• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and identification for soft sensor systems based on the separation of multi-dynamic and static characteristics☆

    2018-05-25 07:50:48PengfeiCaoXionglinLuoXiaohongSong

    Pengfei Cao *,Xionglin Luo ,Xiaohong Song

    1 College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    2 Research Institute of Automation,China University of Petroleum,Beijing 102249,China

    3 State Grid Shandong Electric Power Company Zibo Power Supply Company,Zibo 255000,China

    1.Introduction

    Over the last two decades,soft sensor technique hasbeen extensively studied and increasingly implemented in industrial processes.It solves the real-time measurement problem for important quality variables,and these variables indicate the production quality directly and play an indispensable role in process control[1–3].The soft sensor model,which is built based on massive amounts of measurements of quality and easily measured variables(primary and secondary variables),is the core of this technique[4,5].In our last contribution,a new type of soft sensor model consisting of a dynamic sub model in cascade with a static one has been proposed[6,7].And it could be named as the separation of dynamic and static characteristics based model(or characteristics-separation-based model in brief).Dynamic and static sub models build the dynamic and static relationships between primary and secondary variables respectively.The dynamic and static characteristics are described sufficiently based on these two models,and the parameters have physical interpretation and offer effective information for process control and optimization.

    However,there exist two main limitations in the last research[6,7]:(1)the time constant,i.e.the dynamic sub model parameter,is designated as the same for multi-input soft sensor systems;(2)the identification is conducted in the single-rate case,and the improved stochastic Newton recursive(SNR)algorithm is applicable at this moment.Actually,the time constant of the dynamic process between the primary variable and a certain secondary variable is likely to differ from those of other processes.Therefore,one contribution in this paper is that the multidynamic characteristics of the soft sensor systems have been considered in the model with multi-time-constant.

    As is well known,soft sensor systems exhibit dual-rate characteristics with slow sampled primary variable and fast sampled secondary variables[8–10].So,the recursive algorithm in our last contribution cannot be directly used for actual system.To solve the dual-rate system identification,Ding and Chen proposed one effective method that directly estimates the parameters of the single-rate model with an auxiliary model[11–13].The basic idea of the auxiliary-model-based approach is to replace the unmeasurable variable with the estimated values.The consistency of the algorithm for time-invariant systems has been proven[11,14].This method is also adopted in this study.However,the estimated values of the quality variable from the conventional auxiliary model(termed as primary auxiliary model in Section 4)may be divergent,which prevents the recursion process.To overcome the problem,another nonlinear auxiliary model(termed as secondary auxiliary model in Section 4)is first presented to cooperate with the primary one to provide the estimated values for next recursion.These two auxiliary models work in specific switching mechanism.The double-auxiliary model based stochastic Newton recursive(DAM-SNR)algorithm is then derived and utilized for the identification of the proposed soft sensor model together with the SNR algorithm.

    The rest of this paper is organized as follows.In Section 2,the characteristics-separation-based model with multi-time-constant is given.In Section 3,the sub step identification way is illustrated.Section 4 gives the SNR algorithm,and shows the structure and feature of DAM-SNR algorithm.The identification procedure for soft sensor model is specified in detail in Section 5.The p H neutralization process is employed to demonstrate the effectiveness of the soft sensor model and the algorithms in Section 6.The final remarks are made in Section 7.

    2.Characteristics-Separation-Based Model with Multi-Time-Constant

    2.1.The previous model

    In our last study[6,7],we have derived the following discrete model for multi-input and single-output(MISO)soft sensor system:

    {ui,i=1,2,…,p}and y represent the secondary and primary variables respectively,and{vi}represents the intermediate variable;a represents the time constant,and m refers to the number of historical data of each secondary variable with the same value[6];k and k?m+j indicate sampling time;{αj,j=1,2,…,m}is the dynamic weight;{bi}and c are the static model parameters.Eq.(1a)and(1b)represent the dynamic and static sub models.The dynamic relationship between the secondary and intermediate variables is built based on the dynamic sub model,which is equal to the one between secondary and primary variables with unit gain.The static relationship between primary and intermediate variables is built based on the static sub model,which is equal to the one between secondary and primary variables.We can write Eq.(1a)and(1b)as

    In the above equation,it is easy to see that the dynamic model parameters multiply the static ones.The model parameters would alter with working condition changing.With changing parameters,the linear model exhibits time-varying characteristics and is utilized to approximate the real soft sensor system.The nonlinear characteristics of the system will be reflected in this way.Thus,the Eq.(1a)and(1b)actually shows the nonlinear and dynamic characteristics of soft sensor systems.

    In fact,the model(Eq.(1a)and(1b))could be rewritten into a more general form as where numerous model types,such as ANN,SVM,et al.,could be adopted for f(?).And the weights in the first part of Eq.(2)may be fixed or changed.The similar research achievements about this type of model(Eq.(2))have been reported in several manuscripts[15–17].Generally,industrial process is conducted in some steady state working condition and the soft sensor systems are basically stable,therefore,linear model(Eq.(1b))is enough for f(?)in applications.On the other hand,adopting linear model could reduce modeling complexity and make the model easy to operate and update online.In this study,the general model(Eq.(2))would not be discussed further.

    2.2.The improved model

    One of the main limitations of the model(Eq.(1a)and(1b))is that only one time constant is considered.Actually,the response speed of the primary variable with one secondary variable changing may differ from others considerably.The soft sensor system has multi-dynamic characteristics,and it is necessary to consider various time constants in the model.To describe soft sensor system more accurately,we could write the dynamic relationship under some working condition as

    Let

    and we have

    Transforming Eq.(4a)and(4b)into the time-domain model,we have

    Finally,we obtain the soft sensor model as

    λ represents the permissible error limit,and[·]represents the first integer greater than itself[6];T is the fast sampling period for secondary variables.

    3.Substep Identification Mode

    We do not identify the soft sensor model(Eq.(6a)and(6b))directly,but the corresponding models instead following the substep way.Discretize Eq.(3),and we have

    where z represents the forward shift operator and z?1x(k)=x(k? 1).Then

    Multiplying both sides of Eq.(8)by 1?z?1,we have

    Finally,we obtain

    After identifying Eq.(10),we have the estimation

    Then,it is easy to obtain the estimations for intermediate variable{vi}according to Eq.(6a),(6c).With{vi}and the measurements of the primary variable,the static model parameters would be obtained through the identification of Eq.(6b).

    The substep identification mode is summarized as follows:identify the model of Eq.(10) first and then the one of Eq.(6b).There are several reasons for choosing substep mode: first,it has been discussed that the soft sensor model parameters have some physical significance and may give us some guidance for process control,however,these model parameters are multiplied together(Eq.(6a)and(6b)),and it may not be able to obtain their accurate estimations with conventional optimization approaches;secondly,substep way makes it more flexible to update the proposed model online,such aschanging the dynamic model parameters only within comparatively short time and the static model parameters after long period,or in other manners,and such practice could also reduce the calculation online.

    It may be doubted that Eq.(10)exhibits the relationship between the secondary and primary variables,and why it cannot be used as the soft sensor model.The reasons are as follows.Firstly,it has been explained that the model parameters in Eq.(6a)and(6b)have some physical significance and it's necessary to obtain them to make some guidance for process control and optimization.Secondly,the number of the parameters of Eq.(10)is p×(p+1),which is p times the number of the ones in Eq.(6b);however,for convenience in application,the dynamic and static sub models are updated in different rates,and the static submodel which exhibits the steady-state relationship of the system is usually updated with relatively faster frequency.

    4.Introduction to the Recursive Algorithms

    In this section,two recursive algorithms are given:the SNR and the DAM-SNR algorithms.At each slow-sampling period,the proposed model would be updated based on them.

    4.1.The SNR algorithm

    This algorithm is based on gradient-descent ideas and employs sample covariance matrix to control the update directions.Its description involves two updaterelations:one for the update of the weight estimate and the other for the update of the sample covariance matrix[18,19].We have the recursive algorithm as follows:

    whereand R(k)represent the parameter estimation and sample covariance matrix;{ρ(k)}is the forgetting factor;φ(k)is defined as the information vector;z(k)is the output variable,and indicates y(k)for the models in Eqs.(10)and(6b).Given the dual-rate characteristics of the soft sensor systems,assume the slow sampling period for primary variable as qT(q is supposed as an integer and q>1).q is defined as the sampling period ratio.Then,we could rewrite Eq.(12)into

    At each slow sampling period,the parameter estimations would be updated.It should be noticed that the values of{ρ(kq)}depend on specific situation,such as to satisfy Eq.(13)in reference[6]for time invariant system,or be some constant for time-varying system[6].

    4.2.The DAM-SNR algorithm

    For Eq.(10),we have

    and for Eq.(6b)we have

    As soon as we obtain the estimation for(Eq.(11)),the intermediate variable will be easily calculated based on Eq.(6a).And then,{φ2(kq)}would be obtained.Therefore,the model identification for Eq.(6b)could follow the algorithm in Eq.(13)absolutely.However,the primary variable is sampled every other qT,and we do not have the inter samples{y(kq+i),i=1,2,…,q ? 1}.Thus,{φ1(kq)}cannot be obtained at each recursion.To overcome the problem,auxiliary model technique is utilized to substitute the inter samples with their estimations.From Eq.(10),we have the auxiliary model as

    Eq.(15)is defined as primary auxiliary model,^?1(kq?i)represents the information vector estimation.

    In general,soft sensor systems are stable and there have the time constantsHowever,during the recursion process,it may appear that the above conditions do not satisfy.The estimations from Eq.(15)would diverge,especially for the case of large sampling period ratio,and the recursion will cease at this time.This may also happen for other algorithms based on auxiliary model.Therefore,a secondary auxiliary model is first proposed to assist providing inter sample estimations,and it could be expressed in an abstract form as

    N(?)refers to some nonlinear model,which is built based on the measured data{y(kq),u1(kq),u2(kq),…,up(kq)}.

    These two auxiliary models work in a switching mechanism:the information vector estimation is provided mainly by primary auxiliary model(Eq.(15));when the inter sample estimations appear divergent,the secondary one(Eq.(16))functions.

    Finally,the following DAM-SNR algorithm will be adopted for the identification of Eq.(10):

    And the switching mechanism is shown in Fig.1.

    For this algorithm,there are several remarks to illustrate:

    (1)The main purpose of adopting secondary auxiliary model is to guarantee the identification for Eq.(10).There are several reasons for choosing nonlinear model: first,Khargonekar pointed out that the samples at the slow sampling period exhibited periodically time-varying characteristics,and this characteristic could be embodied by some nonlinear model which was built with the slow sampled data[20];secondly,there have been many researches on nonlinear models for soft sensor systems and successful applications[17,21-23].Even so,it could not be substituted for the proposed model,and the explanation could refer to[6,7].

    (2)The secondary auxiliary model only works when the inters ample estimations diverge.The reliability of the inter sample estimations from the primary auxiliary model is consolidated when the model parameters approach to the true values,and promotes the convergence of the parameters in turn.Therefore,the secondary auxiliary model may not provide the inters ample estimations alone and only acts as necessary.On the other hand,the divergent phenomenon generally appears at the preliminary stage of the recursion process.In most cases,just the primary auxiliary model works,and this will be shown in the case study.

    (3)When the inter sample estimations appear divergent,the previous parameter estimations could not be used to provide in formation vector estimations.If so,the recursion is more likely to cease with this parameter estimations.

    (4)We give the judgment criteria for the divergent phenomenon:set a threshold δ for primary variable according to actual situation;if the inters ample estimation from the primary auxiliary model keeps on exceeding to the threshold,the estimations are regarded to be divergent.

    5.Identification Procedure

    We have the identification procedure for the proposed soft sensor model:

    (1)Select one type of nonlinear model and train it off-line based on sufficient measurements{y(kq),u1(kq),u2(kq),…,up(kq),k=1,2,…}.Then,we obtain the secondary auxiliary model N(?).

    (2)Initializefor the identification of Eq.(10);setfor the identification of Eq.(6b).Here,ε1and ε2are sufficiently small positive real vectors;γ1and γ2are sufficiently large real numbers.

    (3)For Eq.(10),make useto estimate the inter samples before kq.If the inter sample estimations are bounded,use the primary auxiliary model to provide;otherwise,adopt N(?).Update the model parameters of Eq.(10)based on the algorithm of Eq.(17)and obtain the estimation forbased on Eq.(11).The estimations of{vi(kq)}will be obtained by Eq.(6a).

    (4)For Eq.(6b),use the algorithm of Eq.(13)to update the parameterswith the estimations of intermediate variable from step(3)and the primary variable measurements.

    (5)Repeat step(3)until the final convergence of all parameters.

    The specific identification procedure is shown in Fig.2.

    6.Case Study

    The p H neutralization happens with acid stream(H2SO4)and base stream(NaOH)mixed in the reactor of the laboratory(Department of Automation,China University of Petroleum Beijing),and this process is studied in this part.For this soft sensor system,the acid stream flow and base stream flow represent secondary variables(shown in Fig.3),and p H value represents the primary variable.

    Fig.2.The identification procedure for soft sensor model.

    This experiment is conducted for more than 30 min,and the fast sampling period is 3 s and the slow one is 6 s.150 groups of samples are used for model training.The p H value is sampled at slow sampling rate,and the acid and base stream flow are sampled at fast one.To illustrate the effectiveness of the proposed model in this study,SVM[4]and RBF-ARX-based[24]models are built for comparison.These two models are introduced as representative nonlinear model and the nonlinear dynamic one,respectively.At the same time,the trained SVM model serves as the secondary auxiliary model.In addition,the previous model with single time constant in our last studies[6,7]is also trained.

    For SVM model,the most used Gaussian kernelis adopted here.The cross-validation strategy is used to determine the regularization parameter C,the precision threshold ε,and the kernel parameter γ.For RBF-ARX-based model,the structured nonlinear optimization method is utilized to determine the number of neurons and parameters.For the proposed model,the algorithms of Eqs.(13),(17)are used for obtaining the dynamic and static model parameters respectively with ρ(kq)=1/k.The final estimations for p H value based on the four models at fast sampling periods are shown in Fig.4.

    Fig.3.Acid stream flow and base stream flow.

    It is obvious from Fig.4 that the proposed model provides better estimations for the p H values with MSE(mean square error)=0.08.However,the estimation errors from the previous model,the RBFARX-based and SVM models are larger with MSE=0.17,0.5,0.8,respectively.Compared with the estimation results,the model in this paper shows more effectiveness for describing this soft sensor system.The SVM model could be actually regarded as a nonlinear model which only reveals the static relationship between input and output data.However,the p H neutralization process is always in dynamic state,and the sampled data contain dynamic information.Therefore,the SVM model may not estimate the p H value accurately.On the other hand,the ARX-RBF-based model incorporates the state dependent ARX model in nonlinear dynamics description and the RBF network in function approximation.The description of the static and dynamic characteristics of this process is integrated within the auto regression structure,which limits the estimation accuracy.Therefore,the proposed model structure does show more accuracy for this soft sensor system than the SVM and RBF-ARX-based models.Making comparison of the previous model and the improved one,we find that the improved one has smaller estimation error,which illustrates that the acid and base stream flows indeed affect the p H values in different speed.Therefore,taking multi-dynamic-characteristics into consideration does improve the accuracy of the model.

    Fig.5 shows the action of auxiliary models(150 times in total),“1”represents that the secondary auxiliary model functions;otherwise,the primary one works.It can be seen that the secondary auxiliary model acts for twice,which indicates that there indeed exists the divergence of inters ample estimations from primary auxiliary model.Although the action number is few,the secondary auxiliary model is very critical to guarantee the identification process.On the other hand,it functions at the preliminary stage of the identification,and the inters ample estimations are obtained from the primary auxiliary model in most of the time.

    Fig.4.p H values and model estimations.——:p H values;+:p H estimations.

    Fig.5.Secondary auxiliary model function frequency.

    7.Conclusions

    In this paper,the separation of multi-dynamic and static characteristics based soft sensor model is proposed.The dynamic and static sub models build the dynamic and static relationships between secondary and primary variables respectively.The proposed model shows more effectiveness for describing soft sensor system,which has been confirmed in the laboratorial case.And the improvement makes the model more accurate and practical.Actually,we mainly focus on the concept and thought of the characteristics-separation-based model,rather than the specific expression.We hope this type of model has certain inspiration and help for soft sensor modeling.

    We have made other contributions in this study.Given that the model structure,sub step identification mode is better for obtaining more accurate model parameters.Then,the SNR algorithm is studied and adopted.To guarantee the identification process,two auxiliary models are utilized to offer inter sample estimations in switching mechanism.And based on the auxiliary models,DAM-SNR algorithm is proposed and adopted for identifying soft sensor model together with the SNR algorithm.The double-auxiliary-model method is first put forward,and indeed gives great help for model identification.Although some development has been obtained,there are some shortages of the research in this paper.For example,The forgetting factor has great deal with the convergence speed and estimation error,and there must have the optimal choices for{ρ(kq)}.Therefore,some way should be found to determine the forgetting factor in real-time to adapt to working condition change.

    [1]P.Kadlec,B.Gabrys,S.Strandt,Data-driven soft sensors in the process industry,Comput.Chem.Eng.33(2009)795–814.

    [2]K.Fujiwara,M.Kano,S.Hasebe,Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design,Control.Eng.Pract.20(2012)371–378.

    [3]P.Facco,F.Doplicher,F.Bezzo,M.Barolo,Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process,J.Process Control 19(2009)520–529.

    [4]C.Shang,X.Gao,F.Yang,D.Huang,Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response,IEEE Trans.Control Syst.Technol.24(4)(2014)1550–1557.

    [5]J.Liu,Developing a soft sensor based on sparse partial least squares with variable selection,J.Process Control 24(2014)1046–1056.

    [6]P.Cao,X.Luo,Modeling for soft sensor systems and parameters updating online,J.Process Control 24(6)(2014)975–990.

    [7]P.Cao,X.Luo,Soft sensor model derived from Wiener model structure:modeling and identification,Chin.J.Chem.Eng.22(5)(2014)538–548.

    [8]Y.Wu,X.Luo,A novel calibration approach of soft sensor based on multirate data fusion technology,J.Process Control 20(10)(2010)1252–1260.

    [9]B.Lin,B.Recke,T.Schmidt,J.Knudsen,S.Jorgensen,Data-driven soft sensor design with multiple-rate sampled data:A comparative study,Ind.Eng.Chem.Res.48(2009)5379–5387.

    [10]J.Wang,T.Chen,B.Huang,Multirate sampled-data systems:Computing fast-rate models,J.Process Control 14(2004)79–88.

    [11]F.Ding,T.Chen,Combined parameter and output estimation of dual-rate systems using an auxiliary model,Automatica 40(10)(2004)1739–1748.

    [12]F.Ding,T.Chen,Hierachical identification of lifted state-space models for general dual-rate systems,IEEE Trans.Circuits Syst.Regul.Pap.52(6)(2005)1179–1187.

    [13]J.Ding,F.Ding,The residual based extended least squares identification method for dual-rate systems,Comput.Math.Appl.56(2008)1479–1487.

    [14]H.Raghavan,B.Gopaluni,S.Shah,J.Pakpahan,R.Patwardhan,C.Robson,Gray-box identification of dynamic models for the bleaching operation in a pulp mill,J.Process Control 15(4)(2005)451–468.

    [15]Y.Ma,D.Huang,Y.Jin,Discuss about dynamic soft-sensing modeling,J.Chem.Ind.Eng.56(8)(2005)1516–1519.

    [16]C.Shang,X.Huang,A.Johan,D.Huang,Enhancing dynamic soft sensors based on DPLS:A temporal smoothness regularization approach,J.Process Control 28(2015)17–26.

    [17]X.Gao,F.Yang,D.Huang,Y.Ding,An iterative two-level optimization method for the modeling of Wiener structure nonlinear dynamic soft sensors,Ind.Eng.Chem.Res.53(3)(2014)1172–1178.

    [18]O.P.Ferreira,M.L.N.Goncalves,P.R.Oliveira,Local convergence analysis of inexact Gauss-Newton like methods under majorant condition,J.Comput.Appl.Math.236(9)(2012)2487–2498.

    [19]A.D.Richard,Gauss-Newton and M-estimation for ARMA processes with in finite variance,Stoch.Process.Appl.63(1996)75–95.

    [20]P.P.Khargonekar,K.Poolla,A.Tannenbaum,Robust control of linear time-invariant plants using periodic compensation,IEEE Trans.Autom.Control 30(1985)1088–1096.

    [21]C.Shang,F.Yang,D.Huang,W.Lyu,Data-driven soft sensor development based on deep learning technique,J.Process Control 24(2014)223–233.

    [22]H.Tian,S.David,S.Jang,Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach,Ind.Eng.Chem.Res.49(2010)4738–4747.

    [23]O.Bruno,S.Walace,F.Alex,A.Luis,Data-driven soft sensor of down hole pressure for a gas-oil well,Control.Eng.Pract.22(2014)34–43.

    [24]P.Hui,O.Tohru,T.Yukihiro,S.Hideo,N.Kazushi,H.Valerie,M.Masafumi,RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOxdecomposition process,Control.Eng.Pract.12(2004)191–203.

    久久九九热精品免费| 欧美日韩黄片免| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 最近最新中文字幕大全免费视频| 亚洲国产av影院在线观看| 国产一区二区 视频在线| 欧美精品啪啪一区二区三区| 十八禁高潮呻吟视频| 捣出白浆h1v1| 香蕉国产在线看| 99热网站在线观看| 亚洲欧美一区二区三区久久| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区 | 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 精品久久蜜臀av无| 精品国内亚洲2022精品成人 | a级毛片在线看网站| 免费看十八禁软件| 99热国产这里只有精品6| 2018国产大陆天天弄谢| 色视频在线一区二区三区| 久久 成人 亚洲| 99国产精品一区二区三区| 热99国产精品久久久久久7| 色老头精品视频在线观看| 不卡av一区二区三区| 在线观看免费高清a一片| 丁香六月欧美| 男男h啪啪无遮挡| 色综合欧美亚洲国产小说| 久久亚洲真实| 久久亚洲真实| 久久精品91无色码中文字幕| 天堂中文最新版在线下载| 午夜福利免费观看在线| 男女床上黄色一级片免费看| 国产主播在线观看一区二区| 欧美午夜高清在线| av网站免费在线观看视频| 国产单亲对白刺激| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 亚洲精品一二三| 51午夜福利影视在线观看| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 久久人人97超碰香蕉20202| 国产在线免费精品| 99久久国产精品久久久| 一区二区三区乱码不卡18| www.自偷自拍.com| 亚洲精品美女久久av网站| 大香蕉久久成人网| 久久人人爽av亚洲精品天堂| 久久婷婷成人综合色麻豆| 欧美黄色片欧美黄色片| 国产精品成人在线| 久久人妻av系列| 亚洲欧美日韩另类电影网站| 日本精品一区二区三区蜜桃| 欧美日韩成人在线一区二区| 人人澡人人妻人| 在线观看www视频免费| 蜜桃在线观看..| 一级片免费观看大全| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 精品一品国产午夜福利视频| 日韩人妻精品一区2区三区| 亚洲综合色网址| 精品久久久精品久久久| 91成人精品电影| 国内毛片毛片毛片毛片毛片| av片东京热男人的天堂| 无限看片的www在线观看| 亚洲美女黄片视频| 香蕉丝袜av| 精品国产乱码久久久久久小说| 成人18禁在线播放| 午夜激情av网站| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 精品一区二区三区视频在线观看免费 | 夫妻午夜视频| 国产精品亚洲一级av第二区| 久久av网站| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 久久久久久免费高清国产稀缺| 亚洲av美国av| 黄色片一级片一级黄色片| 国产免费视频播放在线视频| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| 国产亚洲欧美精品永久| 欧美精品亚洲一区二区| 高清视频免费观看一区二区| 精品久久久久久电影网| 热99国产精品久久久久久7| 美女午夜性视频免费| 夜夜爽天天搞| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 深夜精品福利| 精品国产乱码久久久久久男人| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕 | 制服人妻中文乱码| 午夜两性在线视频| 五月开心婷婷网| 在线观看免费午夜福利视频| 精品国产国语对白av| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 欧美激情高清一区二区三区| 免费久久久久久久精品成人欧美视频| 天堂俺去俺来也www色官网| 国产精品二区激情视频| 精品国产乱码久久久久久小说| 精品卡一卡二卡四卡免费| 免费少妇av软件| 黄频高清免费视频| 一本色道久久久久久精品综合| 久久精品亚洲熟妇少妇任你| 中文字幕人妻丝袜一区二区| 两人在一起打扑克的视频| 欧美人与性动交α欧美软件| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 亚洲情色 制服丝袜| 男男h啪啪无遮挡| videos熟女内射| 午夜福利一区二区在线看| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频 | 可以免费在线观看a视频的电影网站| 一区二区三区乱码不卡18| 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| 99九九在线精品视频| 免费少妇av软件| 亚洲一区二区三区欧美精品| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 香蕉国产在线看| 成人精品一区二区免费| 国产xxxxx性猛交| 丝袜美腿诱惑在线| 电影成人av| 首页视频小说图片口味搜索| 午夜日韩欧美国产| 一个人免费看片子| 如日韩欧美国产精品一区二区三区| 亚洲 欧美一区二区三区| 99国产极品粉嫩在线观看| www.999成人在线观看| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 免费在线观看日本一区| 自线自在国产av| 日本a在线网址| svipshipincom国产片| 老司机靠b影院| 久久国产精品大桥未久av| 色综合欧美亚洲国产小说| 超碰97精品在线观看| 免费高清在线观看日韩| 国产高清国产精品国产三级| 嫩草影视91久久| 99国产精品一区二区蜜桃av | 在线观看www视频免费| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 90打野战视频偷拍视频| 欧美精品av麻豆av| 狠狠精品人妻久久久久久综合| 在线看a的网站| 国产精品一区二区免费欧美| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| 中文亚洲av片在线观看爽 | 亚洲国产av影院在线观看| 激情在线观看视频在线高清 | 美女主播在线视频| 一级a爱视频在线免费观看| 国产在线免费精品| 可以免费在线观看a视频的电影网站| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 91成人精品电影| 18在线观看网站| 精品少妇内射三级| 精品人妻在线不人妻| 纵有疾风起免费观看全集完整版| 午夜日韩欧美国产| 国产在线视频一区二区| 午夜精品久久久久久毛片777| 一区二区三区国产精品乱码| 日韩制服丝袜自拍偷拍| 日韩欧美一区视频在线观看| 1024香蕉在线观看| 国产精品自产拍在线观看55亚洲 | 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 国产亚洲精品一区二区www | 老熟女久久久| 亚洲精品久久成人aⅴ小说| 一个人免费在线观看的高清视频| 少妇裸体淫交视频免费看高清 | 欧美在线一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 多毛熟女@视频| 王馨瑶露胸无遮挡在线观看| 一级a爱视频在线免费观看| 少妇粗大呻吟视频| av欧美777| 91成年电影在线观看| 国产黄频视频在线观看| 一级片'在线观看视频| 热re99久久国产66热| 亚洲欧美激情在线| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 啦啦啦中文免费视频观看日本| 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 一本综合久久免费| 欧美日本中文国产一区发布| 色尼玛亚洲综合影院| 日韩制服丝袜自拍偷拍| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| videosex国产| 国产精品一区二区在线不卡| 日韩视频在线欧美| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 制服诱惑二区| 国产精品久久久久久精品电影小说| 美女高潮到喷水免费观看| 欧美精品av麻豆av| avwww免费| 女警被强在线播放| 999精品在线视频| 69av精品久久久久久 | 香蕉丝袜av| 黄色怎么调成土黄色| 亚洲第一av免费看| 老司机午夜十八禁免费视频| 精品国产亚洲在线| 国产成人精品久久二区二区91| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 中文亚洲av片在线观看爽 | 欧美成人免费av一区二区三区 | 99re6热这里在线精品视频| 十分钟在线观看高清视频www| 另类精品久久| 免费人妻精品一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 黄色a级毛片大全视频| 男女无遮挡免费网站观看| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 国产福利在线免费观看视频| 国产精品久久久久成人av| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| tube8黄色片| 操出白浆在线播放| 亚洲专区国产一区二区| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| svipshipincom国产片| 午夜福利视频在线观看免费| 国产熟女午夜一区二区三区| 久久婷婷成人综合色麻豆| 日韩人妻精品一区2区三区| 成人精品一区二区免费| 国产精品二区激情视频| 久久热在线av| 欧美黄色片欧美黄色片| av天堂久久9| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 欧美亚洲日本最大视频资源| 后天国语完整版免费观看| 下体分泌物呈黄色| 大型av网站在线播放| 久久精品亚洲精品国产色婷小说| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看| 亚洲欧洲日产国产| 亚洲国产看品久久| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美| 免费观看a级毛片全部| 午夜两性在线视频| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 91成年电影在线观看| 脱女人内裤的视频| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 一进一出好大好爽视频| 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 一本—道久久a久久精品蜜桃钙片| 少妇粗大呻吟视频| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 桃红色精品国产亚洲av| 午夜激情av网站| 国产免费福利视频在线观看| 亚洲专区字幕在线| 午夜福利在线免费观看网站| 色综合婷婷激情| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲| 99久久国产精品久久久| 十八禁高潮呻吟视频| 一进一出抽搐动态| 18禁观看日本| 女警被强在线播放| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 国产亚洲一区二区精品| 一区二区三区精品91| 亚洲欧美激情在线| 国产黄频视频在线观看| 激情视频va一区二区三区| 黑丝袜美女国产一区| svipshipincom国产片| 色老头精品视频在线观看| h视频一区二区三区| 亚洲一区二区三区欧美精品| 一区二区三区国产精品乱码| 久久久精品免费免费高清| 性少妇av在线| 国产精品免费视频内射| 精品乱码久久久久久99久播| 99热网站在线观看| 色老头精品视频在线观看| 国产一卡二卡三卡精品| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 啦啦啦在线免费观看视频4| 精品国产超薄肉色丝袜足j| 久热这里只有精品99| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 日韩免费av在线播放| 男女床上黄色一级片免费看| 最新的欧美精品一区二区| 午夜成年电影在线免费观看| 久久久久网色| 日韩视频在线欧美| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9 | 国产麻豆69| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 日韩欧美三级三区| 亚洲五月婷婷丁香| 日韩免费高清中文字幕av| 搡老岳熟女国产| 91国产中文字幕| 一本大道久久a久久精品| 亚洲,欧美精品.| 国产成人欧美在线观看 | 亚洲av成人不卡在线观看播放网| 啪啪无遮挡十八禁网站| 在线观看免费高清a一片| 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美日韩高清在线视频 | 少妇的丰满在线观看| 国产无遮挡羞羞视频在线观看| 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| 美女午夜性视频免费| 久久久精品国产亚洲av高清涩受| 婷婷成人精品国产| 欧美日韩视频精品一区| 999久久久国产精品视频| 一进一出抽搐动态| 91成人精品电影| 国产成人欧美在线观看 | 久久99一区二区三区| 成年人午夜在线观看视频| cao死你这个sao货| 建设人人有责人人尽责人人享有的| 中文欧美无线码| 久久婷婷成人综合色麻豆| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 亚洲第一欧美日韩一区二区三区 | 视频区图区小说| 亚洲伊人色综图| 成人国语在线视频| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 亚洲成人手机| 少妇裸体淫交视频免费看高清 | 成人三级做爰电影| 国产精品香港三级国产av潘金莲| svipshipincom国产片| 欧美午夜高清在线| 精品国内亚洲2022精品成人 | 亚洲欧美一区二区三区黑人| 亚洲精品一卡2卡三卡4卡5卡| 汤姆久久久久久久影院中文字幕| 飞空精品影院首页| 无人区码免费观看不卡 | av一本久久久久| 国产精品免费一区二区三区在线 | 搡老熟女国产l中国老女人| 天堂中文最新版在线下载| 国产精品一区二区精品视频观看| 天堂中文最新版在线下载| 黄色丝袜av网址大全| 日本欧美视频一区| 99热网站在线观看| 欧美 日韩 精品 国产| 黄片大片在线免费观看| 少妇 在线观看| 69av精品久久久久久 | 岛国毛片在线播放| 成人18禁在线播放| 日韩视频在线欧美| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 国产亚洲精品久久久久5区| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 免费在线观看黄色视频的| 日本黄色视频三级网站网址 | 日韩人妻精品一区2区三区| 国产成人免费无遮挡视频| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 丝袜喷水一区| 视频在线观看一区二区三区| 日韩免费高清中文字幕av| 国产精品.久久久| 人人澡人人妻人| 午夜福利乱码中文字幕| 两人在一起打扑克的视频| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 久久中文看片网| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 国产视频一区二区在线看| 久久香蕉激情| 国产xxxxx性猛交| 久久午夜综合久久蜜桃| 久久久国产精品麻豆| 岛国在线观看网站| 在线观看免费日韩欧美大片| 99国产极品粉嫩在线观看| 成人三级做爰电影| 免费在线观看完整版高清| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区mp4| 69精品国产乱码久久久| 韩国精品一区二区三区| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 一本久久精品| 男女边摸边吃奶| 国产高清视频在线播放一区| 亚洲精品乱久久久久久| 国产91精品成人一区二区三区 | 久久99一区二区三区| 亚洲中文字幕日韩| 性少妇av在线| 国产精品久久久人人做人人爽| 99精品在免费线老司机午夜| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 成人影院久久| 人妻一区二区av| 国产高清videossex| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 久久中文看片网| 两个人看的免费小视频| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 久久狼人影院| 国产成人影院久久av| 午夜激情av网站| 俄罗斯特黄特色一大片| 一级毛片精品| 成年人免费黄色播放视频| 国产99久久九九免费精品| 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| 久久久久精品人妻al黑| 国产亚洲欧美精品永久| 久热这里只有精品99| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 日韩中文字幕视频在线看片| 日韩 欧美 亚洲 中文字幕| 777米奇影视久久| 亚洲精品久久成人aⅴ小说| 国产精品欧美亚洲77777| 久久久欧美国产精品| 精品国产乱子伦一区二区三区| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 国产淫语在线视频| 国产人伦9x9x在线观看| 99在线人妻在线中文字幕 | 色播在线永久视频| 亚洲av第一区精品v没综合| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 丝袜人妻中文字幕| 亚洲三区欧美一区| 99热国产这里只有精品6| 18禁观看日本| 精品久久久久久电影网| tube8黄色片| av一本久久久久| 日韩欧美三级三区| 亚洲成国产人片在线观看| 精品国产一区二区三区四区第35| 高清av免费在线| 亚洲,欧美精品.| 久久人妻av系列| 久久av网站| 久久午夜综合久久蜜桃| 人妻一区二区av| 看免费av毛片| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 国产一卡二卡三卡精品| 一区福利在线观看| 国产激情久久老熟女| 亚洲视频免费观看视频| 黑人欧美特级aaaaaa片| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 少妇猛男粗大的猛烈进出视频| 91麻豆精品激情在线观看国产 | 亚洲av美国av| 久久青草综合色| 午夜福利在线免费观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜喷水一区| 欧美国产精品一级二级三级| 美女高潮喷水抽搐中文字幕| 亚洲成人手机| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 亚洲欧美色中文字幕在线| 国产高清videossex| 十八禁网站网址无遮挡| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 99热网站在线观看|