 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 韩国精品一区二区三区| 亚洲成人精品中文字幕电影| 欧美午夜高清在线| 中文字幕另类日韩欧美亚洲嫩草| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人免费无遮挡视频| 亚洲精品在线观看二区| 国产精品久久视频播放| 日韩大尺度精品在线看网址 | 亚洲avbb在线观看| 国产99白浆流出| 国产精品九九99| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 国产91精品成人一区二区三区| 久久性视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片女人18水好多| 50天的宝宝边吃奶边哭怎么回事| netflix在线观看网站| 亚洲一区中文字幕在线| 97碰自拍视频| 日本精品一区二区三区蜜桃| 免费看美女性在线毛片视频| 欧美色视频一区免费| 天堂影院成人在线观看| av免费在线观看网站| 久久国产乱子伦精品免费另类| 91精品三级在线观看| 久久九九热精品免费| 国产高清videossex| 久久精品亚洲精品国产色婷小说| 久久久久久人人人人人| 男人舔女人下体高潮全视频| 国产精品日韩av在线免费观看 | 午夜激情av网站| 亚洲国产精品sss在线观看| 久久久国产精品麻豆| 性色av乱码一区二区三区2| tocl精华| 久久午夜综合久久蜜桃| 国产伦一二天堂av在线观看| 亚洲国产欧美日韩在线播放| avwww免费| 国产欧美日韩精品亚洲av| 一级,二级,三级黄色视频| 久久精品国产99精品国产亚洲性色 | 99精品在免费线老司机午夜| 国产亚洲av高清不卡| 国产主播在线观看一区二区| 两个人视频免费观看高清| 国产麻豆69| 色综合婷婷激情| 国产真人三级小视频在线观看| 一本久久中文字幕| 免费在线观看视频国产中文字幕亚洲| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 久久精品91蜜桃| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 国产精品爽爽va在线观看网站 | 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 国产精品永久免费网站| 999久久久国产精品视频| 亚洲七黄色美女视频| 久久午夜亚洲精品久久| 国产精品 欧美亚洲| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 19禁男女啪啪无遮挡网站| 国产精品久久视频播放| 两人在一起打扑克的视频| 一区二区三区国产精品乱码| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 久久久久久久久久久久大奶| 欧美日本视频| 国产私拍福利视频在线观看| 大码成人一级视频| 欧美一区二区精品小视频在线| 黑丝袜美女国产一区| 国产精品永久免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 韩国av一区二区三区四区| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 又紧又爽又黄一区二区| 91av网站免费观看| 国产精品永久免费网站| 欧美精品亚洲一区二区| 国产99白浆流出| 亚洲第一av免费看| 精品久久久久久久毛片微露脸| 69精品国产乱码久久久| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 久久婷婷人人爽人人干人人爱 | 成人欧美大片| 免费在线观看影片大全网站| 午夜免费观看网址| 亚洲aⅴ乱码一区二区在线播放 | 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 亚洲熟妇中文字幕五十中出| svipshipincom国产片| 91字幕亚洲| a级毛片在线看网站| 国产精品野战在线观看| 岛国视频午夜一区免费看| 日韩一卡2卡3卡4卡2021年| 久热爱精品视频在线9| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 亚洲国产日韩欧美精品在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 午夜日韩欧美国产| 999精品在线视频| 91精品三级在线观看| 麻豆国产av国片精品| 亚洲情色 制服丝袜| 亚洲国产高清在线一区二区三 | 波多野结衣av一区二区av| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 99热只有精品国产| 女生性感内裤真人,穿戴方法视频| cao死你这个sao货| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区国产精品乱码| 999久久久国产精品视频| 亚洲中文av在线| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕在线视频| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 亚洲av片天天在线观看| 久久国产亚洲av麻豆专区| 日韩一卡2卡3卡4卡2021年| 在线十欧美十亚洲十日本专区| av天堂在线播放| 免费观看人在逋| 精品第一国产精品| 男人舔女人的私密视频| 亚洲七黄色美女视频| 正在播放国产对白刺激| 丝袜在线中文字幕| 亚洲第一av免费看| 久9热在线精品视频| 少妇熟女aⅴ在线视频| 免费高清视频大片| 亚洲成国产人片在线观看| 97人妻天天添夜夜摸| 国产蜜桃级精品一区二区三区| 禁无遮挡网站| 精品国产乱子伦一区二区三区| 欧美亚洲日本最大视频资源| av视频免费观看在线观看| 久久天躁狠狠躁夜夜2o2o| 成人18禁在线播放| 欧美不卡视频在线免费观看 | 成人18禁高潮啪啪吃奶动态图| 一级黄色大片毛片| 国产91精品成人一区二区三区| 男人的好看免费观看在线视频 | 亚洲精华国产精华精| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 黄片小视频在线播放| 一级,二级,三级黄色视频| 午夜久久久在线观看| 亚洲精品在线美女| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 岛国在线观看网站| 欧美黑人精品巨大| 免费看十八禁软件| 国产日韩一区二区三区精品不卡| 亚洲欧美激情在线| av欧美777| 国产成人影院久久av| xxx96com| 美女国产高潮福利片在线看| 亚洲 国产 在线| 亚洲熟妇熟女久久| 国产精品免费视频内射| 国产精品,欧美在线| 制服丝袜大香蕉在线| 精品午夜福利视频在线观看一区| 欧美精品啪啪一区二区三区| 欧美日本亚洲视频在线播放| 丝袜美腿诱惑在线| 日本一区二区免费在线视频| 看片在线看免费视频| 一级a爱视频在线免费观看| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 很黄的视频免费| 亚洲五月色婷婷综合| 亚洲无线在线观看| 一级作爱视频免费观看| 亚洲精品av麻豆狂野| 人人妻人人澡欧美一区二区 | 亚洲国产高清在线一区二区三 | 久久精品91蜜桃| 人人妻人人爽人人添夜夜欢视频| 中国美女看黄片| 在线国产一区二区在线| 一区福利在线观看| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 国产激情久久老熟女| 亚洲欧美激情在线| 视频区欧美日本亚洲| 精品日产1卡2卡| 在线观看66精品国产| 欧美黑人欧美精品刺激| 国产成人av教育| 亚洲国产精品合色在线| 长腿黑丝高跟| 国产成人av教育| www日本在线高清视频| 亚洲av美国av| 性少妇av在线| 乱人伦中国视频| 黄色片一级片一级黄色片| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 精品国产亚洲在线| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 青草久久国产| 亚洲国产欧美日韩在线播放| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 在线观看午夜福利视频| 亚洲国产高清在线一区二区三 | 操出白浆在线播放| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 日韩免费av在线播放| www.www免费av| 亚洲欧美日韩另类电影网站| 男人的好看免费观看在线视频 | 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放 | 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清 | 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 女警被强在线播放| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 欧美黑人精品巨大| 久久午夜综合久久蜜桃| 91精品三级在线观看| 国产成人av激情在线播放| 88av欧美| 脱女人内裤的视频| 日韩三级视频一区二区三区| 亚洲中文日韩欧美视频| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 麻豆av在线久日| 变态另类成人亚洲欧美熟女 | 老汉色∧v一级毛片| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2 | 热re99久久国产66热| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 日韩视频一区二区在线观看| 欧美乱码精品一区二区三区| 大陆偷拍与自拍| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久人妻蜜臀av | 亚洲黑人精品在线| 国内精品久久久久精免费| 嫩草影视91久久| 久久久久久久精品吃奶| 欧美 亚洲 国产 日韩一| av在线天堂中文字幕| 国产精品野战在线观看| 丁香欧美五月| 88av欧美| 高清毛片免费观看视频网站| 国产精品野战在线观看| 国产私拍福利视频在线观看| 国内精品久久久久久久电影| 9热在线视频观看99| 国产91精品成人一区二区三区| 国产97色在线日韩免费| 激情在线观看视频在线高清| 久久中文看片网| 成熟少妇高潮喷水视频| 午夜视频精品福利| 在线永久观看黄色视频| 免费久久久久久久精品成人欧美视频| 欧美午夜高清在线| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 国产熟女xx| АⅤ资源中文在线天堂| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 亚洲精品美女久久av网站| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| av福利片在线| 女同久久另类99精品国产91| 中文字幕另类日韩欧美亚洲嫩草| 欧美最黄视频在线播放免费| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| av超薄肉色丝袜交足视频| 美国免费a级毛片| 日韩三级视频一区二区三区| 国产人伦9x9x在线观看| 亚洲第一av免费看| 波多野结衣av一区二区av| 好男人在线观看高清免费视频 | 亚洲精品一卡2卡三卡4卡5卡| 国产av精品麻豆| 成人欧美大片| 岛国视频午夜一区免费看| svipshipincom国产片| 国产一区在线观看成人免费| 别揉我奶头~嗯~啊~动态视频| 久久国产精品影院| 少妇裸体淫交视频免费看高清 | av视频免费观看在线观看| 少妇的丰满在线观看| 乱人伦中国视频| 久9热在线精品视频| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 中文字幕av电影在线播放| 久久天堂一区二区三区四区| 久久久国产成人精品二区| 成人av一区二区三区在线看| 亚洲狠狠婷婷综合久久图片| 精品午夜福利视频在线观看一区| 乱人伦中国视频| 亚洲人成电影免费在线| 黄色 视频免费看| 午夜福利视频1000在线观看 | 欧美中文日本在线观看视频| 欧美午夜高清在线| 麻豆一二三区av精品| 黄频高清免费视频| 亚洲熟女毛片儿| 操出白浆在线播放| 中文字幕人成人乱码亚洲影| 九色国产91popny在线| 亚洲中文av在线| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 侵犯人妻中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 免费看a级黄色片| 亚洲av电影不卡..在线观看| 亚洲成av片中文字幕在线观看| 亚洲午夜理论影院| 久久天躁狠狠躁夜夜2o2o| 女人被躁到高潮嗷嗷叫费观| 久久久久国产一级毛片高清牌| 欧美老熟妇乱子伦牲交| 9191精品国产免费久久| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 国产97色在线日韩免费| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 欧洲精品卡2卡3卡4卡5卡区| 99re在线观看精品视频| 成人三级做爰电影| 久久亚洲精品不卡| √禁漫天堂资源中文www| 欧美在线黄色| 黄色片一级片一级黄色片| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 久久久久久免费高清国产稀缺| 大香蕉久久成人网| 亚洲国产高清在线一区二区三 | 国产不卡一卡二| 成熟少妇高潮喷水视频| 日韩 欧美 亚洲 中文字幕| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 国产国语露脸激情在线看| 欧美+亚洲+日韩+国产| 极品人妻少妇av视频| 国产精品影院久久| 国产单亲对白刺激| 成人三级黄色视频| 亚洲成国产人片在线观看| 国产又爽黄色视频| 成年女人毛片免费观看观看9| 搡老岳熟女国产| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 淫妇啪啪啪对白视频| av有码第一页| 在线国产一区二区在线| 嫩草影院精品99| 99国产精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品国产亚洲在线| 久99久视频精品免费| 黑人巨大精品欧美一区二区蜜桃| 桃色一区二区三区在线观看| 啦啦啦免费观看视频1| 国产麻豆69| 亚洲国产毛片av蜜桃av| www.精华液| 亚洲第一青青草原| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| netflix在线观看网站| 亚洲性夜色夜夜综合| 国产激情欧美一区二区| 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 精品久久久久久,| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 黄色丝袜av网址大全| 午夜福利,免费看| 淫妇啪啪啪对白视频| 天天添夜夜摸| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 久久久久久人人人人人| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月| 黄片播放在线免费| 免费在线观看完整版高清| 啦啦啦观看免费观看视频高清 | 在线播放国产精品三级| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲综合一区二区三区_| 岛国在线观看网站| 一级片免费观看大全| 动漫黄色视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出抽搐gif免费好疼| 一级作爱视频免费观看| 国产av在哪里看| aaaaa片日本免费| 精品久久久久久,| 在线播放国产精品三级| 亚洲精品国产精品久久久不卡| 一本大道久久a久久精品| 国产精品久久视频播放| 国产成人欧美| 国产精品秋霞免费鲁丝片| 国产av在哪里看| 日本三级黄在线观看| 99国产精品免费福利视频| 亚洲国产欧美网| 亚洲国产精品成人综合色| 色哟哟哟哟哟哟| 欧美丝袜亚洲另类 | 久久国产乱子伦精品免费另类| 色尼玛亚洲综合影院| 变态另类丝袜制服| 中文字幕精品免费在线观看视频| 18禁裸乳无遮挡免费网站照片 |