• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation and development of newcorrelation for Influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2(20-80)/20W50 hybrid nano-lubricant

    2018-05-25 07:50:51KazemMotahariMohammadAbdollahiMoghaddamMojtabaMoradian

    Kazem Motahari ,Mohammad Abdollahi Moghaddam *,Mojtaba Moradian

    1 Department of Chemical Engineering,Faculty of Engineering,Arak University,Arak 38156-8-8349,Iran

    2 Young Researchers and Elite Club,Malayer Branch,Islamic Azad University,Malayer,Iran

    1.Introduction

    Nano fluid is a fluid with size of stably suspended particles in the base fluid between 1 and 100 nm.This concept is the first nano fluid classification presented by Choi in 1995[1].Nanoparticle addition triggers changes in thermo-physical properties of standard normal fluids like viscosity and thermal conductivity.Nano fluids'higher transport capacities in comparison with base fluid would have the desirable Influences that these alterations may develop[2].In heat transfer systems,the use of nano fluids would have advantages such as reduction in the size and better heat transfer of heat exchanger[3].In engineering applications,two key fluids are water and ethylene glycol(EG)or their mixture.Some researchers showed that the addition of nanoparticles to these fluids would enhance thermal conductivity;for instance,28.3%enhancement for 5 vol.%of Al2O3/water[4],43%enhancement for 2 vol.%of Cu–TiO2/water–EG(60:40)[5],33.8%enhancement for 2 vol.%of CuO/EG–water(40:60),and 37.5%enhancement for 5 vol.%of Zn O–EG[6].

    Viscosity can be considered as the inner fluid resistance of a fluid to flow.For all thermal systems dealing with the fluids,this property is significant.The nano fluids'viscosity depends on various parameters including nano fluids'temperature,nanoparticles'amount,particle sizes and shape,and the way nano fluids have been prepared[7–12].Three prevalent nanoparticles commonly used are carbon nanotubes(CNTs)[15],metal oxides[14]and metallic particles[13].Ghozatlooa et al.[16]studied the effect of morphology of nanoparticles on the nano fluids'viscosity.CNT,graphene nanosheets,and SiO2nanoparticles were dispersed in ethylene glycol and water with 0.05 vol%to 1.5 vol.%volume fraction.The results showed that the viscosity nonlinearly increased with the increase in nanoparticles volume fraction,and the maximum viscosity value related to maximum graphene volume fraction in EG.

    In another work,Serebryakova et al.[17]studied thenano fluid physical properties using Al2O3nanoparticles in a solution of 10%water and 90%ethylene glycol.The solid phase volume fractions were in 0–1.5%range.As a function of nanoparticles'volume fraction and shear stress,the rheological properties were analyzed and measured.They reported that the thermal conductivity dependence on solid volume fraction is related to the Maxwell theory[18],but dependence of viscosity significantly surpasses the values estimated by Batchelor theories[20],and Einstein[19].

    Moreover,a recently developed nano fluid consisting of various nanoparticles was investigated by researchers.These nano fluids,known as hybrid nano fluids,are mainly constituted from different combination compositions of two species which are suspended in the base fluid[9,21,22].

    There are a fewstudies on deriving the thermo-physical properties of hybrid nano fluids from experimental view.As carbon nanotube(CNT)triggers changes on nano fluids thermo-physical properties,in base fluid,dispersing them would have considerable Influences on fluids'dynamic viscosity and thermal conductivity.Moreover,the addition of oxide nanoparticles along with metal nanoparticles or carbon nanotubes would enhance the stability and the carbon nanotubes or metal nanoparticles'suspension[23].The Influence of single-walled carbon nanotube on the lubricants viscosity was investigated by Vakili-Nezhaad et al.[24].Kinematic viscosity of single walled carbon nanotubes/lube oil cuts nano fluids comprised of 0.01 wt%–0.2 wt%single walled carbon nanotubes(SWCNTs)was evaluated experimentally at 25–100 °C.It was found that nano fluids'kinematic viscosity would increase with the decrease of temperature,and increase of particle mass fraction.The viscosity of oilbased SWCNT nano fluid was improved up to 32.94%at a 0.2%mass fraction.

    Regarding viscosity,scarce information is available about the nano fluids'viscosity.In this study,dynamic viscosity of hybrid nanolubricant comprising multi walled carbon nanotube(MWCNT)and SiO2was investigated for the first time.In the automotive industry,engine oils have various applications.It has been demonstrated that it would be possible to enhance the pure 20W50 lubrication potential by the addition of nanoparticle.A new correlation was suggested for the prediction of hybrid nano-lubricant viscosity.

    2.Experimental

    2.1.Materials

    The studied nano fluid was a hybrid nano fluid containing two components:SiO2and multiwalled carbon nanotube(MWCNT)provided by US Research Nanomaterials,Inc.The mean diameters were 40 nm and 20 nm for SiO2and MWCNT respectively.An image by transmission electron microscope(TEM)of both nanoparticles of SiO2and MWCNT can be seen in Fig.1.In addition,physicochemical properties of the MWCNT and SiO2are shown in Table 1.Engine oil was the base fluid with API SJ/CF/CF-4 and SAE 20W50 degree,a product of Behran Oil Company,Iran.The oil properties are listed in Table 2.

    2.2.Nano-lubricant preparation

    To provide nano-lubricants with nanoparticles'volume fractions in the range of 0.05%,0.1%,0.2%,0.4%,0.8%and 1%,nanoparticles were weighted.In all of the volume fractions the nanoparticles'contributions for MWCNT and SiO2were 20%and 80%respectively.To disperse nanoparticles in the pure 20W50,two-step approach was applied.Two crucial issues in the preparation of nano fluids would be the nanoparticles'agglomeration and sedimentation in the pure 20W50 which should be avoided.Therefore,a magnetic stirrer was applied after the addition of nanoparticles to the pure 20W50 in 2–3 h,to disperse the nanoparticles.Next,a 1200 W,25 k Hz ultrasonic vibrator was applied for suspension system homogenization and agglomerations break down for 3–4 h(USH650 model vibrator,Nano Pars Lima Co.,Ltd.).Because of decreased surfactant concentration found in suspension system there would be no alterations in nano fluid thermos-physical properties(about 0.01 vol%).No sedimentation was noted,after a minimum of 72 h,for all nano-lubricant samples.In Fig.2,all pure 20W50 and nanolubricants are illustrated.

    Table 1 Nanoparticles'specification

    Table 2 SAE 20W50 engine oil properties

    2.3.Dynamic viscosity measurement

    For the measurement of MWCNT-SiO2/oil hybrid nanolubricant dynamic viscosity,the MYR V2L rotary viscometer was employed based on ISO 2555/ASTM(Brook field method)provided by Viscotech Hispania.The MYR viscometer has repeatability of±0.2%,and for full scale,has the accuracy of±1%.Moreover,to the MYR viscometer a thermometer is connected to the MYR viscometer to measure the temperature of nano fluid which includes a range between?15 and 180°C,with±0.1°C accuracy,and resolution of 0.1°C.

    Fig.1.The TEM image of A)MWCNT[25]and B)SiO2 nanoparticle[26].

    Fig.2.Illustrations of nano-lubricant and 20W50 samples.

    3.Results and Discussions

    3.1.Rheological behavior

    In order to perceive the MWCNT-SiO2/oil nano-lubricant behavior,the viscosity was assessed at variousshear stresses.The fluids Newtonian equation is as follows:

    where μ is the dynamic viscosity(Poise),τ represents the shear stress(Pa)and˙γ stands for shear rate(s?1).

    Fig.3.Viscosity and shear stress regarding shear rate at different temperatures and solid volume fractions.

    Fig.4.Viscosity versus volume fraction of nano-lubricant solid at various temperatures.

    The viscosity and shear stress of hybrid nano-lubricant as a function of shear rate at different temperatures and at 1%solid volume fraction are shown in Fig.3.It can be observed that the hybrid nano-lubricant shows the Newtonian fluid behavior.Furthermore,the viscosity is closely constant with shear rate variation.

    3.2.Solid volume fraction and temperature Influence

    The viscosity experimental data versus temperature and solid volume fraction can be seen respectively in Figs.4 and 5.Based on Fig.4,the addition of MWCNT-SiO2in each temperature to the pure 20W50 will lead to increase in viscosity.Moreover,the higher the concentration the higher the viscosity enhancement.

    As can be observed from Fig.5,by boosting the temperature,viscosity will increaseat aconstant solid volumefraction.By the increase in temperature,the particles'performance in base fluid is improved.Therefore,the friction is decreased and reduction in viscosity can be expected.

    Fig.6 indicates the relative viscosity versus solid volume fraction and temperature.As can be observed,by the increase in temperature,the nano-lubricant viscosity would increase more than the pure 20W50 viscosity.At last,at solid volume fraction of 1%and 100°C temperature,the 171%viscosity increment is achieved.This viscosity improvement can be more helpful in industries than requiring the system to work with higher viscosity at higher temperature.

    3.3.Experimental data evaluation by models

    In Fig.7,the hybrid nano-lubricant experimental data is compared with that of Pak and Cho[27],Wang et al.[28]and Brinkman[29]models.As can be seen from the above figure,none of the models have adequate potential for the prediction of viscosities data.

    4.Correlation Proposal

    In the engineering applications,often there is a need to show the rmophysical properties in the form of equations or using mathematical software in order to use the nano fluids'properties.Nano fluids and normal fluids dynamic viscosity models,according to solid volume fraction(φ),temperature(T),and activation energy(E)have been reported in several studies,and a summary regarding these findings can be seen in Table 3.

    Fig.5.Viscosity versus temperature at various solid volume fractions.

    Fig.6.Relative viscosity versus temperature and solid volume fraction.

    By obtaining a correlation,the specifications of dynamic viscosity of MWCNT-SiO2/oil hybrid nano-lubricant are evaluated.By considering the temperature and solid volume fraction impacts,the correlation is substantiated.

    The proposed correlation would be between 40 and 100°C temperature range and up to 1%of the solid volume fractions.Curve fitting goodness is shown in Table4.Moreover,the average deviation obtained is equal to 1.75%.

    Fig.7.The experimental data versus estimated data by models.

    Table 3 A summary of the studies concerning viscosity models

    Table 4 The regression goodness

    The new suggested correlation considering temperature and solid volume fraction is as follows:

    Fig.8 shows a comparison between the suggested correlation and the evaluated relative viscosity experimental data.The deviations between suggested model and the viscosity experimental data in the studied temperature range are very low.

    4.1.Deviation measurement

    Fig.9 indicates the deviation from the target calculated by Eq.(3)in various temperatures and solid volume fractions.As can be observed,the deviations are slight,meaning that the suggested correlation can sufficiently predict the MWCNT-SiO2/oil dynamic viscosity.

    5.Conclusions

    In this research,different solid volume fractions of 0.05 vol%to 1 vol.%MWCNT-SiO2in pure SAE20W50 were dispersed.Subsequently,the dynamic viscosity at different temperatures of 40 to 100°C was assessed applying MYRrotary viscometer for each solid volumefraction.The results illustrated that by the increase in solid volume fraction,the relative viscosity would be improved.At the other extreme,at a certain solid volume fraction,increase in temperature leads to increase in relative viscosity at a specific solid volume fraction.At 1 vol%solid volume fraction and 100°C temperature,the viscosity enhancement was 171%.Through curve fitting on experimental data,a new correlation for the dynamic viscosity prediction of MWCNT-SiO2/oil was introduced.The suggested correlation and experimental data accommodation showed that the introduced correlation hasgood consistency with experimental data.

    Fig.8.Comparison between viscosity experimental data and correlation out put sat various temperatures.

    Fig.9.Measured deviation versus nanoparticle volume fraction at various temperatures.

    [1]S.U.S.Choi,Enhancing Thermal Conductivity of Fluid s With Nanoparticles,Proc.1995 ASME Int.Mech.Eng.Congr.Expo.,66(1995)99–105.

    [2]S.Shamshirband,A.Malvandi,A.Karimipour,M.Goodarzi,M.Afrand,D.Petkovi?,M.Dahari,N.Mahmoodian,Performance investigation of micro-and nano-sized particle erosion in a 90°elbowusing an ANFIS model,Powder Technol.284(2015)336–343.

    [3]K.Motahari,M.Abdollahi Moghaddam,A.Rezaei,An experimental investigation of reduced water consumption of coolers using various concentrations of CuO/water nano fluid instead of pure water,4th Annu.Int.Conf.Chem.Chem.Eng.Chem.Process 2016,pp.248–251.

    [4]M.Hemmat Esfe,A.Karimipour,W.-M.Yan,M.Akbari,M.R.Safaei,M.Dahari,Experimental study on thermal conductivity of ethylene glycol based nano fluids containing Al2O3nanoparticles,Int.J.Heat Mass Transf.88(2015)728–734.

    [5]M.H.Esfe,S.Wongwises,A.Naderi,A.Asadi,M.R.Safaei,H.Rostamian,M.Dahari,A.Karimipour,Thermal conductivity of Cu/TiO2–water/EG hybrid nano fluid:Experimental data and modeling using artificial neural network and correlation,Int.Commun.Heat Mass Transfer 66(2015)100–104.

    [6]M.Hemmat Esfe,S.Saedodin,A.Naderi,A.Alirezaie,A.Karimipour,S.Wongwises,M.Goodarzi,M.bin Dahari,Modeling of thermal conductivity of Zn O-EG using experimental data and ANN methods,Int.Commun.Heat Mass Transfer 63(2015)35–40.

    [7]H.Li,L.Wang,Y.He,Y.Hu,J.Zhu,B.Jiang,Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nano fluids,Appl.Therm.Eng.88(2015)363–368.

    [8]S.Nabati,J.Jamali,M.Keshavarz,Electrical conductivity,viscosity,and density of different nano fluids:An experimental study,Exp.Thermal Fluid Sci.74(2016)339–346.

    [9]A.Menbari,A.A.Alemrajabi,Y.Ghayeb,Investigation on the stability,viscosity and extinction coefficient of CuO–Al2O3/Water binary mixture nano fluid,Exp.Thermal Fluid Sci.74(2016)122–129.

    [10]M.K.Meybodi,S.Naseri,A.Shokrollahi,A.Daryasafar,Prediction of viscosity of water-based Al2O3,TiO2,SiO2,and CuO nano fluids using a reliable approach,Chemom.Intell.Lab.Syst.149(2015)60–69.

    [11]Gaganpreet,S.Srivastava,Viscosity of nano fluids:Particle shape and fractal aggregates,Phys.Chem.Liq.53(2015)174–186.

    [12]G.Colangelo,E.Favale,P.Miglietta,M.Milanese,A.de Risi,Thermal conductivity,viscosity and stability of Al2O3–diathermic oil nano fluids for solar energy systems,Energy 95(2016)124–136.

    [13]M.Khoshvaght-Aliabadi,M.H.Akbari,F.Hormozi,An empirical study on vortexgenerator insert fitted in tubular heat exchangers with dilute Cu–water nano fluid flow,Chin.J.Chem.Eng.24(2016)728–736.

    [14]T.Perarasu,M.Arivazhagan,P.Sivashanmugam,Experimental and CFD heat transfer studiesof Al2O3–water nano fluid in a coiled agitated vessel equipped with propeller,Chin.J.Chem.Eng.21(2013)1232–1243.

    [15]M.Abdollahi Moghaddam,K.Motahari,Experimental investigation,sensitivity analysis and modeling of rheological behavior of MWCNT-CuO(30-70)/SAE40 hybrid nanolubricant,Appl.Therm.Eng.(2017)http://dx.doi.org/10.1016/j.applthermaleng.2017.05.200.

    [16]A.Ghozatloo,S.Azimi Maleki,M.Shariaty-Niassar,A.Morad Rashidi,Investigation of nanoparticles morphology on viscosity of nano fluids and newcorrelation for prediction,J.Nanostruct.5(2015)161–168.

    [17]M.A.Serebryakova,S.V.Dimov,S.P.Bardakhanov,S.A.Novopashin,Thermal conductivity,viscosity and rheology of a suspension based on Al2O3nanoparticles and mixture of 90%ethylene glycol and 10%water,Int.J.Heat Mass Transfer 83(2015)187–191.

    [18]J.C.Maxwell,A Treatise on Electricity and Magnetism Dover Publications,Unabriged Third ed.Vol.One 29(1954)265–273.

    [19]A.Einstein,Eine neue bestimmung der moleküldimensionen,Ann.Phys.324(1906)289–306.

    [20]G.K.Batchelor,Brownian diffusion of particles with hydrodynamic interaction,J.Fluid Mech.74(1976)1–29.

    [21]M.Afrand,D.Toghraie,B.Ruhani,Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nano fluid:An experimental study,Exp.Thermal Fluid Sci.76(2016)133–138.

    [22]M.Asadi,A.Asadi,Dynamic viscosity of MWCNT/ZnO-engine oil hybrid nano fluid:An experimental investigation and newcorrelation in different temperatures and solid concentrations,Int.Commun.Heat Mass Transfer 76(2016)41–45.

    [23]W.Duangthongsuk,S.Wongwises,Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nano fluids,Exp.Thermal Fluid Sci.33(2009)706–714.

    [24]G.Vakili-Nezhaad,A.Dorany,Effect of single-walled carbon nanotubeon theviscosity of lubricants,Energy Procedia 14(2012)512–517.

    [25]MWCNTs(>95%,OD:20–30 nm),(n.d.).http://www.us-nano.com/inc/sdetail/228(accessed March 19,2017).

    [26]Silicon dioxide(SiO2)nanopowder/nanoparticles(SiO2,99.5+%,20–30 nm,amorphous),(n.d.).http://www.us-nano.com/inc/sdetail/408(accessed March 19,2017).

    [27]B.C.Pak,Y.I.Cho,Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,Exp.Heat Transfer Int.J.11(1998)151–170.

    [28]X.Wang,X.Xu,S.U.S.Choi,Thermal conductivity of nanoparticle– fluid mixture,J.Thermophys.Heat Transf.13(1999)474–480.

    [29]H.C.Birkman,The viscosity of concentrated suspensions and solution,J.Chem.Phys.20(1952)571.

    [30]O.Reynolds,On the theory of lubrication and its application to Mr.Beauchamp Tower's experiments,including an experimental determination of the viscosity of olive oil,Proc.R.Soc.Lond.40(1886)191–203.

    [31]S.A.Arrhenius,Influence of temperature on the rate of inversion of sucrose,Z.Phys.Chem.4(1889)226.

    [32]T.Al-Shemmeri,Engineering Fluid Mechanics,Bookboon,2012.

    [33]L.E.Nielsen,Generalized equation for the elastic moduli of composite materials,J.Appl.Phys.41(1970)4626–4627.

    [34]M.Mooney,The viscosity of a concentrated suspension of spherical particles,J.Colloid Sci.6(1951)162–170.

    [35]S.Aberoumand,A.Jafarimoghaddam,M.Moravej,H.Aberoumand,K.Javaherdeh,Exp erim ental stud y on the rheological behavior of silver-heat transfer oil nano fluid and suggesting two empirical based correlations for thermal cond uctivity and viscosity of oil based nano fluids,Appl.Therm.Eng.101(2016)362–372.

    [36]S.Song,C.Peng,M.A.Gonzalez-Olivares,A.Lopez-Valdivieso,T.Fort,Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement,J.Colloid Interface Sci.287(2005)114–120.

    [37]M.Afrand,K.N.Najafabadi,M.Akbari,Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nano fluid as a coolant and lubricant in heat engines,Appl.Therm.Eng.102(2016)45–54.

    [38]M.Corcione,Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nano fluids,Energy Convers.Manag.52(2011)789–793.

    [39]C.T.Nguyen,F.Desgranges,G.Roy,N.Galanis,T.Maré,S.Boucher,H.Angue Mintsa,Temperature and particle-size dependent viscosity data for water-based nano fluids—Hysteresis phenomenon,Int.J.Heat Fluid Flow28(2007)1492–1506.

    久久婷婷成人综合色麻豆| 成在线人永久免费视频| 国产成人欧美| 久久久久久久久免费视频了| tocl精华| 亚洲熟妇中文字幕五十中出 | 在线观看一区二区三区激情| 国产精品野战在线观看 | 精品国产亚洲在线| 国产高清videossex| 18禁裸乳无遮挡免费网站照片 | 国产精品av久久久久免费| 一级a爱片免费观看的视频| 亚洲一区中文字幕在线| 99精品在免费线老司机午夜| 一进一出抽搐动态| 亚洲性夜色夜夜综合| 日韩精品青青久久久久久| 麻豆一二三区av精品| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人av| 国产精品久久久av美女十八| 亚洲一区中文字幕在线| 夫妻午夜视频| 一个人观看的视频www高清免费观看 | 国产成人啪精品午夜网站| 精品福利永久在线观看| 男人舔女人下体高潮全视频| 妹子高潮喷水视频| 国产激情欧美一区二区| 女人被狂操c到高潮| av超薄肉色丝袜交足视频| 日本黄色日本黄色录像| 欧美日本亚洲视频在线播放| 九色亚洲精品在线播放| 一级毛片精品| 国产精品久久电影中文字幕| av福利片在线| bbb黄色大片| 日韩欧美免费精品| 久久国产精品男人的天堂亚洲| 午夜激情av网站| 怎么达到女性高潮| 少妇的丰满在线观看| 电影成人av| 久久久水蜜桃国产精品网| 悠悠久久av| 99国产精品99久久久久| 精品久久久久久电影网| 在线看a的网站| 亚洲成av片中文字幕在线观看| 精品电影一区二区在线| 亚洲av五月六月丁香网| 亚洲中文日韩欧美视频| 亚洲国产精品合色在线| 日韩大尺度精品在线看网址 | 日韩视频一区二区在线观看| 国产又色又爽无遮挡免费看| 欧美日韩亚洲高清精品| 精品久久久精品久久久| 精品第一国产精品| 三级毛片av免费| 一级,二级,三级黄色视频| 一个人免费在线观看的高清视频| 在线视频色国产色| 丝袜在线中文字幕| 成年版毛片免费区| 热re99久久国产66热| 免费av中文字幕在线| 女警被强在线播放| 日韩欧美免费精品| 老汉色av国产亚洲站长工具| 午夜影院日韩av| 激情视频va一区二区三区| 久久久久国产精品人妻aⅴ院| 高潮久久久久久久久久久不卡| 成人亚洲精品av一区二区 | 日本黄色视频三级网站网址| 欧美乱色亚洲激情| av国产精品久久久久影院| 国产精品一区二区在线不卡| 亚洲人成伊人成综合网2020| 青草久久国产| 久久精品91无色码中文字幕| 欧美激情高清一区二区三区| 日本免费a在线| 老汉色av国产亚洲站长工具| 精品国产美女av久久久久小说| 亚洲国产毛片av蜜桃av| 日韩欧美国产一区二区入口| 国产精品1区2区在线观看.| a级毛片黄视频| 亚洲国产欧美网| 可以在线观看毛片的网站| 人人妻人人添人人爽欧美一区卜| 国产精品永久免费网站| 大码成人一级视频| 18禁黄网站禁片午夜丰满| 成年人黄色毛片网站| 1024视频免费在线观看| 亚洲黑人精品在线| 黑丝袜美女国产一区| 国产有黄有色有爽视频| 极品教师在线免费播放| 日本黄色日本黄色录像| 成人免费观看视频高清| 久久中文看片网| 国产欧美日韩一区二区三| 一进一出好大好爽视频| 国产av一区二区精品久久| 亚洲第一av免费看| 韩国精品一区二区三区| 纯流量卡能插随身wifi吗| 黄网站色视频无遮挡免费观看| 老熟妇乱子伦视频在线观看| 国产伦一二天堂av在线观看| 中文字幕精品免费在线观看视频| 久久 成人 亚洲| 欧美最黄视频在线播放免费 | 91在线观看av| 可以在线观看毛片的网站| 国产成人av激情在线播放| 亚洲在线自拍视频| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区免费| 91老司机精品| 精品国产乱子伦一区二区三区| 在线观看免费高清a一片| 老司机福利观看| 欧美日韩亚洲国产一区二区在线观看| 成人国语在线视频| 精品欧美一区二区三区在线| e午夜精品久久久久久久| 日本撒尿小便嘘嘘汇集6| av片东京热男人的天堂| 18禁黄网站禁片午夜丰满| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 亚洲成a人片在线一区二区| 无人区码免费观看不卡| aaaaa片日本免费| www国产在线视频色| 成熟少妇高潮喷水视频| 国产激情久久老熟女| 一个人免费在线观看的高清视频| 91成年电影在线观看| 亚洲精品国产精品久久久不卡| 国产精品一区二区三区四区久久 | 亚洲av电影在线进入| 亚洲男人天堂网一区| 日韩三级视频一区二区三区| 国产精品二区激情视频| 久久久水蜜桃国产精品网| 日本黄色日本黄色录像| 欧美黑人欧美精品刺激| 国产精品二区激情视频| 亚洲av成人av| 亚洲精品美女久久久久99蜜臀| www.999成人在线观看| 国产欧美日韩精品亚洲av| 亚洲成av片中文字幕在线观看| 中文字幕人妻丝袜一区二区| 亚洲第一青青草原| 欧美老熟妇乱子伦牲交| 岛国视频午夜一区免费看| 88av欧美| 日本黄色日本黄色录像| 视频区欧美日本亚洲| 国产一区二区三区在线臀色熟女 | 国产99久久九九免费精品| 看黄色毛片网站| 欧美日韩国产mv在线观看视频| av电影中文网址| 9热在线视频观看99| 少妇 在线观看| 黄色 视频免费看| 色哟哟哟哟哟哟| 女人被躁到高潮嗷嗷叫费观| 欧美一区二区精品小视频在线| 成人av一区二区三区在线看| 悠悠久久av| 精品电影一区二区在线| 日韩欧美国产一区二区入口| av中文乱码字幕在线| 国产又色又爽无遮挡免费看| 黄色女人牲交| 亚洲av美国av| 亚洲精品国产精品久久久不卡| 色综合站精品国产| 精品久久久久久久毛片微露脸| 欧美日韩乱码在线| 亚洲av熟女| tocl精华| 色婷婷av一区二区三区视频| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 久久青草综合色| 亚洲精品久久午夜乱码| 欧美人与性动交α欧美软件| 欧美激情久久久久久爽电影 | 一级黄色大片毛片| 国产乱人伦免费视频| 亚洲人成网站在线播放欧美日韩| 一级毛片高清免费大全| 女人爽到高潮嗷嗷叫在线视频| 不卡av一区二区三区| 亚洲精品久久午夜乱码| xxx96com| 成年女人毛片免费观看观看9| 亚洲成a人片在线一区二区| 美女扒开内裤让男人捅视频| 制服人妻中文乱码| 精品第一国产精品| 午夜日韩欧美国产| 又黄又爽又免费观看的视频| 国产精品99久久99久久久不卡| 丰满饥渴人妻一区二区三| 男人舔女人的私密视频| 亚洲精品一区av在线观看| 大陆偷拍与自拍| 91成年电影在线观看| 国产伦人伦偷精品视频| cao死你这个sao货| 十八禁人妻一区二区| 成人黄色视频免费在线看| 美女 人体艺术 gogo| 国产亚洲欧美精品永久| 久久热在线av| 午夜日韩欧美国产| 又黄又爽又免费观看的视频| 亚洲三区欧美一区| 99国产极品粉嫩在线观看| 涩涩av久久男人的天堂| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 久久中文字幕人妻熟女| 高清黄色对白视频在线免费看| 亚洲五月婷婷丁香| 亚洲免费av在线视频| 国产片内射在线| 欧美乱码精品一区二区三区| 国产精品免费视频内射| 午夜精品国产一区二区电影| 国产xxxxx性猛交| 欧美老熟妇乱子伦牲交| 俄罗斯特黄特色一大片| 亚洲五月婷婷丁香| 亚洲人成伊人成综合网2020| 欧美日韩亚洲国产一区二区在线观看| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 在线观看免费视频日本深夜| 最好的美女福利视频网| 午夜a级毛片| 欧美激情极品国产一区二区三区| 亚洲国产精品一区二区三区在线| av网站免费在线观看视频| 国产色视频综合| 精品国产一区二区久久| 国产高清videossex| 老司机深夜福利视频在线观看| 夜夜看夜夜爽夜夜摸 | 久久中文看片网| 91av网站免费观看| 午夜精品在线福利| 91麻豆av在线| 久久 成人 亚洲| 亚洲专区国产一区二区| 国产av在哪里看| 精品乱码久久久久久99久播| 国内毛片毛片毛片毛片毛片| 久久久久国内视频| 桃色一区二区三区在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成+人综合+亚洲专区| 国产视频一区二区在线看| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 他把我摸到了高潮在线观看| 日本a在线网址| 国产精品美女特级片免费视频播放器 | www.精华液| 国产精品电影一区二区三区| 亚洲av五月六月丁香网| 亚洲av成人不卡在线观看播放网| 午夜a级毛片| videosex国产| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区| 成人国语在线视频| 黑人欧美特级aaaaaa片| 欧美精品啪啪一区二区三区| 国产精品综合久久久久久久免费 | netflix在线观看网站| 久久香蕉精品热| 黑人巨大精品欧美一区二区蜜桃| 亚洲成人国产一区在线观看| 视频区欧美日本亚洲| 麻豆av在线久日| 亚洲免费av在线视频| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 日韩欧美一区二区三区在线观看| 日本黄色日本黄色录像| videosex国产| 久久久久九九精品影院| 欧美丝袜亚洲另类 | 精品午夜福利视频在线观看一区| 中文字幕av电影在线播放| 在线观看66精品国产| 亚洲少妇的诱惑av| 色综合站精品国产| 成人手机av| 成人18禁在线播放| 国产免费男女视频| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 久久伊人香网站| 亚洲精品在线观看二区| 在线观看免费日韩欧美大片| 超碰成人久久| 欧美日本中文国产一区发布| 自拍欧美九色日韩亚洲蝌蚪91| 中文亚洲av片在线观看爽| 人人妻人人爽人人添夜夜欢视频| 一级,二级,三级黄色视频| 婷婷丁香在线五月| 亚洲欧美一区二区三区久久| 国产一区二区三区视频了| 亚洲精品一二三| 免费搜索国产男女视频| 成人三级做爰电影| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 亚洲精品美女久久av网站| 中文欧美无线码| 国产精品 欧美亚洲| 9热在线视频观看99| 国产主播在线观看一区二区| 国产成人精品久久二区二区91| 日本撒尿小便嘘嘘汇集6| 午夜福利影视在线免费观看| 自线自在国产av| 琪琪午夜伦伦电影理论片6080| 人人妻人人澡人人看| 91精品国产国语对白视频| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 超色免费av| 亚洲情色 制服丝袜| 麻豆久久精品国产亚洲av | 久久久国产一区二区| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 午夜亚洲福利在线播放| www国产在线视频色| 欧美性长视频在线观看| 色在线成人网| 99国产综合亚洲精品| 中文字幕色久视频| 亚洲av成人一区二区三| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 性少妇av在线| 国产熟女xx| 免费少妇av软件| 69av精品久久久久久| www.熟女人妻精品国产| 香蕉久久夜色| 国产野战对白在线观看| 欧美午夜高清在线| 一级毛片女人18水好多| 久久精品91蜜桃| 长腿黑丝高跟| 极品人妻少妇av视频| 好看av亚洲va欧美ⅴa在| 巨乳人妻的诱惑在线观看| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 亚洲一区二区三区色噜噜 | 欧美激情极品国产一区二区三区| 无人区码免费观看不卡| 国产精品久久久久成人av| 一a级毛片在线观看| 黄片大片在线免费观看| 天堂影院成人在线观看| 天天躁夜夜躁狠狠躁躁| 99精国产麻豆久久婷婷| 欧美中文综合在线视频| 在线观看免费视频日本深夜| 国产精品国产av在线观看| 久久精品91无色码中文字幕| 精品一区二区三区av网在线观看| 日韩精品青青久久久久久| 大陆偷拍与自拍| aaaaa片日本免费| 又黄又爽又免费观看的视频| 日韩欧美三级三区| 操出白浆在线播放| 亚洲一区二区三区不卡视频| 1024香蕉在线观看| 久99久视频精品免费| 咕卡用的链子| 在线观看免费视频网站a站| av超薄肉色丝袜交足视频| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看 | 久久久久亚洲av毛片大全| 99精国产麻豆久久婷婷| 自拍欧美九色日韩亚洲蝌蚪91| 老熟妇乱子伦视频在线观看| 亚洲精品一二三| 一进一出抽搐动态| 日韩国内少妇激情av| 精品一区二区三卡| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 日本黄色视频三级网站网址| 黄色视频不卡| 国产国语露脸激情在线看| 国产1区2区3区精品| av天堂在线播放| 天堂中文最新版在线下载| 欧美一级毛片孕妇| 久9热在线精品视频| 免费一级毛片在线播放高清视频 | 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 青草久久国产| 国产1区2区3区精品| 国产精品久久久av美女十八| 又大又爽又粗| 日日爽夜夜爽网站| 91成人精品电影| 亚洲aⅴ乱码一区二区在线播放 | 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 亚洲精品美女久久av网站| 亚洲一区高清亚洲精品| 伊人久久大香线蕉亚洲五| 国产精品偷伦视频观看了| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 黑人猛操日本美女一级片| 村上凉子中文字幕在线| 麻豆国产av国片精品| 国产精品免费视频内射| 国产精品av久久久久免费| 人人澡人人妻人| 国产高清激情床上av| 亚洲成a人片在线一区二区| 老汉色∧v一级毛片| 一个人观看的视频www高清免费观看 | 国产成人欧美| 在线观看午夜福利视频| 可以在线观看毛片的网站| 国产不卡一卡二| 午夜老司机福利片| 激情在线观看视频在线高清| 国产精品九九99| 狂野欧美激情性xxxx| 亚洲精品中文字幕在线视频| 91av网站免费观看| 国产精品一区二区免费欧美| 精品久久久久久,| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 欧美中文综合在线视频| 乱人伦中国视频| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 我的亚洲天堂| 1024香蕉在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品男人的天堂亚洲| 中文字幕人妻熟女乱码| 999久久久精品免费观看国产| 免费观看人在逋| 午夜日韩欧美国产| 天堂√8在线中文| 成人影院久久| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| www.自偷自拍.com| 欧美乱妇无乱码| 午夜两性在线视频| 交换朋友夫妻互换小说| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 伦理电影免费视频| 欧美在线黄色| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 国产欧美日韩综合在线一区二区| 久久久久久人人人人人| 视频区图区小说| 嫩草影视91久久| 极品人妻少妇av视频| 99国产极品粉嫩在线观看| 国产成人一区二区三区免费视频网站| 欧美日韩黄片免| 午夜精品在线福利| 丰满饥渴人妻一区二区三| 在线观看午夜福利视频| 侵犯人妻中文字幕一二三四区| 大型av网站在线播放| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 成人亚洲精品av一区二区 | 一级作爱视频免费观看| 亚洲成人免费电影在线观看| 人成视频在线观看免费观看| 国产伦一二天堂av在线观看| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 精品人妻在线不人妻| 人妻久久中文字幕网| 91成人精品电影| e午夜精品久久久久久久| 91成人精品电影| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 久久久久九九精品影院| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 丝袜美足系列| 琪琪午夜伦伦电影理论片6080| 国产精品电影一区二区三区| 99热只有精品国产| 国产aⅴ精品一区二区三区波| 在线观看免费视频网站a站| 欧美一级毛片孕妇| 日韩成人在线观看一区二区三区| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 亚洲人成电影观看| 在线观看66精品国产| 亚洲五月天丁香| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 精品国产亚洲在线| 精品免费久久久久久久清纯| 国产精品野战在线观看 | 中出人妻视频一区二区| 亚洲 国产 在线| 国产精品成人在线| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 麻豆一二三区av精品| 大陆偷拍与自拍| 久久青草综合色| 他把我摸到了高潮在线观看| 国产片内射在线| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| av天堂在线播放| 日韩有码中文字幕| www.自偷自拍.com| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 亚洲国产精品999在线| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 日韩一卡2卡3卡4卡2021年| 最好的美女福利视频网| 久久久久国产一级毛片高清牌| 欧美在线黄色| √禁漫天堂资源中文www| avwww免费| 色尼玛亚洲综合影院| 精品人妻在线不人妻| 国产人伦9x9x在线观看| 丰满的人妻完整版| xxx96com| www.999成人在线观看| av国产精品久久久久影院| av有码第一页| 国产亚洲精品综合一区在线观看 | 午夜免费激情av| 国产精品综合久久久久久久免费 | 男女之事视频高清在线观看| 97人妻天天添夜夜摸| 欧美成狂野欧美在线观看| 欧美日韩亚洲高清精品| 日本撒尿小便嘘嘘汇集6| 日本欧美视频一区| 多毛熟女@视频| 宅男免费午夜| 最近最新中文字幕大全电影3 | 日本wwww免费看| 久久国产乱子伦精品免费另类| 女人被狂操c到高潮| 日本 av在线| 国产精品一区二区在线不卡| 99热只有精品国产| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 美国免费a级毛片| 亚洲精品中文字幕一二三四区| 女性被躁到高潮视频| 亚洲五月天丁香| 丰满饥渴人妻一区二区三|