• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid–liquid extraction system with ethanol and K3PO4

    2018-05-25 07:50:45DaianaWischralHongxinFuFernandoPellegriniPessoaNeiPereiraJrShangTianYang

    Daiana Wischral *,Hongxin Fu ,Fernando L.Pellegrini Pessoa ,Nei Pereira Jr ,Shang-Tian Yang

    1 School of Chemistry,Department of Biochemical Engineering,Federal University of Rio de Janeiro,Av.Horácio Macedo 2030,Bloco E.,Rio de Janeiro,RJ 21949-900,Brazil

    2 William G.Lowrie Department of Chemical and Biomolecular Engineering,The Ohio State University,151 West Woodruff Avenue,Columbus,OH 43210,USA

    3 School of Chemistry,Department of Chemical Engineering,Federal University of Rio de Janeiro,Av.Horácio Macedo 2030,Bloco E.,Rio de Janeiro,RJ 21949-900,Brazil

    1.Introduction

    The application of 1,3-propanediol in the polymer industry has increased significantly in the last fewyears,because of the attractive physical and chemical properties[1].The market demand for 1,3-propanediol has increased because of the enhanced production of polytri methylene terephthalate(PTT),applied in the manufacturing of carpetsand special fibres,which should reach 150000 tonsor 560 million USD by 2019[2,3].Due to the rising oil prices and concerns of environmental pollution of petroleum-based synthesis processes,the bioproduction of 1,3-propanediol from glycerol or glucose has received increased attention in recent years[1].The final concentration of 1,3-propanediol in the fermentation broth usually varies from 6.7 g·L?1to 70 g·L?1,and can reach 100 g·L?1when a metabolically engineered bacterium is used[2,3].The price of 1,3-propanediol obtained by a biochemical technique depends on the final purity grade required for its application and the substrate cost[4,5].In general,the downstream cost represents between 50%–70%of the production cost[6,7].It is thus important to develop an efficient and low-cost separation method for bioproduction of 1,3-propanediol.

    Xiu et al.(2007)[8]described the 1,3-propanediol recovery from fermentation broth using salting-out extraction.The need to improve the purity of 1,3-propanediol obtained in salting-out extraction is a barrier against its successful commercialization.The fermentation broth is a mix of components:water,residual glycerol,1,3-propanediol,acetate,lactate,proteins,polysaccharides,nucleic acids,and salts.This complex mix,high hydrophobicity and high boiling point(214°C at atmospheric pressure)of 1,3-propanediol make salting-out extraction exceedingly dif ficult to optimize[7,9].

    Extraction systems that present salting-out effects result in a top phase(solvent rich),and bottom phase(salt rich).An important characteristic of this system is the high polarity of a top phase,such as methanol,ethanol or acetone[2,10].This method has been investigated for polar solutes extraction,such as alcohol or acids in water[2].The hydrophilic organic solvent,utilized for the salting-out effect,is easily recovered by evaporation and offers less toxicity risk in comparison to traditional solvents and reactive extractions[11].

    Xiu and Zeng(2008)[4]reported a salting-out extraction system to recover 1,3-propanediol from a fermented medium with a partition coefficient of 4.77 and recovery yield of 93.7%.The authors utilized 46%(v/v)ethanol as the organic phase and saturated ammonium sulphate as the aqueous phase,which also removed the cells and proteins from the fermented medium with a removal rate of 99.7%and 79.0%,respectively.The salting-out extraction presented a good yield and resolution,quick phase separation,the possibility of continuous operation,high efficiency,simple scale-up and lowenergy consumption.In addition,salting-out extraction is a promising and sustainable technique because there is the possibility of recycling both components(solvent and salt)[12–14].

    In thisstudy,we further evaluated and optimized salting-out extraction for 1,3-propanediol recovery from fermentation broth by screening for the best combination of salt and solvent,and optimizing their concentrations to obtain the highest partition coefficient and recovery yield ever reported.

    2.Materials and Methods

    2.1.Salting-out extraction of 1,3-propanediol

    The fermentation broth used in this study was obtained from fedbatch culture of Clostridium beijerinckii DSM 791 A1 under anaerobic conditions at 37°C in a 1-L stirred-tank bioreactor containing 500 ml of previously optimized medium:5.0 g·L?1K2HPO4;0.5 g·L?1yeast extract;0.005 g·L?1sodium acetate and 30 g·L?1glycerol[3,15].Unless otherwise noted,the fed-batch fermentation broth contained 26.1 g·L?11,3-propanediol,4.9 g·L?1cells,4.8 g·L?1butyric acid,2.8 g·L?1acetic acid and 2.8 g·L?1glycerol.Before being used in salting-out extraction,cells present in the fermentation broth were removed by centrifugation at 9100×g for 5 min.Five grammes of the clarified broth and 2 g of a solid salt(K2HPO4,Na2CO3,K2CO3,(NH4)2SO4,NaHPO4,K3PO4or C6H5NaO7)were mixed in a 10-ml tube and vortexed for 1 min.Then,2 g of solvent(methanol,ethanol,isopropanol or acetone)was added into the tube and vortexed for 2 min.The mixture was left standing for 12 h at 25°C to allowphase separation.The mass ratio of 2:2:5 for salt:solvent:1,3-propanediol solution was selected according to the phase diagram reported previously for salting-out extraction systems[16–21].Such massratio should give a two-phase system above the equilibrium line.

    After complete phase separation,the volumes and 1,3-propanediol concentrations in the top(solvent)and bottom(salt)phases were recorded and used to estimate the partition coefficient(K)and recovery yield or efficiency(Y)as follows[22]:

    where Ctopand Cbottomare the concentrations(g·L?1)of 1,3-propanediol,Vtopand Vbottomare the volumes in the top and bottom phases,respectively.The Ctopwas determined by high-performance liquid chromatography(HPLC)and Cbottomwas obtained by mass balance(because it was difficult to measure directly due to its high salt concentration).

    Based on the K and Y values,the best combination of salt(K3PO4)and solvent(ethanol)was selected.The salting-out extraction was then further optimized in the concentrations of salt,solvent,and 1,3-propanediol for the recovery of 1,3-propanediol from the fermentation broth using a central composite rotatable design(CCRD)with 1,3-propanediol,solvent and salt concentrations as independent variables and response surface methodology with K and Y as the response variables.

    The global desirability function was applied to simultaneously maximize both response variables(K and Y).The results predicted by desirability function were then evaluated experimentally in replicates,which were conducted applying the predicted optimal conditions.The experimental design and the statistical evaluation of the results were made by using STATISTICA software,version 6.0(StatSoft,Inc.)including analysis of variance(ANOVA).

    2.2.Analytical methods

    Concentrations of 1,3-propanediol,glycerol,acids(butyric and acetic),ethanol,acetone,isopropanol and methanol were determined using an HPLC(Shimadzu RID-10A)following the method previously described[3].The analysis was conducted with 0.0035 mol·L?1H2SO4(mobile phase)at 0.6 ml·min?1and 65 °C and external standards of each chemical were used for the identification and quantification.

    3.Results and Discussion

    Two phases were formed in salting-out extraction.The top phase contained mainly the solvent and 1,3-propanediol originally present in the fermentation broth,while the bottom phase contained water and salts.In addition,cells and proteins originally present in the fermentation broth were separated and appeared in the interphase between top and bottom phases.Most of acids(butyric and acetic)were also removed to the top phase because of their higher affinity with the solvent while glycerol and salts appeared in the bottom aqueous phase.The impurities(acids and ethanol)in the top phase could be removed by distillation,because there is an evident difference of boiling point between the impurities(<165 °C)and 1,3-propanediol(214°C).

    3.1.Screening for best salt/solvent combination for salting-out extraction

    The salt and solvent characteristics affected the formation of phases.Initially,a screening was performed to find the best combination of salt and solvent for salting-out extraction of 1,3-propanediol from the fermentation broth.At the mass ratio of 2:2:5 for salt:solvent:fermentation broth,the combination of K3PO4and ethanol gave the highest partition coefficient(K)and recovery yield(Y)(Tables 1 and 2).The formation of the two phases was affected by the hydration ability of the solvent,which is related to the solvent structure.In general,a higher polarity solvent,such as methanol and ethanol,can bind more water molecules and is thus superior for 1,3-propanediol extraction[17].

    Table 1 Partition coefficient(K)from screening of salts/solvents for 1,3-propanediolreco very from the fermentation broth by salting-out extraction

    Table 2 Recovery yield percentage(Y,%)from screening of salts/solvents for 1,3-propanediol recovery from the fermentation broth by salting-out extraction

    3.2.Optimization of salt,solvent and 1,3-propandiol concentrations

    The partition coefficient(K)might increase with increasing the alcohol and salt concentrations[17].In addition,the recovery yield(Y)may also depend on salt content and alcohol concentration.To further improve K and Y in salting out extraction,the 1,3-propanediol concentration in the fermentation broth as well as the mass ratios of K3PO4and ethanol in the two-phase system were optimized in the ranges of 18 wt%–38 wt%for K3PO4,16 wt%–36 wt%for ethanol,and 5 g·L?1–35 g·L?1for 1,3-propanediol concentration in the fermentation broth(to add up to 100 wt%),respectively.The values for each factor and level are given in Table 3,and the design matrix with results is listed in Table 4.

    Table 3 CCRD factors and levelsused in the optimization of salting-out extraction for 1,3-propanediol recovery

    Table 4 CCRD design and K and Y obtained in the optimization of salting-out extraction for 1,3-propanediol recovery

    ANOVA is a statistical technique where the sum of squares,degrees of freedom and mean of squares are used to calculate the Fisher probability(F)and then to obtain p-value,which indicates the significance of the evaluated factors,their interactions and lack of it.Therefore,ANOVA analyses were conducted for each dependent factor(K in Table 5 and Y in Table 6)to analyse the concentrations of K3PO4,ethanol,and 1,3-propanediol solution using pure error and 95%of confidence interval(p≤0.05).

    The p-values for both K and Y clearly indicated that the amount of K3PO4was more significant(lower p-value)than the amount of ethanol(higher p-value)in affecting 1,3-propanediol recovery by salting-out extraction.The experimental results can be best fitted with a quadratic model with the determination coefficient(R2)0.965 for K and 0.995 for Y,which means that 96.5%and 99.5%of the variances were explained by the K and Y models,respectively,which are given below:

    Table 5 ANOVA analyses for K3PO4,ethanol and 1,3-propanediol optimization of the partition coefficient(K)

    Table 6 ANOVA analyses for K3PO4,ethanol and 1,3-propanediol optimization of the recovery yield(Y)

    where k is K3PO4concentration(wt%),e is ethanol concentration(wt%),and p is 1,3-propanediol concentration(g·L?1).

    The response surface,plotted from the CCRD using STATISTICA 6.0 software,can be used to showthe relationship between the dependent factors(K and Y)and the independent factors(K3PO4,ethanol,and 1,3-propanediol concentration).These response surfaces,depicted in Fig.1,show that a maximum point was reached for both K and Y in the range studied.Therefore,it is possible to use the desirability technique to optimize the response variables in this system.The global desirability value,simultaneously optimized for three independent factors,was 1.00 when considering a 95%confidence interval,which means that this function obtained by optimization fulfils 100%of the maximum value possible for both dependent factors(K and Y).The optimum composition of the extraction system was 34 wt%salt,28 wt%solvent,and 23.0 g·L?11,3-propanediol in the fermentation broth.

    The predicted values according to the desirability function and the results for K and Y from the experiments applying the predicted optimal conditions are shown in Table 7.According to these values,the experimental results were inside the confidence limits(predicted values by desirability function),which means that these findings were in agreement with the model[Eqs.(3)and(4)].After optimization using the response surface methodology,the partition coefficient increased 4.6 times(from 7.15 to 32.99),and the recovery yield increased 1.1 times(from 88 to 97),as compared to the results from the initial screening studies(Tables 1 and 2).

    Fig.1.Response surfaces for partition coefficient(K)and recovery yield(Y)for 1,3-propanediolsalting-out extraction with K3PO4/ethanol.A:ethanol/K3PO4,B:1,3-propanediol/K3PO4 and C:1,3-propanediol/ethanol.

    Table 7 Validation of the optimum conditions predicted for 1,3-propanediol recovery from the broth:34 wt%K3PO4,28 wt%ethanol,and 38 wt%fermentation broth containing 23.0 g·L?1 1,3-propanediol

    3.3.Comparison to other studies

    The results from this study(33 for K and 97%for Y)are better than those reported using salting-out extraction systems with ethanol for 1,3-propanediol recovery(see Table 8).Li et al.(2011)[18]haveobtained 38 for K and 98%for Y,using salting-out extraction with methanol/K2HPO4and fermentation broth using Klebsiella pneumonia CGMCC 2028 with 65.0 g·L?1of 1,3-propanediol.The salting-out extraction with ethanol/K2HPO4was also evaluated by Fu et al.(2013)[22]with fermentation broth,using K.pneumonia CGMCC 2028,and the maximum value of 11 for K and 94%for Y were acquired with continuous extraction.The higher partition coefficient for K3PO4,compared with that obtained in previous studies with K2HPO4,could be explained by the higher salting-out effect of PO43?and the optimized combination of salt:solvent:1,3-propandiol solution[21].

    Product recovery processes including liquid–liquid extraction,gas stripping,and pervaporation have been developed for biochemical productions.In situ extractive fermentation could result in an emulsionand precipitate layer,causing incomplete phase separation and broth contamination risk[24].Xue et al.(2016)[25]found interesting results for butanol recovery( final product mixture with >500 g·L?1of butanol),from ABE fermentation by Clostridium acetobutylicum,applying two-stage gas stripping-pervaporation.Continuing the studies,Xue et al.(2017)[26]reported that the concentrated ABE products recovered from the gas stripping-pervaporation process could be directly alkylated to C5–C15 or longer-chain ketones in a continuous mode.However,we tried to apply gas stripping for 1,3-propanediol in situ separation(data not shown)but was unsuccessful,which could be explained by its properties:lowconcentration in the broth,complex mix of components,high hydrophobicity,and high boiling point.The salting-out extraction using liquid–liquid systems is also more interesting for 1,3-propanediol recovery in comparison to other separation methods such as distillation,because liquid–liquid extraction is more selective and energy efficient[1].

    Table 8 Comparison of partition coefficients(K)and recovery yields(Y)for salting-out extraction of 1,3-propanediol from fermentation broth with different salts

    The salting-out extraction is favoured for fermentation product extraction also because the concentration of the target compound usually is low.Moreover,cells in the fermentation broth could be easily removed if the operation temperature is approximately 25°C,consistent with other studies also showing that the removal of cells and proteins with high yields was possible with salting-out extraction[16,18].Finally,salting-out extraction could be readily integrated with repeated batch fermentation for 1,3-propanediol bioproduction since it would be applied after fermentation,not in situ.It should be noted that both salt and solvent used in salting-out extraction can be recovered and reutilized,making this process eco-friendly.Currently,salting-out extraction is mainly used for carboxylic acids[27]and diols[28]separation,such as 2,3-butanediol[12,17],1,3-propanediol[13,16,18],lactic acid[29,30]and butyric acid[31].

    4.Conclusions

    The recovery of 1,3-propanediol from a fermentation broth by salting-out extraction was studied with several salt/solvent combinations,and the best result was found with a K3PO4/ethanol system.The concentrations of ethanol,K3PO4and 1,3-propanediol in the system were further optimized using the response surface methodology to obtain the highest partition coefficient of 33 and recovery yield of 97%.The salting-out extraction is thus a promising method for recovering fermentation-produced 1,3-propanediol and has several advantages over other separation methods.

    Acknowledgements

    The authors acknowledge CNPq,FAPERJ and CAPES through the PDSE and Program and Human Resources Program 13 of the National Petroleum Agency(ANP-PRH 13)for scholarship.

    [1]W.Sabra,C.Groeger,A.P.Zeng,Microbial cell factories for diol production,Adv.Biochem.Eng.Biotechnol.(2015)165–197.

    [2]J.J.Malinowski,Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol,Biotechnol.Tech.13(1999)127–130.

    [3]D.Wischral,J.Zhang,C.Cheng,M.Lin,L.M.De Souza,F.L.P.Pessoa,N.Pereira Jr.,S.-T.Yang,Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor:Process optimization and metabolic engineering,Bioresour.Technol.212(2016)100–110.

    [4]W.D.Deckwer,Microbial conversion of glycerol production to 1,3-propanediol,FEMS Microbiol.Rev.16(1995)143–149.

    [5]B.G.Hermann,M.Patel,Today's and tomorrow's bio-based bulk chemicals from white biotechnology:A techno-economic analysis,Appl.Biochem.Biotechnol.136(2007)361–388.

    [6]Z.L.Xiu,A.P.Zeng,Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol,Appl.Microbiol.Biotechnol.78(2008)917–926.

    [7]P.Anand,R.K.Saxena,R.G.Marwah,A novel downstream process for 1,3-propanediol from glycerol-based fermentation,Appl.Microbiol.Biotechnol.90(2011)1267–1276.

    [8]Z.L.Xiu,Z.Li,B.Jianng,Y.Sun,D.Zhang,Aqueous two-phase extraction of 1,3-propanediol from fermentation broth,China Pat,200710010201.X,2007.

    [9]R.Saxena,P.Anand,S.Saran,J.Isar,Microbial production of 1,3-propanediol:Recent developments and emerging opportunities,Biotechnol.Adv.27(2009)895–913.

    [10]A.Greve,M.R.Kula,Cost structure and estimation for the recycling of salt in a protein extraction process system,Bioprocess Eng.6(1990)173–177.

    [11]A.Louwrier,Model phase separations of proteins using aqueous/ethanol components,Biotechnol.Tech.12(1998)363–365.

    [12]B.Jiang,Z.G.Li,J.Y.Dai,D.J.Zhang,Aqueous two phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system,Process Biochem.44(2009)112–117.

    [13]Z.Li,B.Jiang,D.Zhang,Z.Xiu,Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths,Sep.Purif.Technol.66(2009)472–478.

    [14]J.N.Sun,B.Rao,L.Y.Zhang,Y.L.Shen,Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system,Chem.Eng.Commun.199(2012)1492–1503.

    [15]D.Wischral,C.A.Barcelos,N.Pereira Jr.,F.L.P.Pessoa,1,3-Propanediol:Statistical optimization of medium to improve production by Clostridium beijerinckii DSM 791,J.Adv.Biotechnol.5(2015)614–623.

    [16]O.Aydogan,E.Bayraktar,U.Mehmetoglu,T.Kaeding,Selection and optimization of an aqueous two-phase system for the recovery of 1,3-propandiol from fermentation broth,Eng.Life Sci.10(2010)121–129.

    [17]J.Y.Dai,Y.L.Zhang,Z.L.Xiu,Salting-out extraction of 2,3-butanediol from Jerusalem artichoke-based fermentation broth,Chin.J.Chem.Eng.19(2011)682–686.

    [18]Z.G.Li,H.Teng,Z.L.Xiu,Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system,Process Biochem.46(2011)586–591.

    [19]Y.Sun,L.Yan,H.Fu,Z.Xiu,Selection and optimization of a salting-out extraction system for recovery of biobutanol from fermentation broth,Eng.Life Sci.13(2013)464–471.

    [20]H.Fu,S.-T.Yang,Z.Xiu,Phase separation in a salting-out extraction system of ethanol–ammonium sulphate,Sep.Purif.Technol.148(2015)32–37.

    [21]S.Shahriari,C.M.S.S.Neves,M.G.Freire,J.A.P.Coutinho,Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems,J.Phys.Chem.116(2012)7252–7258.

    [22]H.Fu,Y.Sun,Z.Xiu,Continuous countercurrent salting-out extraction of 1,3-propanediol from fermentation broth in a packed column,Process Biochem.48(2013)1381–1386.

    [23]Z.G.Li,Y.Q.Sun,W.L.Zheng,H.Teng,Z.L.Xiu,A novel and environment-friendly bioprocessof 1,3-propanediol fermentation integrated with aqueoustwo-phase extraction by ethanol/sodium carbonate system,Biochem.Eng.J.80(2013)68–75.

    [24]C.Xue,J.Zhao,L.Chen,S.T.Yang,F.Bai,Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum,Biotechnol.Adv.35(2017)310–322.

    [25]C.Xue,F.Liu,M.Xu,J.Zhao,L.Chen,J.Ren,F.Bai,S.T.Yang,A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production,Biotechnol.Bioeng.113(2016)120–129.

    [26]C.Xue,M.Liu,X.Guo,E.P.Hudson,L.Chen,F.Bai,F.Liu,S.T.Yang,Bridging chemicaland bio-catalysis:High-value liquid transportation fuel production from renewable agricultural residues,Green Chem.19(2017)660–669.

    [27]H.Fu,Y.Sun,Hu Teng,D.Zhang,Z.L.Xiu,Salting-out extraction of carboxylic acids,Sep.Sci.Technol.139(2015)36–42.

    [28]H.Fu,J.Dai,Y.Sun,D.Zhang,Z.L.Xiu,Partition behavior of hydrophilic diols in an ethanol/ammonium sulfate salting-out extraction system,Eng.Life Sci.15(2016)797–803.

    [29]O.Aydogan,E.Bayraktar,U.Mehmetoglu,Aqueous two-phase extraction of lactic acid:Optimization by response surface methodology,Sep.Sci.Technol.46(2011)1164–1171.

    [30]B.C.Wei,Z.Y.Song,Y.Q.Sun,Z.L.Xiu,Salting-out extraction of lactic acid from fermentation broths,Chin.J.Chem.Eng.12(2012)44–48.

    [31]H.Fu,X.Wang,Y.Sun,L.Yan,J.Shen,J.Wang,S.T.Yang,Z.L.Xiu,Effects of saltingout and salting-out extraction on the separation of butyric acid,Sep.Sci.Technol.180(2017)44–50.

    每晚都被弄得嗷嗷叫到高潮| 国产黄色小视频在线观看| 成年女人看的毛片在线观看| 国产野战对白在线观看| 国产91精品成人一区二区三区| 有码 亚洲区| 99在线人妻在线中文字幕| 久久久久久久久久黄片| 精品人妻1区二区| 精品人妻1区二区| 亚洲精品一区av在线观看| 女同久久另类99精品国产91| 好看av亚洲va欧美ⅴa在| 91狼人影院| 欧美+亚洲+日韩+国产| 十八禁网站免费在线| 久久亚洲精品不卡| 九色国产91popny在线| 可以在线观看毛片的网站| 欧美三级亚洲精品| 精品午夜福利在线看| 国产成人影院久久av| 亚洲第一电影网av| 内射极品少妇av片p| 精品人妻1区二区| 丰满乱子伦码专区| 99热6这里只有精品| 日日夜夜操网爽| 特级一级黄色大片| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 首页视频小说图片口味搜索| 又黄又爽又刺激的免费视频.| 好看av亚洲va欧美ⅴa在| 此物有八面人人有两片| 国产一区二区激情短视频| 国产亚洲精品久久久com| 国产精品伦人一区二区| 成人精品一区二区免费| 在线观看av片永久免费下载| 久久久久久大精品| 国内精品久久久久久久电影| 一个人看视频在线观看www免费| 日本五十路高清| 国产一区二区亚洲精品在线观看| 嫁个100分男人电影在线观看| 蜜桃久久精品国产亚洲av| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区 | 欧美日韩国产亚洲二区| 91字幕亚洲| 91麻豆精品激情在线观看国产| 久久午夜福利片| 国产精品久久电影中文字幕| 国产老妇女一区| 他把我摸到了高潮在线观看| 男插女下体视频免费在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 床上黄色一级片| 毛片女人毛片| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 国产激情偷乱视频一区二区| 欧美最黄视频在线播放免费| 国产精品人妻久久久久久| 波多野结衣巨乳人妻| 又黄又爽又免费观看的视频| 1000部很黄的大片| 一级a爱片免费观看的视频| 少妇的逼好多水| 51午夜福利影视在线观看| 性插视频无遮挡在线免费观看| 色播亚洲综合网| 亚洲国产欧美人成| 国产国拍精品亚洲av在线观看| 亚洲熟妇中文字幕五十中出| av在线观看视频网站免费| 搡女人真爽免费视频火全软件 | 亚洲av免费在线观看| 波多野结衣高清作品| 日本黄大片高清| 亚洲久久久久久中文字幕| 中文字幕高清在线视频| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 午夜影院日韩av| 免费高清视频大片| 国产黄色小视频在线观看| 三级毛片av免费| 级片在线观看| 欧美日韩瑟瑟在线播放| 国产一级毛片七仙女欲春2| 久久久久亚洲av毛片大全| 精品一区二区三区人妻视频| 亚洲自拍偷在线| 五月玫瑰六月丁香| а√天堂www在线а√下载| 久99久视频精品免费| 在线播放国产精品三级| 国产探花在线观看一区二区| 天天一区二区日本电影三级| 国产精品1区2区在线观看.| 757午夜福利合集在线观看| 一个人看的www免费观看视频| 在线a可以看的网站| 97碰自拍视频| 亚洲美女视频黄频| 午夜亚洲福利在线播放| 久久九九热精品免费| 亚洲人成伊人成综合网2020| 亚洲不卡免费看| 啦啦啦韩国在线观看视频| 国语自产精品视频在线第100页| 国产毛片a区久久久久| 亚洲精品亚洲一区二区| av欧美777| 免费大片18禁| 久99久视频精品免费| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 在线播放无遮挡| 波野结衣二区三区在线| 国产三级在线视频| 90打野战视频偷拍视频| 最近最新免费中文字幕在线| 18禁黄网站禁片午夜丰满| 观看免费一级毛片| 少妇高潮的动态图| 免费看a级黄色片| 亚洲国产欧洲综合997久久,| 欧美激情在线99| 首页视频小说图片口味搜索| 亚洲在线自拍视频| 国产精品一区二区三区四区免费观看 | 色综合欧美亚洲国产小说| 中出人妻视频一区二区| 久久国产精品人妻蜜桃| 国内精品一区二区在线观看| 免费看a级黄色片| 一个人免费在线观看的高清视频| 18禁黄网站禁片午夜丰满| 欧美潮喷喷水| 国产一区二区三区视频了| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 久久久久国内视频| 欧美丝袜亚洲另类 | 免费在线观看亚洲国产| 看免费av毛片| 悠悠久久av| 亚洲,欧美精品.| 午夜老司机福利剧场| 97超级碰碰碰精品色视频在线观看| 国产综合懂色| 亚洲国产高清在线一区二区三| 丰满的人妻完整版| 亚洲国产欧美人成| 久久久国产成人免费| 亚洲在线观看片| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av| 午夜免费成人在线视频| 天堂√8在线中文| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片| 国产免费av片在线观看野外av| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 欧美日本视频| 成年女人看的毛片在线观看| 九九久久精品国产亚洲av麻豆| 欧美在线一区亚洲| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| 91午夜精品亚洲一区二区三区 | 亚洲狠狠婷婷综合久久图片| 一进一出抽搐动态| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| АⅤ资源中文在线天堂| 真人一进一出gif抽搐免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 日日干狠狠操夜夜爽| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩| 女人十人毛片免费观看3o分钟| 特大巨黑吊av在线直播| 国产av麻豆久久久久久久| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 欧美成狂野欧美在线观看| 中文字幕久久专区| av在线蜜桃| 亚洲内射少妇av| 最近在线观看免费完整版| 国产欧美日韩精品一区二区| 日韩欧美国产一区二区入口| 舔av片在线| 欧美中文日本在线观看视频| 中文字幕高清在线视频| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 真人一进一出gif抽搐免费| 成人欧美大片| 日本免费一区二区三区高清不卡| 麻豆国产97在线/欧美| 欧美成狂野欧美在线观看| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 国产三级黄色录像| 精品无人区乱码1区二区| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 日本黄色片子视频| 亚洲欧美日韩东京热| 久久亚洲精品不卡| www.www免费av| 级片在线观看| 免费在线观看影片大全网站| 成人特级av手机在线观看| 欧美3d第一页| 欧美日韩瑟瑟在线播放| 国产精品av视频在线免费观看| 亚洲精品久久国产高清桃花| 乱码一卡2卡4卡精品| 色哟哟哟哟哟哟| 国产三级黄色录像| 桃色一区二区三区在线观看| 99国产精品一区二区三区| 亚洲精品日韩av片在线观看| 一区二区三区四区激情视频 | 亚洲精品影视一区二区三区av| 亚洲不卡免费看| 久久国产精品影院| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 九色国产91popny在线| 久久久久久九九精品二区国产| 一个人免费在线观看的高清视频| 最新在线观看一区二区三区| 黄色配什么色好看| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 日日夜夜操网爽| 女同久久另类99精品国产91| 美女大奶头视频| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 成年版毛片免费区| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品在线美女| 精品久久国产蜜桃| 在线看三级毛片| 国内精品一区二区在线观看| 五月玫瑰六月丁香| 国产av一区在线观看免费| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看 | 国产乱人伦免费视频| 亚洲av电影在线进入| av在线老鸭窝| 他把我摸到了高潮在线观看| 亚洲美女搞黄在线观看 | 国产成人a区在线观看| 一区二区三区激情视频| 国产高清视频在线观看网站| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 一a级毛片在线观看| 欧美成人一区二区免费高清观看| 国产大屁股一区二区在线视频| 亚洲精品在线美女| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 国产一区二区三区视频了| 色精品久久人妻99蜜桃| 亚洲av二区三区四区| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 久久久久久久久大av| 男人狂女人下面高潮的视频| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 真人一进一出gif抽搐免费| 日本一本二区三区精品| 91久久精品电影网| 亚洲av一区综合| 国产精品久久久久久久久免 | 美女黄网站色视频| 亚洲天堂国产精品一区在线| 一区二区三区激情视频| 日本熟妇午夜| 级片在线观看| 动漫黄色视频在线观看| 99国产综合亚洲精品| 欧美潮喷喷水| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 亚洲美女视频黄频| 久久伊人香网站| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 国产高潮美女av| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 欧美成人性av电影在线观看| 久久久久久久久中文| 亚洲内射少妇av| 天堂网av新在线| 99热只有精品国产| 夜夜躁狠狠躁天天躁| 宅男免费午夜| 男女那种视频在线观看| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 欧美日韩综合久久久久久 | 国产探花极品一区二区| 婷婷亚洲欧美| 国产成年人精品一区二区| 成人av在线播放网站| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 中文资源天堂在线| 精华霜和精华液先用哪个| 1024手机看黄色片| 亚洲色图av天堂| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区中文字幕在线| 制服丝袜大香蕉在线| 日韩大尺度精品在线看网址| 婷婷色综合大香蕉| 国产淫片久久久久久久久 | 久久久久久九九精品二区国产| 老鸭窝网址在线观看| 天堂av国产一区二区熟女人妻| 久久精品夜夜夜夜夜久久蜜豆| 无人区码免费观看不卡| 全区人妻精品视频| 欧美一区二区亚洲| 十八禁国产超污无遮挡网站| 2021天堂中文幕一二区在线观| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 精品人妻偷拍中文字幕| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 在线观看av片永久免费下载| 色播亚洲综合网| 99热精品在线国产| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 亚洲国产精品999在线| 午夜老司机福利剧场| 天堂av国产一区二区熟女人妻| 久久国产乱子免费精品| 嫁个100分男人电影在线观看| 一个人看视频在线观看www免费| 黄色女人牲交| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 国产精品三级大全| 直男gayav资源| 日本与韩国留学比较| 精品久久国产蜜桃| 亚洲不卡免费看| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 国产av在哪里看| 99久久精品国产亚洲精品| 国产三级在线视频| 成熟少妇高潮喷水视频| 99久久精品热视频| 99热这里只有精品一区| 国产三级中文精品| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 色哟哟哟哟哟哟| 黄片小视频在线播放| 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 久久午夜福利片| 女人被狂操c到高潮| 亚洲av二区三区四区| 免费电影在线观看免费观看| 欧美在线黄色| 国产成人影院久久av| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 日本撒尿小便嘘嘘汇集6| 欧美区成人在线视频| 51午夜福利影视在线观看| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| av国产免费在线观看| 日本黄色片子视频| 人人妻人人澡欧美一区二区| 一级作爱视频免费观看| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 看十八女毛片水多多多| 性色av乱码一区二区三区2| 日日摸夜夜添夜夜添av毛片 | 国产黄a三级三级三级人| av在线老鸭窝| 久久99热这里只有精品18| 直男gayav资源| 亚洲成人精品中文字幕电影| 97热精品久久久久久| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看的高清视频| 怎么达到女性高潮| 97超视频在线观看视频| www.熟女人妻精品国产| 午夜a级毛片| 亚洲国产精品久久男人天堂| 欧美bdsm另类| 国产v大片淫在线免费观看| 国产三级在线视频| 国产淫片久久久久久久久 | 免费看美女性在线毛片视频| 国产亚洲精品综合一区在线观看| 国产一区二区三区视频了| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 午夜福利欧美成人| 亚洲av不卡在线观看| 日本与韩国留学比较| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 嫩草影院入口| 亚洲色图av天堂| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 最近中文字幕高清免费大全6 | 精品人妻熟女av久视频| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 亚洲综合色惰| 高清在线国产一区| 婷婷色综合大香蕉| 国内精品久久久久久久电影| 全区人妻精品视频| 91久久精品国产一区二区成人| 黄色配什么色好看| 一个人免费在线观看电影| 在线播放无遮挡| 久久久久久大精品| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 日本一本二区三区精品| 高清日韩中文字幕在线| 久久精品国产亚洲av天美| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 搡老岳熟女国产| 欧美丝袜亚洲另类 | 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 大型黄色视频在线免费观看| 日韩有码中文字幕| 人人妻,人人澡人人爽秒播| 国产麻豆成人av免费视频| ponron亚洲| 老司机午夜十八禁免费视频| 在线a可以看的网站| 欧美成人性av电影在线观看| 在线十欧美十亚洲十日本专区| 18禁黄网站禁片免费观看直播| 99久国产av精品| 色在线成人网| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 国产视频内射| 婷婷色综合大香蕉| 欧美极品一区二区三区四区| av在线蜜桃| 亚洲成人久久爱视频| 国产三级中文精品| 在线免费观看不下载黄p国产 | 全区人妻精品视频| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 男人的好看免费观看在线视频| 一区二区三区激情视频| 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 午夜福利在线在线| x7x7x7水蜜桃| 精品人妻视频免费看| 少妇熟女aⅴ在线视频| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 亚洲精品色激情综合| 国产成人a区在线观看| 亚洲精品粉嫩美女一区| 美女高潮的动态| 欧美在线黄色| 在线播放国产精品三级| av国产免费在线观看| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 国产大屁股一区二区在线视频| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 香蕉av资源在线| 亚洲av成人精品一区久久| 长腿黑丝高跟| 中文字幕高清在线视频| 丰满乱子伦码专区| 国产精品电影一区二区三区| 精品久久久久久,| 老司机午夜福利在线观看视频| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 一边摸一边抽搐一进一小说| 999久久久精品免费观看国产| 久久久成人免费电影| 久久久久九九精品影院| 免费在线观看影片大全网站| 麻豆av噜噜一区二区三区| eeuss影院久久| 男女那种视频在线观看| 亚洲国产欧美人成| 内射极品少妇av片p| 久久久久国内视频| 91午夜精品亚洲一区二区三区 | 国产精品爽爽va在线观看网站| 成人永久免费在线观看视频| 久久6这里有精品| 看十八女毛片水多多多| 男人和女人高潮做爰伦理| 97碰自拍视频| 亚洲男人的天堂狠狠| 香蕉av资源在线| 成人欧美大片| 欧美成人性av电影在线观看| 九九在线视频观看精品| 麻豆国产av国片精品| 亚洲成人精品中文字幕电影| 又爽又黄a免费视频| 在线免费观看的www视频| 成人一区二区视频在线观看| 亚洲av日韩精品久久久久久密| 国产亚洲精品av在线| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 久久精品国产99精品国产亚洲性色| 亚洲av.av天堂| 少妇的逼水好多| 免费搜索国产男女视频| 在线天堂最新版资源| 美女 人体艺术 gogo| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 国产精品自产拍在线观看55亚洲| 黄色日韩在线| 麻豆成人午夜福利视频| 亚洲精品日韩av片在线观看| 淫妇啪啪啪对白视频| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 中文字幕精品亚洲无线码一区| 中文字幕人成人乱码亚洲影| www.熟女人妻精品国产| 成人特级av手机在线观看| 欧美精品啪啪一区二区三区| 亚洲成av人片免费观看| 国产野战对白在线观看| 乱码一卡2卡4卡精品| 国产精品精品国产色婷婷| 国产精品98久久久久久宅男小说|