• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane

    2018-05-25 07:50:42PouriaAbbasszadehGamaliAbbassKazemiRezaZadmardMortezaJalaliAnjareghiAzadehRezakhaniRezaRahighiMohammadMadani

    Pouria Abbasszadeh Gamali ,Abbass Kazemi *,Reza Zadmard ,Morteza Jalali Anjareghi 3,Azadeh RezakhaniReza Rahighi 4,Mohammad Madani

    1 Nanotechnology Research Center,Research Institute of Petroleum Industry(RIPI),P.O.Box:14665-1998,Tehran,Iran

    2 Chemical&Chemical Engineering Research Center of Iran,P.O.Box:14335-186,Tehran,Iran

    3 College of Environment,Standard Square,P.O.Box:31746-118,Karaj,Iran

    4 Department of Research and Development,Sharif Ultrahigh Nanotechnologists(SUN)Company,P.O.Box:13488-96394,Tehran,Iran

    5 Nanotechnology Department,Agricultural Biotechnology Research Institute of Iran(ABRII),AREEO,3135933151 Karaj,Iran

    1.Introduction

    Acid gases such as carbon dioxide in natural gas cause serious damages to re finery equipment and pipelines due to their corrosive nature.Carbon dioxide reduces the heating value of natural gas as well.Removal of CO2from natural gas is of extreme importance in gas industry considering economic and HSE aspects[1].Recent advances in membrane technology make it as a convenient method of CO2separation comparing to the known conventional methods[2–6].MMMs consist of an organic polymer as continuous phase and an inorganic particle as dispersed phase.Although,these membranes offer promising separation properties,their brittleness and high production cost remain as very important challenges for their development and manufacturing[7].Different types of fillers have been tried to be dispersed into the polymer matrix including zeolites,carbon molecular sieves,C60,nanoparticles(e.g.TiO2,SiO2,and Zn O),carbon nanotubes,ionic liquids,and metal–organic frameworks.Incorporation of inorganic fillers within the polymer matrix can have a positive impact on gas selectivity of MMMs due to the increase in diffusion channels and selective gas permeation through their corresponding effective surface.Investigation of CO2/H2separation by MMMs(cellulose acetate–silicates)has been performed in UOP[8].As reported,incorporation of silicates into a polymer matrix can elaborate selectivity factor of CO2/H2in differential pressure of 50 psi(1 psi=6.895 k Pa)and 50/50 feed mixture of CO2/H2.

    Poly(ether-block-amide)is a block copolymer which is known under the trade name of PEBAX.This copolymer includes linear chains of rigid polyamide(PA)segments as impermeable phase and a permeable phase of flexible polyether(PEO)segments.The polyether soft segment is responsible for gas permeation across the membrane.The polyamide hard segment gives an appropriate mechanical strength to the polymer membrane and also is known for its tendency to be crystallized.Further,temperature of glass transition for two phases of polyether and polyamide are below and above room temperature,respectively[9].Properties of PEBAX copolymers including chemical resistance to solvents,mechanical strength as well astheir considerable permeability property particularly for polar gases e.g.CO2and H2S have been extensively investigated by scientists.Kim and Lee employed a sol–gel method for preparation of PEBAX/silica hybrid membranes.The enhanced permeation properties were attributed to the interactions between CO2molecules and SiO2nanoparticles within the polymer matrix[10].Zoppi et al.reported hybrid films of poly(ethylene oxideb-amide-6)containing sol–gel silicon or titanium oxide as inorganic fillers.In the case of films containing silicon oxide,PEBAX/TEOS(50/50 wt%),the selectivity value increased,whereas the selectivity value of polymer film of PEBAX/TiOP(50/50 wt%)became lower than that of pure PEBAX membrane[11].Car et al.[12]haveintensely studied gas transport properties of PEBAX membranes.Their results showed PEBAX/PEG membranes loaded with different amounts of liquid additives could significantly increase CO2flux at the pressures between 0.5 and 2 MPa.Separation measurements of CO2/CH4(50/50 vol%)mixed gas indicated that the rate of CO2flux was enhanced.As authors claimed,the increase in CO2flux is related to swelling behavior of blend membranes.CO2/CH4selectivity for PEBAX/PEG blend membranes at 0.8 MPa is similar to the pristine polymer.Moreover,at pressures higher than 0.8 MPa,CO2/CH4selectivity declined,the behavior which can be more enhanced in PEBAX/PEG membranes with PEG contents of higher than 50 wt%.

    In this work,we have conducted our research on the CO2/CH4separation by using MMMs.The goal was to study the impact of using silica nanoparticles on permeation of single and mixed gases through PEBAX/FS membranes.Highly CO2selective composite membranes were obtained when silica nanoparticles were homogeneously integrated within the polymer matrix.The permeation behavior of CO2and CH4through the pristine and mixed matrix membranes was demonstrated in that the permeability values of both penetrants are usually increased when the feed pressure is elevated from 1 to 3.5 MPa.However,the increase in the permeability of CO2is well above that of CH4so that a distinguished increase in both of ideal and binary gas selectivity of CO2/CH4can be approached.Furthermore,in the case of mixed matrix membrane containing 4.6 wt%FS,a unique selectivity increase was observed which was well above that of the pristine membrane that is the only detectable gas in the permeate side of the membrane was CO2as detected by gas chromatography(GC).As a result,the permeability properties of CO2/CH4gas pair were well beyond the Robeson upper bound[13,14].This approach will pave the way towards large scale gas sweetening process based on membrane technology.

    2.Experimental

    2.1.Materials

    PEBAX? MH 1657 was supplied by Arkema(French).PEBAX? MH 1657 is a thermoplastic elastomer consisting of 60 wt%poly(ethylene glycol)as polyether phase and 40 wt% poly Poly[imino(1-oxohexamethylene)]as polyamide 6 phase(see Table 1).The hydrophobic FS under the trade name of AEROSIL R972 was provided by Degussa(Germany)(see Table 2).Silicananoparticles were synthesized based on hydrophilic silica.The nanoparticles were treated by dimethyldichlorosilane(DDS)as a hydrophobic surface modifier.

    Table 1 Physical properties of PEBAX MH 1657

    Table 2 Physical properties of FS

    2.2.Stepwise membrane preparation

    MMMs based on PEBAX 1657 copolymer were prepared by a solution-casting technique.The thermal treatment of PEBAX pellets and FS was performed at 80 °C and 120 °C for 6 h and 24 h,respectively.

    In order to prepare the FS containing membrane,an appropriate amount of FS was dispersed into a solvent mixture of ethanol/water(70/30 wt%)by continuous stirring(24 h at room temperature).Then,the suspension solution was sonicated for 1 h to obtain a uniform and homogenous suspension.Next,the suspension solution was warmed up to 80°C and PEBAX pellets were added under continuous stirring at re flux conditions at the desired temperature for 5 h.To eliminate gas bubbles trapped in the suspension,it was settled for 15 min at 80°C.To obtain a homogenous mixture,it was filtered and then poured into a Petri dish.The dried samples were obtained by placing them in a vacuum oven at 80°C for 24 h.The samples were detached by hexane solvent.

    3.Membrane Characterization

    To visualize fine morphology of top surface and cross-section of untreated PEBAX and PEBAX/FS membranes,a field emission scanning electron microscope(FESEM),MIRA TESCAN model at 15 kV voltage was applied.

    The morphological structure of the PEBAX matrix containing silica nanoparticles was studied by Scanning Atomic Force Microscopy(AFM)as well.The qualitative surface scanning was done by using a universal scanning probe microscope(SPM)analyzer,Solver P-47H AFM(NT-MDT)model in the non-contact mode and at room temperature.

    Characterization of functional groups of MMMs and pristine membrane was provided by FTIR analysis.The spectra of the samples were recorded in the range of 500–4000 cm?1wavenumber,by using an FTIR spectrometer,ISS-88 Bruker model.

    The experimental density of the samples was determined by a standard buoyancy method.The experimental density for each sample was determined using the following equation[15,16]:

    where ρfand ρ0(g·cm?3)present the densities of sample in dried form and auxiliary liquid,respectively.wtairis the mass of the dry sample at room temperature and the mass of the sample in the auxiliary liquid is shown as wtairand wtax,respectively.By using the volumefraction and known densities of PEBAX and silica nanoparticles,the theoretical density for PEBAX containing silica can be calculated according to the additive model which is expressed as the following equation:

    where ρ1(2.1 g·cm?3)andρ2(1.02 g·cm?3)are theoretical densities of PEBAX and FS,respectively.?1and ?2are the volume fractions of PEBAX and FS in the as-prepared MMMs.

    Fig.1.Surface scan of(a)pristine PEBAX,(b)PEBAX/4.6 wt%FS by AFM method.

    As for the membranes with nonporous structure,the rate of gas transport through the polymer membrane is controlled by the so called unoccupied volume(free volume)which exists in between polymer chains.In the case of semi-crystalline polymers,gas molecules can be only diffused across amorphous regions while crystalline regions act as a barrier against gas diffusion.By using the results of determined densities,fractional free volume(FFV)can be estimated by Bondi's group contribution method as follows:

    where V(cm3·g?1)presents the specific volume of the polymer chains and V0(cm3·g?1)stands for occupied volume by polymer chains at 0 K which is equal to 1.3Vvdwof the repeat units[16].

    4.Gas Permeation Measurements

    4.1.Gas permeation set-up

    Gas permeation through membranes was measured by constant pressure,variable volume technique.The digital flow meter was used to measure gas flow rates and a GC analyzer was responsible for the gas flow analysis of permeate and retentate.The measurements were conducted at various feed pressures at room temperature.The analysis of mixed gas was performed with a Varian Gas Chromatograph which was equipped with a TCD detector using the integral gas permeation also called time-lag method.The mass flow control(MFC)unit was used to read the feed gas flow to the inlet chamber and also a pressure transducer and a temperature transducer were applied to control the feed flow into the reservoir[17].The permeation cell was sealed by a pair of O-rings(Viton?).The feed gas after passing through the membrane was sent to the GC analyzer.The effective surface area of membrane cell was 56.71 cm2.

    4.2.Gas permeability determination

    Single gas permeability through polymer membrane can be calculated in a steady-state by the following equation:

    Fig.2.FESEM images of top surface of a)pristine and b)PEBAX/4.6 wt%FS membranes.

    wherein J[GPU,1 GPU=10?6cm3(STP),cm·cm?2·s?1·cmHg?1]is the gas flux according to Fick's first law,pf(cm Hg)and pp(cm Hg)represent feed and permeate pressures,respectively.T denotes the absolute temperature(K),A is the effective surface area of membranes for gas transport(cm2),l is the membrane thickness(cm),d V/d t represents the permeation volumetric flow rate(cm3(STP)·s?1)and P refers to the gas permeability[Barrer,1 Barrer=10?10cm3(STP)·cm·cm?2·s?1·cmHg?1].The selectivity factor(α?)of ideal gas can be expressed by the following equation:

    where Piand Pjare the permeability coefficients of pure gases i and j.Mixed gas permeance of gas i is calculated as follows:

    Q is the permeate flow rate in ml·s?1.XAand YAare the upstream and permeate mole fractions,respectively.pXand pYare the upstream and downstream total pressures(cm Hg),respectively.?XAand ?YArepresent the fugacity coefficients of upstream and downstream,respectively.A and l are the effective area and thickness for permeation in cm2and μm respectively.Pais the atmospheric pressure(cm Hg).

    The separation selectivity can be expressed as:

    5.Results and Discussion

    5.1.Exploring morphology of membranes by AFM characterization

    PEBAX as a semi-crystalline block copolymer consists of two phases:amorphous and crystalline phases that impart its unique properties.Fig.1a represents an AFM image of PEBAX in which components are irregularly oriented.The phase image(Fig.1a)indicated microphase separation of block copolymers,which resulted from an incompatibility of crystallinerigid and amorphous flexible blocks.As for phasic analysis,bright regions oriented randomly correspond to the crystalline domains,introducing a meso-structure consisting of stiff PA phase and glassy phase of PE as dark areas.The crystalline phases are surrounded by PE phase a soft continuous phase.The self-organized crystals indicate co-continuous morphology[18].PEBAX complex nature can be strongly related to the type of the steric conformations of polymer chains,caused by specific interactions of functional groups[16,19,20].

    The microphase separation in PEBAX copolymer between crystalline and amorphous phases can be clearly observed for pristine PEBAX whereas in the case of PEBAX/FS,the microphase separation cannot be distinguished(see Fig.1b).Fig.1 indicatesthat co-continuousstructures of PEBAX/FS are disorganized comparing to those of the pristine PEBAX.This results in decrease of crystallinity.AFM observation also revealed the integration of FS nanoparticles within the polymer matrix(see Fig.1b).

    5.2.SEM characterization

    Fig.2 shows the top-surface morphology of neat and FS containing membranes.SEM image of the pristine membrane(see Fig.2a)looks different from what was previously reported in the literature[21].The top-surface photomicrographs of pristine membrane clearly showseparate phases of PA proposed as crystalline rigid phase and PEO as amorphous phase.In fact,the systematic orientation can be attributed to the feature of copolymer structure,steric effect and also process of film preparation.

    Preparation of MMMs by loading silica nanoparticles within the PEBAX matrix results in significantly modified surface morphology.The crystalline phase undergoes more changes caused by FS existence within the PEBAX matrix,leading to a decrease in crystallinity value which is the result of disorganization of the PA phase.

    As can be seen from Fig.3,the cross-section scanning of neat membrane showed mesomorphic morphology[16,22].

    Fig.3.The cross-section image of PEBAX sample.

    Fig.4.The cross-section image of PEBAX/4.6 wt%FS membrane.

    Ascan beseen from Fig.4 at 5μm magnification,change in morphology is distinguishable for the FS containing film as compared with untreated membrane.It showed a zigzag-like morphology with circumstances of the organization along the cross-section and lateral stresses at the interface which may be related to process of solvent evaporation.Fig.4 particularly at 1 μm magnification displays silica nanoparticles dispersed within the polymer matrix.

    5.3.FFV determination

    The densities of the mixed matrix membranes are decreased by introducing various amounts of FS within the PEBAX matrix.Using FS within the PEBAX matrix leads to the decrease in the density value from 1.076 g·cm?3to 1.02 g·cm?3in the case that pristine membrane and membrane containing 4.6 wt%FS were employed,respectively.A change in density of PEBAX film can have an impact on free volume of the film.As for pristine membrane,FFV is calculated to be 0.374 while PEBAX/4.6 wt%FS membrane exhibits finely tuning free volume architecture(see Fig.5).The increase in FFV value corresponds to the decrease in the film density when FS content within the polymer matrix is increased.In fact,CO2transport can be enhanced when desirable free volumes are constructed[16].

    5.4.Feed pressure dependence of perm selectivity

    Generally,PEBAX membranes possess a nonpolar/polarizablebased gas separation property that makes this type of membranes applicable to separation of polarizable gases such as CO2from nonpolar gases like CH4.In this section,the effect of an increase in upstream pressure on permeability properties of samples is investigated.In order to obtain an ideal permeation property of a PEBAX membrane,the singlegas measurements of CO2and CH4gasesthrough the polymer films were performed at ambient temperature and at upstream pressures of 1.0,1.5,2.0,2.5,3.0,and 3.5 MPa.The permeation of the binary gas mixture of CO2/CH4(4.8 mol%CO2in CH4)was also investigated and analyzed by GC.Ascan beseen from Figs.6 and 7,the CO2permeability as a function of fugacity strongly increases whereas the least changes for CH4permeability as a function of fugacity are recorded.

    Fig.5.FFV of the films as a function of FS loading and density values.

    In the case of CO2,the results clearly show that by increasing upstream pressure from 1.0 to 3.5 MPa,permeability values elaborated from 80 to 162 Barrer(see Figs.6 and 7).Permeability values of CH4are elevated from 1.7 to 2.5 Barrer by increasing upstream pressure from 1 to 3.5 MPa.

    Figs.8 and 9 indicate the permeation behavior of CO2and CH4through the BEBAX/4.6 wt%FS membrane.Gas permeabilities of both CO2and CH4are increased when the feed pressure is elevated from 1 to 3.5 MPa.The result is strongly correlated to the effect of FFV,which is calculated to be 0.381 for BEBAX/4.6 wt%FS membrane as compared with FFV of pristine PEBAX with the value of 0.374.

    Fig.6.Representation of the feed pressure dependency of CO2 and CH4 permeabilities where pristine membrane is utilized.(1 bar=105 Pa)

    Fig.7.Feed pressure dependency of CO2 and CH4 permeabilities,and the resultant ideal selectivity of CO2/CH4 where pristine membrane is utilized.

    The silica nanoparticles can trigger conformational changes in the matrix framework,thereby modifying the pore size and shape.The mutual interactions between FS and PEO/PA units can lead to a permeability improvement[23,24].As a consequence,CO2/CH4selectivity was found to be 64.54 for pristine membrane whereas the selectivity reached to 74.5 by loading 4.6 wt%of FS within the polymer matrix.The results showthat CO2/CH4selectivity increases slowly as feed pressure is increased.The ideal selectivity as a function of penetrant permeability is plotted in Fig.9.

    5.5.Permeation behavior of binary gas mixture

    In the case of the single gas permeation mentioned previously,permeability values are elaborated when PEBAX/4.6 wt%FS is utilized and the enhanced ideal selectivity of the treated membrane is a result of its permeability modification.In binary gas separation,the similar gas permeation behavior is also observed.

    Fig.8.Feed pressure dependency of CO2 and CH4 permeabilities where PEBAX/4.6 wt%FS membrane is utilized.(1 bar=105 Pa)

    Fig.9.Feed pressure dependency of CO2 and CH4 permeabilities,and the resultant ideal selectivity of CO2/CH4 where PEBAX/4.6 wt%FS membrane is utilized.

    Fig.10 shows chromatogram of CO2/CH4(4.8/95.2 mol%)mixture used as feed gas pair in this study.

    Figs.11 and 12 represent permeate-side CO2/CH4composition for pristine and PEBAX/4.6 wt%FS films,respectively.For all of the experiments feed pressure of 3 MPa was applied.According to Eq.(6),the value of 15.5 is calculated for separation selectivity,αij,of pristine membrane when the binary gas mixture of CO2/CH4was used.

    By utilizing FS within the polymer matrix,predominant changes in the permselectivity of the filled membrane can be observed.Surprisingly,the membrane containing 4.6 wt%FS exhibited astonishing selectivity result for separation of binary CO2/CH4gas mixture.As can be seen from Fig.12,CH4gas was not detected by GC in the permeate side.Therefore,the only detectable gas in the permeate side was CO2which can penetrate through the treated membrane.

    A very lownonpolar gas,CH4,transport through the membrane containing 4.6 wt%of FS was observed.The linear molecules of CO2shown an enhanced permeation through the membrane containing 4.6 wt%of nanosilicaparticlesin comparison to the permeation of larger CH4molecules that do not have dipole and quadrupole moment[25,26].

    Fig.10.Chromatogram of CO2/CH4 gas pair obtained by GC.

    Fig.11.Chromatogram of CO2/CH4 gas pair in permeate side of pristine PEBAX membrane.

    6.Conclusions

    PEBAX/4.6 wt%FS membrane exhibited a distinguished CO2/CH4selectivity for both single and binary gas systems.The results showed that the modified membrane indicates much higher permeance of CO2comparing to that of the pristine membrane when the feed pressure is elevated from 1 to 3.5 MPa.The silica nanoparticles give a permanent exclusivity to the PEBAX morphotropic matrix so that the membrane is prohibited from plasticization.Furthermore,adding 4.6 wt%FS within the polymer matrix causes structural changes of the membrane,leading to distinguished gas permeation properties and highly CO2selective characteristics.Fig.12 shows when PEBAX/4.6 wt%FS membrane is used for the permeation test of the binary gas mixture,CO2gas is the only detectable permeate gas,in other words,no CH4gas can be detected in the permeate side.

    Acknowledgements

    The authors gratefully acknowledge the financial support of Research Institute of Petroleum Industry.

    Fig.12.Chromatogram of CO2/CH4 gas pair in permeate side of PEBAX/4.6 wt%FS membrane.

    [1]A.L.Lee,H.L.Feldkrichner,S.A.Stern,A.Y.Houde,J.P.Gamez,H.S.Meyer,Field tests of membrane modules for the separation of carbon dioxide from low-quality natural gas,Gas Sep.Purif.9(1995)35–43.

    [2]Y.Dai,X.Ruan,Z.Yan,G.He,Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2capture,Sep.Purif.Technol.166(2016)171–180.

    [3]R.S.Murali,A.F.Ismaeil,M.A.Rahman,S.Sridhar,Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations,Sep.Purif.Technol.129(2014)1–8.

    [4]Y.Shen,H.Wang,X.Zhang,Y.Zhang,MoS2nanosheets functionalized composite mixed matrix membrane for enhanced CO2capture via surface drop-coating method,ACS Appl.Mater.Interfaces 35(2016)1–8.

    [5]M.Rahmani,A.Kazemi,F.Talebnia,P.Abbasszadeh Gamali,Fabrication and characterization of brominated matrimid?5218 membranes for CO2/CH4separation:Application of response surface methodology(RSM),e-Polymers 16(6)(2016)481–492.

    [6]M.Rahmani,A.Kazemi,F.Talebnia,Matrimid mixed matrix membranes for enhanced CO2/CH4separation,J.Polym.Eng.36(5)(2016)499–511.

    [7]R.W.Baker,Future directions of membrane gas separation technology,Ind.Eng.Chem.Res.41(2002)1393–1404.

    [8]S.Kulprathipanja,R.W.Neuzil,and N.N.Li,Separation of fluids by means of mixedmatrix membranes.U.S.Patent 4(1988),740,219.

    [9]L.Liu,J.H.Kim,S.Y.Ha,Y.M.Lee,Gas permeation of poly(amide-6-b-ethylene oxide)copolymer,J.Membr.Sci.190(2001)179–193.

    [10]J.H.Kim,Y.M.Lee,Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes,J.Membr.Sci.193(2001)209–225.

    [11]R.A.Zoppi,S.das Neves,S.P.Nunes,Hybrid films of poly(ethylene oxide-b-amide-6)containing sol–gel silicon or titanium oxide as inorganic fillers:Effect of morphology and mechanical properties on gas permeability,Polymer 41(2000)5461–5470.

    [12]A.Car,C.Stropnik,W.Yave,K.Peinemann,PEBAX?/polyethylene glycol blend thin film composite membranes for CO2separation:Performance with mixed gases,Sep.Purif.Technol.62(2008)110–117.

    [13]L.M.Robeson,Correlation of separation factor versus permeability for polymeric membranes,J.Membr.Sci.62(1991)165–185.

    [14]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(2008)390–400.

    [15]B.D.Freeman,H.Lin,in:H.Czichos,T.Saito,L.Smith(Eds.),Springer Handbook of Materials Measurement Methods,Springer,Berlin,German 2006,pp.371–387.

    [16]Y.Yumpolskii,B.D.Freeman,Membrane Gas Separation,John Wiley&Sons,2010.

    [17]W.Yave,A.Szymczyk,N.Yave,Z.Roslaniec,Design,synthesis,characterization and optimization of PTT-b-PEO copolymers:A newmembrane material for CO2separation,J.Membr.Sci.362(2010)407–416.

    [18]A.J.Ryan,Polymer science:designer polymer blends,Nat.Mater.1(2002)8–10.

    [19]N.Sergei,N.Magonov,D.H.Reneker,Characterization of polymer surfaces with atomic forced microscopic,Annu.Rev.Mater.Sci.27(1997)175–222.

    [20]W.K.Lee,C.S.Hab,Miscibility and surface crystal morphology of blends containing poly(vinylidene fluoride)by atomic force microscopy,Polymer 39(26)(1998)7131–7134.

    [21]L.Mengdie,Z.Xiangping,Z.Shaojuan,B.Lu,G.Hongshuai,D.Jing,Y.Qingyuan,Z.Suojiang,Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2separation,RSC Adv.7(2017)6422–6431.

    [22]W.Yave,A.Car,K.V.Peinemann,Nanostructured membrane material designed for carbon dioxide separation,J.Membr.Sci.350(2010)124–129.

    [23]W.J.Koros,Gas separation membranes:needs for combined materials science and processing approaches,Macromol.Symp.188(2002)13–22.

    [24]J.R.Fried,N.Hu,The molecular basis of CO2interaction with polymers containing fluorinated groups:Computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)p hosphazene],Polymer 44(2003)4363–4372.

    [25]F.Li,Y.Li,T.S.Chung,S.Kawi,Facilitated transport by hybrid POSS?–Matrimid?–Zn2+nanocomposite membranes for the separation of natural gas,J.Membr.Sci.356(2010)14–21.

    [26]I.H.Musselman,K.J.Balkus,J.P.Ferraris,Mixed-matrix membranes for CO2and H2gas separations using metal-organic frameworks and mesoporous hybrid silicas,Final Scientific/Technical Report,University of Texas at Dallas,USA,2008.

    久久久久久人人人人人| 天天躁夜夜躁狠狠躁躁| 成年动漫av网址| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 女人精品久久久久毛片| 丝袜美足系列| 亚洲精品一区蜜桃| 啦啦啦 在线观看视频| 嫁个100分男人电影在线观看 | 手机成人av网站| 99久久人妻综合| 欧美黑人欧美精品刺激| 久久精品亚洲av国产电影网| www.熟女人妻精品国产| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 色94色欧美一区二区| 91国产中文字幕| 免费av中文字幕在线| 成年人午夜在线观看视频| 精品亚洲成a人片在线观看| 岛国毛片在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲av电影在线观看一区二区三区| 9热在线视频观看99| 日韩视频在线欧美| 日韩人妻精品一区2区三区| 高清av免费在线| 国产精品久久久久成人av| 精品人妻1区二区| 大香蕉久久网| 免费在线观看黄色视频的| 国产成人av激情在线播放| 久久国产精品影院| 国产欧美日韩一区二区三 | 日韩大码丰满熟妇| 人人澡人人妻人| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av高清一级| e午夜精品久久久久久久| 热re99久久国产66热| 中文字幕制服av| 老汉色av国产亚洲站长工具| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 老汉色∧v一级毛片| 国产成人一区二区在线| 日本av免费视频播放| 亚洲情色 制服丝袜| 国产亚洲一区二区精品| 亚洲国产精品999| 日韩大码丰满熟妇| 亚洲精品久久午夜乱码| 老熟女久久久| 国产有黄有色有爽视频| 高清av免费在线| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| 电影成人av| 免费久久久久久久精品成人欧美视频| 一级黄色大片毛片| 亚洲精品美女久久久久99蜜臀 | 韩国精品一区二区三区| 午夜福利在线免费观看网站| 精品欧美一区二区三区在线| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 国产成人av教育| 国产1区2区3区精品| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| kizo精华| 国产男女超爽视频在线观看| 久久国产精品大桥未久av| 操出白浆在线播放| av国产久精品久网站免费入址| 国产爽快片一区二区三区| 亚洲中文av在线| 久久这里只有精品19| 亚洲国产最新在线播放| 午夜福利乱码中文字幕| 国产色视频综合| 91老司机精品| 在线亚洲精品国产二区图片欧美| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 黄色视频在线播放观看不卡| 1024香蕉在线观看| 一区二区av电影网| 欧美日韩av久久| 人妻 亚洲 视频| 天天躁夜夜躁狠狠久久av| 欧美少妇被猛烈插入视频| 久久国产精品影院| 看十八女毛片水多多多| 精品一区二区三区四区五区乱码 | 一区福利在线观看| 日韩av在线免费看完整版不卡| 欧美中文综合在线视频| 老司机在亚洲福利影院| 九草在线视频观看| 可以免费在线观看a视频的电影网站| 2021少妇久久久久久久久久久| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 真人做人爱边吃奶动态| 免费黄频网站在线观看国产| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 日本五十路高清| 51午夜福利影视在线观看| 美女扒开内裤让男人捅视频| 午夜视频精品福利| 国产高清不卡午夜福利| 狂野欧美激情性xxxx| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| 又大又爽又粗| 久久精品国产综合久久久| 亚洲成人免费av在线播放| 男女免费视频国产| 国产成人av激情在线播放| 国产爽快片一区二区三区| 亚洲九九香蕉| 伦理电影免费视频| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 天堂8中文在线网| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 精品久久久久久电影网| √禁漫天堂资源中文www| 青青草视频在线视频观看| 男人爽女人下面视频在线观看| 一区二区三区激情视频| 老司机影院成人| 大香蕉久久成人网| 99久久精品国产亚洲精品| av网站在线播放免费| 国产精品一区二区免费欧美 | 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 欧美精品一区二区大全| 国产精品人妻久久久影院| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 51午夜福利影视在线观看| 中文精品一卡2卡3卡4更新| a级毛片黄视频| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 中文字幕色久视频| 9191精品国产免费久久| 亚洲少妇的诱惑av| 尾随美女入室| 欧美老熟妇乱子伦牲交| 国产精品av久久久久免费| 超色免费av| 午夜激情久久久久久久| 免费一级毛片在线播放高清视频 | 国产欧美亚洲国产| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx| 国产成人欧美在线观看 | 啦啦啦啦在线视频资源| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 真人做人爱边吃奶动态| 亚洲人成网站在线观看播放| 操美女的视频在线观看| 亚洲三区欧美一区| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| videos熟女内射| a级毛片在线看网站| 国精品久久久久久国模美| 天天影视国产精品| 最黄视频免费看| 久久精品亚洲熟妇少妇任你| 国产精品.久久久| 高清av免费在线| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 老鸭窝网址在线观看| 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 最新在线观看一区二区三区 | 精品国产一区二区三区久久久樱花| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 亚洲国产av影院在线观看| 一二三四在线观看免费中文在| 国产精品九九99| 国产激情久久老熟女| 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 操出白浆在线播放| 日韩一区二区三区影片| 日本黄色日本黄色录像| 国产精品 欧美亚洲| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 91麻豆av在线| 丁香六月欧美| 久久久久网色| 建设人人有责人人尽责人人享有的| 妹子高潮喷水视频| 久热爱精品视频在线9| 亚洲欧美精品自产自拍| 国产成人精品无人区| 菩萨蛮人人尽说江南好唐韦庄| 久久青草综合色| 亚洲av成人不卡在线观看播放网 | 欧美日本中文国产一区发布| 亚洲人成电影免费在线| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| 你懂的网址亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 国产精品亚洲av一区麻豆| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 如日韩欧美国产精品一区二区三区| 国产成人av激情在线播放| 韩国精品一区二区三区| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 黄色 视频免费看| 最近中文字幕2019免费版| 首页视频小说图片口味搜索 | 亚洲成av片中文字幕在线观看| 99热国产这里只有精品6| av电影中文网址| 悠悠久久av| 成年人免费黄色播放视频| 99久久精品国产亚洲精品| a 毛片基地| 深夜精品福利| 日本色播在线视频| 久久久久久久久免费视频了| 婷婷色综合www| 丁香六月天网| 欧美日韩综合久久久久久| 极品人妻少妇av视频| 别揉我奶头~嗯~啊~动态视频 | 嫩草影视91久久| 波野结衣二区三区在线| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 成在线人永久免费视频| 男女边吃奶边做爰视频| 一级毛片女人18水好多 | 美女大奶头黄色视频| 精品少妇久久久久久888优播| 丁香六月天网| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 午夜福利影视在线免费观看| 欧美+亚洲+日韩+国产| 日本黄色日本黄色录像| 视频区图区小说| 久久热在线av| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 国产在视频线精品| 国产亚洲欧美在线一区二区| 99热全是精品| 国产精品九九99| 亚洲av电影在线观看一区二区三区| 精品国产一区二区三区四区第35| 各种免费的搞黄视频| 久久久久久人人人人人| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 久久精品国产综合久久久| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 精品亚洲乱码少妇综合久久| 女警被强在线播放| 999久久久国产精品视频| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 王馨瑶露胸无遮挡在线观看| 午夜福利在线免费观看网站| 午夜日韩欧美国产| 90打野战视频偷拍视频| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三 | 在线观看国产h片| 在线观看人妻少妇| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 免费看av在线观看网站| 亚洲色图 男人天堂 中文字幕| 亚洲精品第二区| 永久免费av网站大全| 99九九在线精品视频| 国产在线免费精品| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 亚洲av美国av| 我的亚洲天堂| 捣出白浆h1v1| 国产精品一区二区免费欧美 | 国产精品国产三级专区第一集| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 一边摸一边抽搐一进一出视频| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 各种免费的搞黄视频| 男女午夜视频在线观看| 99久久精品国产亚洲精品| 成人国产一区最新在线观看 | 亚洲欧美色中文字幕在线| 极品人妻少妇av视频| 自线自在国产av| 日韩伦理黄色片| 免费在线观看影片大全网站 | 国产成人系列免费观看| 18禁黄网站禁片午夜丰满| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av高清一级| 精品久久久精品久久久| 国产熟女欧美一区二区| 无限看片的www在线观看| 大陆偷拍与自拍| 丝袜美足系列| 一级毛片黄色毛片免费观看视频| 免费日韩欧美在线观看| 大型av网站在线播放| 一本久久精品| 免费观看av网站的网址| 久久精品亚洲熟妇少妇任你| 精品福利永久在线观看| 亚洲欧美中文字幕日韩二区| a级毛片在线看网站| 欧美精品亚洲一区二区| 亚洲一区二区三区欧美精品| 激情视频va一区二区三区| 18在线观看网站| 久热爱精品视频在线9| 亚洲激情五月婷婷啪啪| 激情视频va一区二区三区| 成人手机av| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 一边摸一边做爽爽视频免费| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 婷婷色av中文字幕| 人人妻人人澡人人看| 韩国精品一区二区三区| 欧美黄色淫秽网站| 国产精品香港三级国产av潘金莲 | 成年人免费黄色播放视频| 亚洲精品av麻豆狂野| 五月开心婷婷网| 免费一级毛片在线播放高清视频 | 久久鲁丝午夜福利片| 啦啦啦在线免费观看视频4| 黄色一级大片看看| 亚洲av片天天在线观看| 精品免费久久久久久久清纯 | 日本午夜av视频| 中文字幕制服av| 18禁黄网站禁片午夜丰满| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| 久久久国产欧美日韩av| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| 久久久精品94久久精品| 亚洲国产精品999| 亚洲精品久久午夜乱码| 免费高清在线观看日韩| 五月天丁香电影| 电影成人av| 欧美成人午夜精品| 波多野结衣一区麻豆| 飞空精品影院首页| 亚洲av男天堂| 一区福利在线观看| 久久热在线av| 午夜福利一区二区在线看| 精品国产乱码久久久久久小说| 一级黄片播放器| 免费观看人在逋| 久久综合国产亚洲精品| 免费少妇av软件| 久久人人爽人人片av| 亚洲伊人色综图| 亚洲熟女精品中文字幕| 777久久人妻少妇嫩草av网站| 最近中文字幕2019免费版| 免费av中文字幕在线| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 欧美成人精品欧美一级黄| 超色免费av| 曰老女人黄片| 男女免费视频国产| 不卡av一区二区三区| 叶爱在线成人免费视频播放| 午夜福利视频精品| av有码第一页| 啦啦啦在线免费观看视频4| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 国产91精品成人一区二区三区 | 亚洲国产精品国产精品| 亚洲伊人久久精品综合| www.自偷自拍.com| 国产一区二区三区av在线| 久久人人爽人人片av| 久久99一区二区三区| 日韩免费高清中文字幕av| 亚洲男人天堂网一区| 成人国语在线视频| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 99久久综合免费| 大香蕉久久网| 久久影院123| 80岁老熟妇乱子伦牲交| 最新在线观看一区二区三区 | 777久久人妻少妇嫩草av网站| 欧美97在线视频| 久久久精品国产亚洲av高清涩受| 国产一区二区激情短视频 | 天天添夜夜摸| 国产av国产精品国产| 深夜精品福利| 在线观看国产h片| 国产野战对白在线观看| 人人妻人人澡人人看| 中文字幕制服av| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 少妇粗大呻吟视频| 婷婷色麻豆天堂久久| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美色中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 国产又爽黄色视频| 国产精品成人在线| 亚洲精品第二区| 一级片免费观看大全| 女性被躁到高潮视频| 人成视频在线观看免费观看| 手机成人av网站| 一级片免费观看大全| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 久久 成人 亚洲| 尾随美女入室| 在线观看国产h片| 国产欧美日韩精品亚洲av| 久久青草综合色| 大香蕉久久网| 91精品伊人久久大香线蕉| 国产老妇伦熟女老妇高清| 在线看a的网站| 2021少妇久久久久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产色婷婷电影| 中文字幕高清在线视频| 国产伦理片在线播放av一区| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 亚洲,欧美,日韩| 日本av手机在线免费观看| 亚洲男人天堂网一区| 搡老乐熟女国产| 午夜福利,免费看| 一区二区三区四区激情视频| 19禁男女啪啪无遮挡网站| 久久综合国产亚洲精品| 91精品三级在线观看| 一级毛片女人18水好多 | 国产97色在线日韩免费| 久久久久久久国产电影| 国产麻豆69| 亚洲av成人不卡在线观看播放网 | 性少妇av在线| 精品亚洲成a人片在线观看| 可以免费在线观看a视频的电影网站| 美女中出高潮动态图| 激情五月婷婷亚洲| 亚洲久久久国产精品| 国产免费视频播放在线视频| 亚洲av日韩精品久久久久久密 | 午夜影院在线不卡| 一本—道久久a久久精品蜜桃钙片| 韩国高清视频一区二区三区| 久久久久久免费高清国产稀缺| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 亚洲国产精品一区二区三区在线| 777久久人妻少妇嫩草av网站| 日韩大码丰满熟妇| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 免费不卡黄色视频| 波多野结衣av一区二区av| 2018国产大陆天天弄谢| 在线观看免费视频网站a站| 欧美久久黑人一区二区| 日韩,欧美,国产一区二区三区| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 亚洲中文字幕日韩| 香蕉国产在线看| 美女视频免费永久观看网站| 日本午夜av视频| 丝瓜视频免费看黄片| 国产一区二区在线观看av| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 欧美日韩福利视频一区二区| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 男女高潮啪啪啪动态图| www.av在线官网国产| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品久久久久久| 亚洲五月色婷婷综合| 视频区图区小说| 国产精品香港三级国产av潘金莲 | 午夜福利视频在线观看免费| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 咕卡用的链子| 人成视频在线观看免费观看| 亚洲av综合色区一区| 午夜老司机福利片| 美女午夜性视频免费| 久久久久精品国产欧美久久久 | 成年动漫av网址| 精品第一国产精品| 国产男女超爽视频在线观看| 久久精品亚洲熟妇少妇任你| 日韩av在线免费看完整版不卡| 亚洲av综合色区一区| 婷婷色综合大香蕉| 美女视频免费永久观看网站| 又大又爽又粗| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 99国产精品一区二区三区| 久久鲁丝午夜福利片| 久久久久久久久免费视频了| 深夜精品福利| 啦啦啦在线免费观看视频4| 国产精品.久久久| 午夜福利影视在线免费观看| cao死你这个sao货| 性色av一级| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 在线观看国产h片| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区 | 精品国产乱码久久久久久男人| 免费日韩欧美在线观看| 国产在线视频一区二区| 日韩大片免费观看网站| 精品人妻在线不人妻| 黄色a级毛片大全视频| 夫妻性生交免费视频一级片| 水蜜桃什么品种好| 又大又黄又爽视频免费| 欧美黑人精品巨大| 91老司机精品| 国产精品av久久久久免费| 少妇 在线观看| 人人妻人人澡人人看|