• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on extraction kinetics of α-cyclopentylmandelic acid enantiomers with hydroxyethyl-β-cyclodextrin as chiral selector☆

    2018-05-25 07:50:41PanliangZhangPanJiangWeifengXuYuLiuBiquanXiongYunrenQiuKewenTang

    Panliang Zhang ,Pan Jiang ,Weifeng Xu ,Yu Liu ,Biquan Xiong ,Yunren Qiu *,Kewen Tang ,*

    1 Department of Chemistry and Chemical Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China

    2 School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China

    3 College of Chemical Engineering,Xiangtan University,Xiangtan 411105,China

    1.Introduction

    In pharmaceuticals industry, α-cyclopentylmandelic acid(α-CPMA,Fig.1)is the key intermediate of soft anticholinergics,e.g.,glycopyrrolate which is a well-known antagonist of muscarinic receptors and used for the treatment sialorrhea[1],hyperhydrosis[2],and overactive bladder and for presurgery treatment.Recently,Tóth-Sarudy et al.have investigated biological effects of pure stereoisomeric novel soft anticholinergics prepared by(R)-cyclopentylmandelic acid[3].Generally,the two enantiomers of chiral drug show different interactions with biological receptors or enzymes,hence giving rise to different biological effects.One enantiomer may produce desired pharmaceutical activities,while the other may be inactive or,in the worst cases,produce unwanted effects.Although this is well-known to us,the majority of commercial chiral drugs are racemic mixtures.It is a challenge to find an efficient and economic chiral separation method for obtaining enantiomerically pure compounds.

    During the past decades,the methods of enantioselective separation from racemic mixtures are rising rapidly such as kinetic resolutions[4],crystallization[5],chromatographic techniques[6],capillary electrophorsis(CE)[7],liquid membrane[8]and liquid–liquid extraction(LLE)[9–11].Recently,enantioselective liquid–liquid extraction(ELLE)with cyclodextrin derivatives as a specific chiral selector[12–14]seems to be an attractive alternative,because of the possibility to operate on all scales from laboratory separations to large-scale processes in the chemical industry.Using cyclodextrin derivatives also has the advantages of owning unique physical properties and nontoxic side effects.Nevertheless,those works mainly focuses on the study of thermodynamics of the corresponding extraction process and seeking for efficient extraction system.Only limited information concerning the kinetic study on chiral solvent extraction is available[15].Kinetics of the extraction process is very important for a deep understanding of the process,and for the selection,design,operation and reliable scale-up of the reactive extraction equipment.

    Therefore,the extraction kinetics should be carefully investigated to realize the industrial application of ELLE.Several technologies are employed to investigate the extraction kinetics,such as single drop technology[16,17],high-speed stirring method[18,19],micro fluidic device[20]and constant interfacial area cell[21–25].Compared to the other techniques,the Lewis cell(or constant interfacial area cell)has a wider range of applications and is easier to be operated.In this work,the Lewis cell was selected as a model reactor and the kinetics of reactive extraction of α-CPMA enantiomers by hydroxyethyl-βcyclodextrin(HE-β-CD)was studied.Equilibrium study shows that HE-β-CD has good recognition ability towards α-CPMA enantiomers.As is shown in our previous work,the distribution ratios of(S)-α-CPMA and(R)-α-CPMA(kS=2.212 and kR=1.293)and the enantioselectivity(α =1.711)indicates that HE-β-CD can be a good hydrophilic chrial selector for extractive separation of α-CPMA enantiomers[26].Additionally,two questions should also be considered.The if rst one is the intrinsic enantioselectivity,which indicates the upper limit of enantioselectivity that can be reached with HE-β-CD as chiral selector.The second one is the extraction kinetics because a reliable reactive extraction system requires not only the sufficiently high equilibrium selectivity,but also the sufficiently fast extraction kinetics.Hence,the intrinsic enantioselectivity and the process parameters affecting the extraction kinetics were investigated,such as agitation speed and interfacial area and so on to understand the transfer mechanism of the chiral extraction.

    Fig.1.Molecular structure of α-CPMA.

    2.Theory

    When the system for reactive extraction of α-CPMA enantiomers from organic phase to aqueous phase with HE-β-CD reaches its equilibrium,free HE-β-CD and the complex of HE-β-CD with α-CPMA enantiomers remain in the aqueous phase due to the high hydrophilicity of HE-β-CD,while α-CPMA enantiomers can distribute over the organic and aqueous phases.Therefore,the main reactions for enantioselective extraction of α-CPMA enantiomers by HE-β-CD are restricted to the aqueous phase.A homogeneous reaction model is applied as the suitable approach to study the reactive extraction of α-CPMA enantiomers by HE-β-CD in the Lewis cell.

    In the homogeneous reaction model,the mass transfer process can be described in various ways.In this paper,the two- film model as a classical mass transfer model was selected[10],and the mass transfer crossing the two phase interface is accompanied by the reactions in aqueous phases.

    The organic and aqueous bulk phases are assumed to be perfectly mixed,and physical equilibrium is assumed at the interface.At t=0,the mass transfer resistance in the organic phase film can be ignored.Therefore,the following equation is deduced,

    where,andrepresent the interfacial concentration of(R)-α-CPMA on the aqueous side and on the organic side,respectively;CR,0is the initial concentration of(R)-α-CPMA in organic phase,P the physical partition coefficient.

    Depending on the physicochemical and hydrodynamic properties of a reactive extraction system,four limiting regimes can be distinguished to characterize the extraction kinetics[27],which is summarized in Table 1[21].The dimensionless Hatta number(Ha)can be accustomed to indicate these regimes.The Hatta number can beexpressed as Eq.(2)for the forward part of the rate lawtaking place in the aqueous phase.in which,km,nis rate constant for(m,n)reaction;[CD]0represents the initial concentration of HE-β-CD in aqueous phase;Daq,Ris the diffusivity of(R)-α-CPMA in aqueous phase;KL,aq,Ris the physical mass transfer coefficient;m is the order of reaction with respect to(R)-α-CPMA;n is the order of reaction with respect to HE-β-CD.

    Table 1 The discern condition for regimes:Lewis cell

    The expressions of the extraction rate for relevant regimes were given by Doraiswamy and Sharma[27].For regime 3,namely the extraction accompanied by a fast reaction,the expression for the rate of extraction is given by the following Eq.(3):

    All of the above equations can be defined for(S)-α-CPMA in the same way.

    3.Materials and Methods

    3.1.Materials

    Hydrophilic extractant hydroxyethyl-β-cyclodextrin(HE-β-CD)was purchased from Zhiyuan Biotechnology Co.,Ltd.(Binzhou,China).Racemic α-cyclopentylmandelic acid(α-CPMA,purity ≥96.0%)was brought from Heowns Biochemical Technology Co.,Ltd.(Tianjing,China).1,2-Dichloroethane(purity≥99.0%)was purchased from Huihong Reagent Co.Ltd.(Changsha,China).Acetonitrile(HPLC grade)was supplied by Comio Chemical Reagent Co.Ltd.(Tianjin,China).

    3.2.Analytical method

    The quantification of α-cyclopentylmandelic acid (α-CPMA)enantiomers in aqueous phase were performed by HPLC(waters,USA),which was equipped with a Diamonsil C18 column(250 mm×4.6 mm I.D.,5 μm of particle size;Dikma Technologies).Detailed information about the analytical method is available in the literature[28].Results showed that the first eluted peak for all the chromatograms was(S)-α-CPMA and the second peak was(R)-α-CPMA.

    For p H measurements of the aqueous phase,a p H meter with a p H electrode(Orion,model 720A)was employed.

    3.3.Experiment procedure

    3.3.1.Determination of intrinsic enantioselectivity

    Phase solubility method is employed and detailed information about this method is available in the literature[29].Excess amounts of racemic α-CPMA were added to aqueous solutions containing increasing amounts of HE-β-CD(0,0.01,0.02,0.04,0.06,0.08,and 0.1 mol·L?1).The suspensions were shaken for 24 h in a water bath at 278 K.when the inclusion reaction reach its equilibrium,the suspensions were filtered through 0.45 μm membrane filters,appropriately diluted with the mobile phase and the total concentrations of α-CPMA enantiomers were analyzed by HPLC.The apparent inclusion complexation equilibrium constants are calculated from the phase solubility diagram.

    3.3.2.Determination of extraction kinetics

    The Lewis cell(Fig.2)used for the kinetic investigations was modified by Tang[24].The actual interface is controlled by a Te flon circular disc which is fixed in the middle of the cylindrical glass cell.The total area of the holes in the circular disks is changed to vary the actual interface from 7.07–15.9 cm2.The cell,equipped with a jacket,is thermo stated with a Scientz DC-1020 water bath(set at 278 K).To carry out an experiment,a fixed volume(110 ml)of phosphate buffer solution(p H value of 2.5)containing HE-β-CD was first introduced into the cell,and equal volume of organic phase was then added carefully without disturbing the interface.In this work,1,2-dichloroe thane was used as organic solvent and the substrate,α-CPMA racemate,was initially dissolved in the organic solvent.The stirrers were rotated at the same speed but in opposite directions.And it was the time to start timing when the blender was started.Then samples were taken out from the aqueous phase by injection syringe at specified time intervals.The concentration of α-CPMA enantiomers was determined by HPLC.The concentration of α-CPMA in the organic phase was calculated by mass balance.

    Fig.2.Diagram of the Lewis cell.

    3.4.Data treatment

    The initial extraction rate RR,0was obtained by the following equation:

    where,A is the interfacial contact are ataken as the total area of the holes in the circular disks;CR,aqis the concentration of(R)-α-CPMAin aqueous phase at time t;Vaqand Vorgare the volume of the aqueous and organic phase,respectively.Eq.(4)can be defined for(S)-α-CPMA in the same way.

    4.Results and Discussion

    4.1.Determination of physical mass transfer coefficient

    The value of physical mass transfer coefficient KLis required for further confirming the regime of reactive extraction.This was obtained by conducting physical extraction(diluent only)of α-CPMA enantiomers from the organic phase.For a batch process,a differential mass balance yields the following equation:

    According to Eq.(1),Eq.(5)was integrated,the time-dependent concentration of(R)-α-CPMA in aqueous phase is given by:

    The plot of 1/(1+P)ln[PCR,0/(PCR,0?(1+P)CR,aq)]versus time(t)yielded as traight line,as shown in Fig.3.The corresponding slope of the line was used to evaluate KL,aq,Ras 1.499×10?6m·s?1.As the two enantiomers have the same physical properties,KL,aq,Sis equal to KL,aq,R.

    Fig.3.The plot of ln[C*R,aq/(C*R,aq? C R,aq)]versus time(t).Conditions:[α-CPMA]0=5 mmol·L?1,A=12.56 cm2,N=75 r·min?1,T=278 K.R2=0.988.

    4.2.Determination of intrinsic enantioselectivity

    The intrinsic enantioselectivity is defined as the ratio of the inclusion complexation equilibrium constants for(R)-and(S)-α-CPMA(KRand KS,respectively).The inclusion complexation equilibrium constants are determined by a phase solubility method.Fig.4 shows the phase distribution diagrams for(R)-and(S)-α-CPMA in an aqueous solution with increasing the concentration of HE-β-CD under temperature of 298 K.It is found that the solubility of(R)-and(S)-α-CPMA increases linearly with the increase of HE-β-CD concentration.Consequently,the diagrams can be classified as ALtype,indicating that a 1:1 inclusion complex is formed between HE-β-CD and α-CPMA enantiomer.According to the method described in the literature[29],KRand KSare calculated from the slope and the intercept of the phase solubility diagrams.KRand KSwere evaluated as61 L·mol?1and 117 L·mol?1,respectively and the intrinsic enantioselectivity is estimated as 1.92,which shows the upper limit of enantioselectivity that can be reached with HE-β-CDaschiral selector.The KSis larger than KR,which indicates that HE-β-CD preferentially form inclusion complex with(S)-α-CPMA.The difference in inclusion complexation equilibrium constants gives the basic driving force for separation of α-CPMA enantiomers in the extraction process.It is very likely that extraction kinetics of(S)-α-CPMA is faster than that of(R)-α-CPMA.

    4.3.Determination of the kinetic regime

    4.3.1.Influence of agitation speed on the initial rate of extraction

    Fig.4.Phase distribution diagrams of(R)-and(S)-α-CPMA as a function of HE-β-CD concentration.Conditions:concentration of HE-β-CD is set at 0.01,0.02,0.04,0.06,0.08 and 0.1 mol·L?1;temperature is 278 K.

    Fig.5.Influence of agitation speed on the initial rate of extraction.Conditions:[αCPMA]0=5 mmol·L?1,[CD]0=0.05 mol·L?1,A=12.56 cm2,p H=2.5,T=278 K.

    In the reaction–diffusion system,the speed of agitation is a crucial parameter.Fig.5 shows the initial rate of reactive extraction of α-CPMA enantiomers at the speed of agitation ranging from 30 r·min?1to 105 r·min?1.In the agitating speed range from 30 to 60 r·min?1,it is found that the initial extraction rate increases with the stirring speed,indicating that the stagnant inter facial films are very thick in this agitating speed range.The increase of the agitation speed,which reduces the thickness of the stagnant films,can intensify the mass transfer.When the agitating speed further rises from 60 to 85 r·min?1,the initial rate of extraction is independent of the agitation speed,which indicates that the film is stable and thin enough to achieve a fast mass transfer.The reactions between selector and enantiomers are the rate determining step and the agitation speed has no effect on the overall extraction rate.It can be said that the extraction occurs in a“kinetic regime”.However,when agitation speed is higher than 90 r·min?1,the initial rate of extraction rises straightly with the increase of the agitation speed,and it was observed that the liquid–liquid interface was unstable.The increase in extraction rate may be due to an increase in the actual contacting area.Therefore,an agitation speed of 75 r·min?1is chosen for most of the experiments unless specified otherwise to ensure that all measurements are performed in the plateau region.In this case,one can study the reaction kinetics in the reactive extraction process by measuring extraction rate.Although any one of the stirring speeds in the range from 60 r·min?1to 85 r·min?1could theoretically be selected,75 r·min?1,the median of the range,was selected to make sure the extraction occurs in a “kinetic regime”and minimize the risk of disturbing the interface in this paper.When the interface is disturbed,it is difficult to acquire the accurate relation between the reaction rate and other factors.According to the classical limiting regime identification(Table 1),the reaction is deduced to occur either in regime 1 or 3.

    4.3.2.Influence of the interfacial area on the initial rate of extraction

    To further confirm the kinetic regime,the interfacial area varied at a constant agitation speed(75 r·min?1).As is shown in Fig.6,the volumetric extraction rate,in terms of the product of RR,0with a(a is the specific area,defined as the ratio of interfacial contact area to bulk phase volume),is in proportion to the interfacial area.Therefore,based on the above results,we can come to a conclusion that the reactions between HE-β-CD and α-CPMA enantiomers in a Lewis cell fall in regime 3.As a consequence,the extraction is a fast chemical reaction in the diffusion film.

    Fig.6.Influence of the interfacial area on the initial rate of extraction.Conditions:[α-CPMA]0=5 mmol·L?1,[CD]0=0.05 mol·L?1,N=75 r·min?1,p H=2.5,T=278 K.

    4.3.3.Influence of pH value on the initial rate of extraction

    As is shown in Fig.7,the initial extraction rate keeps nearly unchanged at p H≤3.0 and then increases rapidly with the p H value.It is also observed that the difference of initial extraction rate between(R)-α-CPMA and(S)-α-CPMA keeps nearly unchanged at p H≤ 3.0 and then becomes smaller with the further increase of p H.Because α-CPMA is a weak acid and there exists an acid–base dissociation equilibrium for α-CPMA in the aqueous phase,the above observation may be explained by the fact that the existence form of the α-CPMA enantiomers in aqueous phase is changed with the p H of aqueous phase.At p H lower than 3.0,α-CPMA is predominantly in its molecular form.HE-β-CD mainly includes the molecular α-CPMA because the hydrophobic nature of it sinner cavity[30].In this case,most of enantiomers are extracted through the enantioselective complexation and the separation ability is enhanced.However,the molecular α-CPMA is a hydrophobic species,therefore the extraction rate is relatively low.With the increase of p H value,the amount of ionic α-CPMA enantiomers is increased.As HE-β-CD can hardly include ionic α-CPMA enantiomers,the amount of enantiomers that is extracted through the enantioselective complexation is decreased and the separation ability is reduced.Owing to the hydrophilicity of the ionic α-CPMA,the extraction rate is enhanced with the rise of p H value.Hence,except as otherwise specified in this work,all experiments are operated at p H=2.5.

    4.4.Determination of the reaction order

    4.4.1.Order with respect to α-CPMA

    Fig.7.Influence of p H value on the initial rate of extraction.Conditions:[α-CPMA]0=5 mmol·L?1,[CD]0=0.05 mol·L?1,A=12.56 cm2,N=75 r·min?1,T=278 K.

    The concentration of(R)-α-CPMA in the aqueous phase versus time at different initial concentration of α-CPMA in organic phase is shown in Fig.8.To determine the reaction order of α-CPMA,the initial extraction rate is plotted as a function of the initial concentration of α-CPMA in the organic phase,which is shown in Fig.9.It is obvious that the initial extraction rate for(S)-α-CPMA and(R)-α-CPMA is linearly proportional to their initial concentration.Regression analysis of the data yielded m=1(according to Eq.(3)).Both reactions are first order with respect to(S)-α-CPMA and(R)-α-CPMA.

    4.4.2.Order with respect to HE-β-CD

    The effect of HE-β-CD concentration in aqueous phase on the initial extraction rates was investigated in the range of 0 to 0.10 mol·L?1(Fig.10).There is clearly a linear relationship between the initial extraction rate and the concentration of HE-β-CD.Second order in HE-β-CD is obtained from regression analysis of the data according to Eq.(3).

    4.5.Rate constant

    For a(1,2)inclusion reaction in aqueous phase,the initial rate of the extraction can be expressed as:

    Fig.8.Variation of the(R)-α-CPMA concentration versus time at different initial concentration of α-CPMA in the organic phase.Conditions:[CD]0=0.05 mol·L?1,A=12.56 cm2,N=75 r·min?1,p H=2.5,T=278 K.

    Fig.9.Influence of α-CPMA concentration on the initial rate of extraction.Conditions:[CD]0=0.05 mol·L?1,A=12.56 cm2,N=75 r·min?1,p H=2.5,T=278 K.

    Fig.10.Influence of HE-β-CD concentration on the initial rate of extraction.Conditions:[CPMA]0=5 mmol·L?1,A=12.56 cm2,N=75 r·min?1,p H=2.5,T=278 K.

    The value of Daq,Rof 4.158 × 10?10m2·s?1was estimated by Wilke–Chang equation.Daq,Sis equal to Daq,Rbecause of the similar physico-chemical properties.The value of rate constant km,n,Sand km,n,Rwas calculated from Eqs.(7)and(8)as 2.056 × 10?3m6·mol?2·s?1and 1.459 × 10?3m6·mol?2·s?1,respectively.The rate constant for(S)-α-CPMA is larger than that for(R)-α-CPMA,the results are consistent with the inclusion complexation equilibrium constants evaluated in this paper.Compared with the results for α-cyclohexyl-mandelic acid(α-CHMA)reported by our coworkers[21],the rate constants in this paper are one order smaller.Because the β-CD selector has a peculiar hydrophobic cave,and the hydrophobic property of α-CPMA is lower than α-CHMA,the inclusion of α-CHMA is easier than inclusion of α-CPMA,which may explain why the rate constants for α-CPMA is smaller than for α-CHMA.

    For a(1,2)reaction,the Hattanumber can be expressed by following equations:

    To verify that kinetics of the reactive extraction fall into regime 3,the values of the parameter Ha were evaluated by Eqs.(9)and(10).According to results mentioned above,HaSand HaRwere calculated as 30.84 and 25.97,respectively.The above results reflect the intrinsic kinetics of the extraction process.Because Ha is higher than 2 for both of the enantiomers,conditions for validation of regime 3,this reactive extraction process is accompanied by a fast reaction.Generally,a practical extraction process that is performed for a technological purpose,is usually operated under conditions where the two phases are vigorously mixed,in order to shorten the extraction time as much as possible.Therefore,the practical processes are generally reaction-controlling processes.Thus,the “fast reaction”nature made the reactive extraction of α-CPMA enantiomers by HE-β-CD very promising in industrial application.

    5.Conclusions

    Kinetic study on liquid–liquid reactive extraction of α-CPMA enantiomers with HE-β-CD was performed in a Lewis cell.The inclusion complexation equilibrium between HE-β-CD and α-CPMA enantiomers was studied by phase solubility method to gain an insight into the nature of extraction process.Results indicated that HE-β-CD preferentially form inclusion complex with(S)-α-CPMA.The intrinsic enantioselectivity is estimated as 1.92.The extraction is enhanced by the “fast chemical reaction”between HE-β-CDand α-CPMA enantiomers.The value of rateconstant km,n,Sand km,n,Rwas obtained as2.056×10?3m6·mol?2·s?1and 1.459 × 10?3m6·mol?2·s?1,respectively.The reactions are of first order dependent on α-CPMA enantiomers and second order with respect to HE-β-CD.The results obtained in this paper will be useful for the design and operation of reactive extraction in large-scale.

    Nomenclature

    A the interfacial contact area taken as the area of the disc,m2

    a specific area(area/volume),m?1

    C concentration,mol·m?3

    D diffusivity,m2·s?1

    Ha Hatta number

    KL,aqphysical mass transfer coefficient of α-CPMA in aqueous phase

    k the rate constant of reaction

    P the physical distribution ratio

    V the volume of each phase,m3

    [] concentration,mol·m?3

    Subscripts and Superscripts

    aq aqueous phase

    m order of reaction with respect to α-CPMA

    n order of reaction with respect to HP-β-CD

    org organic phase

    ov over all(both phase)

    0 initial value

    * the value on the phase interface

    [1]D.Z.Tscheng,Sialorrhea-therapeutic drug options,Ann.Pharmacother.36(2002)1785–1790.

    [2]V.Bajaj,J.A.A.Langtry,Use of oral glycopyrronium bromide in hyperhidrosis,Br.J.Dermatol.157(2007)118–121.

    [3] é.Tóth-Sarudy,G.Tóth,I.Pallagi,G.Seres,B.Vitális,M.Tapfer,V.Perczel,I.Kurucz,N.Bodor,Z.Zubovics,Preparation and biological effects of pure stereoisomeric novel soft anticholinergics,Pharmazie 61(2006)90–96.

    [4]S.E.Schaus,B.D.Brandes,J.F.Larrow,M.Tokunaga,K.B.Hansen,A.E.Gould,M.E.Furrow,E.N.Jacobsen,Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral(salen)Co III complexes.Practical synthesis of enantioenriched terminal epoxides and 1,2-diols,J.Am.Chem.Soc.124(2002)1307–1315.

    [5]S.K.Tulashie,H.Lorenz,A.Seidel-Morgenstern,Solubility of mandelic acid enantiomers and their mixtures in three chiral solvents,J.Chem.Eng.Data 55(2010)5196–5200.

    [6]V.Schurig,Separation of enantiomers by gas chromatography,J.Chromatogr.A 906(2001)275–299.

    [7]T.Yu,Y.X.Du,B.Chen,Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis,Electrophoresis 32(2011)1898–1905.

    [8]Q.Ferreira,I.M.Coelhoso,N.Ramalhete,H.M.C.Marques,Resolution of racemic propranolol in liquid membranes containing TA-β-cyclodextrin,Sep.Sci.Technol.41(2006)3553–3568.

    [9]A.Holbach,J.Godde,R.Mahendrarajah,N.Kockmann,Enantioseparation of chiral aromatic acids in process intensified liquid–liquid extraction columns,AIChE J.61(2015)266–276.

    [10]M.Steensma,N.J.M.Kuipers,A.B.de Haan,G.Kwant,Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines,amino acids and amino-alcohols,Chem.Eng.Sci.62(2007)1395–1407.

    [11]B.Schuur,J.G.M.Winkelman,H.J.Heeres,Equilibrium studies on enantioselective liquid–liquid amino acid extraction using a cinchona alkaloid extractant,Ind.Eng.Chem.Res.47(2008)10027–10033.

    [12]K.W.Tang,J.Cai,P.L.Zhang,Equilibrium and kinetics of reactive extraction of ibuprofen enantiomers from organic solution by hydroxypropyl-β-cyclodextrin,Ind.Eng.Chem.Res.51(2012)964–971.

    [13]K.W.Tang,P.L.Zhang,C.Y.Pan,H.J.Li,Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydropholic β-cyclodextren derivatives,AIChE J.57(2011)3027–3036.

    [14]F.Jiao,X.Chen,W.Hu,F.Ning,K.Huang,Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors,Chem.Pap.61(2007)326–328.

    [15]F.A.Poposka,K.Nikolovski,R.Tomovska,Kinetics,mechanism and mathematical modelling of extraction of citric acid with isodecanol/nparaffins solutions of trioctylamine,Chem.Eng.Sci.53(1998)3227–3237.

    [16]M.I.Saleh,M.F.Bari,M.S.Jab,B.Saad,Kinetics of lanthanum(III)extraction from nitrate-acetato medium by Cyanex 272 in toluene using the single drop technique,Hydrometallurgy 67(2002)45–52.

    [17]N.E.EI-Hefny,S.EI-Dessouky,Equilibrium and kinetic studies on the extraction of gadolinium(III)from nitrate medium by di-2-ethylhexylphosphoric acid in kerosene using a single drop technique,J.Chem.Technol.Biotechnol.81(2006)394–400.

    [18]Y.Yulizar,A.Ohashi,H.Nagatani,H.Watarai,Kinetic study of Ni(II)and Zn(II)complexation with a pyridylazo extractant by a centrifugal liquid membrane method,Anal.Chim.Acta 419(2000)107–114.

    [19]H.Nagatani,H.Watarai,Direct spectrophotometric measurement of demetalation kinetics of 5,10,15,20-tetraphenylporphyrinatozinc(II)at the liquid-liquid interface by a centrifugal liquid membrane method,Anal.Chem.70(1998)2860–2865.

    [20]D.Ciceri,L.R.Mason,D.J.E.Hervie,J.M.Perera,G.W.Stevens,Modelling of interfacial mass transfer in micro fluidic solvent extraction:part II.Heterogeneous transport with chemical reaction,Micro fluid.Nano fluid.14(2013)213–224.

    [21]K.W.Tang,J.B.Miao,T.Zhou,Y.B.Liu,L.T.Song,Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin,Chem.Eng.Sci.66(2011)397–404.

    [22]J.C.Mailen,D.E.Eorner,S.E.Dorris,N.Pih,S.M.Robinson,R.G.Yates,Solvent extraction chemistry and kinetics of zirconium,Sep.Sci.Technol.15(1980)959–973.

    [23]K.L.Wasewar,A.B.M.Heesink,G.F.Versteeg,V.G.Pangarkar,Reactive extraction of lactic acid using alamine 336 in MIBK:Equilibria and kinetics,J.Biotechnol.97(2002)59–68.

    [24]M.M.Bora,S.Borthakur,P.G.Rao,N.N.Dutta,Study on the reactive extraction and stripping kinetics of certain β-lactam antibiotics,Chem.Eng.Process.47(2008)1–8.

    [25]P.L.Zhang,J.J.Luo,K.W.Tang,J.M.Yi,C.A.Yang,Kinetics study on reactive extraction ofD-p-hydroxyphenylglycine by BINAP-palladium complex in Lewis cell,Chem.Eng.Process.93(2002)50–55.

    [26]K.W.Tang,X.F.Feng,P.L.Zhang,W.F.Xu,Experimental and model study on separation of α-Cyclopentylmandelic acid enantiomers by liquid-liquid extraction,J.Chem.Eng.Data 61(2016)3090–3097.

    [27]L.K.Doraiswamy,M.M.Sharma,Heterogeneous Reactions:Analysis Examples and Reactor Design,Fluid–Fluid–Solid Reactions,2,John Wiley and Sons Ltd,NewYork 1984,pp.17–45.

    [28]S.Q.Tong,H.Zhang,M.M.Shen,Y.Ito,J.Z.Yan,Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids,Sep.Sci.Technol.50(2015)735–743.

    [29]T.Higuchi,K.A.Connors,Phase solubility techniques,Adv.Anal.Chem.Instrum.4(1965)117–212.

    [30]J.Mohanty,A.C.Bhasikuttan,W.M.Nau,H.Pal,Host?guest complexation of neutral red with macrocyclic host molecules:Contrasting p Kashifts and binding affinities for cucurbit[7]uril and β-cyclodextrin,J.Phys.Chem.B 110(2006)5132–5138.

    免费看光身美女| 啦啦啦在线观看免费高清www| 国产一区亚洲一区在线观看| 18禁在线无遮挡免费观看视频| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| 国产白丝娇喘喷水9色精品| freevideosex欧美| 五月玫瑰六月丁香| 亚洲精品日本国产第一区| 亚洲av综合色区一区| 成人午夜精彩视频在线观看| 欧美精品人与动牲交sv欧美| 久久人人爽人人爽人人片va| 嫩草影院入口| 又爽又黄a免费视频| 国产精品一区二区三区四区免费观看| 深夜a级毛片| 日本猛色少妇xxxxx猛交久久| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 免费大片黄手机在线观看| 久久久久久伊人网av| 国产精品爽爽va在线观看网站| 精品少妇久久久久久888优播| 久久久久网色| 美女中出高潮动态图| 黄色日韩在线| 91aial.com中文字幕在线观看| 男女边吃奶边做爰视频| 最近的中文字幕免费完整| 精品亚洲成国产av| 国产av精品麻豆| 美女主播在线视频| 亚洲精品久久午夜乱码| 性色av一级| a级一级毛片免费在线观看| 国产高清不卡午夜福利| 久久久久久久久大av| 在线观看免费高清a一片| a级毛色黄片| 久久这里有精品视频免费| 欧美日韩一区二区视频在线观看视频在线| 久久国产乱子免费精品| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品电影小说 | 午夜精品国产一区二区电影| 国产成人freesex在线| 国产乱人视频| 高清av免费在线| 亚洲四区av| 丝袜喷水一区| 国产免费福利视频在线观看| 欧美国产精品一级二级三级 | 直男gayav资源| 免费看不卡的av| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 欧美丝袜亚洲另类| 夜夜爽夜夜爽视频| 男的添女的下面高潮视频| 国产亚洲欧美精品永久| 久久久久网色| 欧美变态另类bdsm刘玥| 91aial.com中文字幕在线观看| 国产精品精品国产色婷婷| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| 99热国产这里只有精品6| 国产高清有码在线观看视频| 丝瓜视频免费看黄片| 五月开心婷婷网| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 黑人高潮一二区| 99久久精品国产国产毛片| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 国产在视频线精品| 亚洲精品成人av观看孕妇| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 免费不卡的大黄色大毛片视频在线观看| 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 亚洲成人av在线免费| 欧美bdsm另类| 久久6这里有精品| 免费看日本二区| 少妇高潮的动态图| 国产伦精品一区二区三区视频9| 亚洲欧美日韩卡通动漫| 亚洲精品国产av蜜桃| 女人久久www免费人成看片| 国内揄拍国产精品人妻在线| 日韩免费高清中文字幕av| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 99久久中文字幕三级久久日本| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 狂野欧美白嫩少妇大欣赏| 精品一区二区三卡| 深夜a级毛片| 日本黄色片子视频| 日韩视频在线欧美| 日韩人妻高清精品专区| 青春草亚洲视频在线观看| 日韩一区二区三区影片| 黄色一级大片看看| 各种免费的搞黄视频| 能在线免费看毛片的网站| 国产高清三级在线| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 干丝袜人妻中文字幕| 十八禁网站网址无遮挡 | 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| av在线观看视频网站免费| 舔av片在线| 国产v大片淫在线免费观看| 亚洲国产日韩一区二区| 久久久久久伊人网av| 午夜老司机福利剧场| 日本欧美视频一区| 亚洲精品乱码久久久久久按摩| 中国国产av一级| 中文字幕制服av| 国产在线视频一区二区| 国产精品av视频在线免费观看| 毛片一级片免费看久久久久| 国产在线一区二区三区精| 看十八女毛片水多多多| 日韩av免费高清视频| 99热全是精品| 少妇高潮的动态图| 黑人高潮一二区| 少妇 在线观看| 国产精品99久久久久久久久| 亚洲美女视频黄频| 精品一区二区三区视频在线| 国产伦在线观看视频一区| 久久精品久久久久久噜噜老黄| av国产久精品久网站免费入址| av在线app专区| 日本-黄色视频高清免费观看| 麻豆国产97在线/欧美| a级毛色黄片| 欧美日韩综合久久久久久| 日本vs欧美在线观看视频 | 晚上一个人看的免费电影| 伦精品一区二区三区| 日韩中字成人| 五月天丁香电影| 久久av网站| 成人国产麻豆网| 婷婷色综合www| 国产伦精品一区二区三区四那| 国产精品无大码| 丰满少妇做爰视频| 蜜桃在线观看..| 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说 | 草草在线视频免费看| 亚洲国产欧美人成| 一级黄片播放器| 久久国产精品大桥未久av | 91精品国产国语对白视频| 熟女人妻精品中文字幕| 女性生殖器流出的白浆| 精品久久久久久电影网| 日本爱情动作片www.在线观看| 免费黄网站久久成人精品| 精品国产露脸久久av麻豆| 国产精品免费大片| 91精品国产九色| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 在线观看三级黄色| 女的被弄到高潮叫床怎么办| 日本免费在线观看一区| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 久久这里有精品视频免费| 3wmmmm亚洲av在线观看| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 十分钟在线观看高清视频www | 久久久久国产精品人妻一区二区| 亚洲av二区三区四区| 97超视频在线观看视频| 晚上一个人看的免费电影| 永久网站在线| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 欧美激情极品国产一区二区三区 | 久久这里有精品视频免费| 中文字幕av成人在线电影| 一区二区三区乱码不卡18| 成人美女网站在线观看视频| 自拍偷自拍亚洲精品老妇| 国语对白做爰xxxⅹ性视频网站| 联通29元200g的流量卡| 欧美日韩视频精品一区| 国产淫片久久久久久久久| 日韩国内少妇激情av| 日韩大片免费观看网站| 青春草国产在线视频| 老司机影院毛片| 精品一区在线观看国产| tube8黄色片| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 国产成人精品婷婷| 亚洲,一卡二卡三卡| 亚洲自偷自拍三级| 午夜老司机福利剧场| 国产精品熟女久久久久浪| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 免费av不卡在线播放| 日韩av免费高清视频| 国产精品熟女久久久久浪| a级一级毛片免费在线观看| 男女边摸边吃奶| av一本久久久久| 国产69精品久久久久777片| 国产毛片在线视频| 免费人妻精品一区二区三区视频| 人人妻人人添人人爽欧美一区卜 | 国产色婷婷99| 亚洲精品aⅴ在线观看| 黑人猛操日本美女一级片| a级毛色黄片| 国产精品不卡视频一区二区| 成人黄色视频免费在线看| 欧美一区二区亚洲| 亚洲精品456在线播放app| 亚洲国产日韩一区二区| 人妻夜夜爽99麻豆av| 自拍欧美九色日韩亚洲蝌蚪91 | 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 黄色欧美视频在线观看| 国产成人精品久久久久久| 久久99热这里只有精品18| 国产精品久久久久久av不卡| 啦啦啦啦在线视频资源| 日日摸夜夜添夜夜添av毛片| 天堂中文最新版在线下载| 国产男人的电影天堂91| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 看十八女毛片水多多多| 五月伊人婷婷丁香| 亚洲高清免费不卡视频| 丝瓜视频免费看黄片| 久久久久久九九精品二区国产| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 久久ye,这里只有精品| 久久久久久久亚洲中文字幕| 黄片wwwwww| 51国产日韩欧美| 国产黄片美女视频| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 国产亚洲欧美精品永久| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看| 三级国产精品片| 欧美三级亚洲精品| 婷婷色综合www| 女人久久www免费人成看片| 一级二级三级毛片免费看| 国产成人精品一,二区| 男女下面进入的视频免费午夜| 五月玫瑰六月丁香| 狠狠精品人妻久久久久久综合| 日韩av在线免费看完整版不卡| 亚洲va在线va天堂va国产| 国产成人freesex在线| 狂野欧美激情性xxxx在线观看| 日日啪夜夜爽| 少妇人妻 视频| 一级av片app| 男女啪啪激烈高潮av片| 亚洲欧美一区二区三区国产| 久久热精品热| 国产黄色视频一区二区在线观看| 我的老师免费观看完整版| 六月丁香七月| 日本黄色日本黄色录像| 在线观看美女被高潮喷水网站| av专区在线播放| 国产一区亚洲一区在线观看| 国产色爽女视频免费观看| 视频区图区小说| 热re99久久精品国产66热6| 午夜福利高清视频| 日本欧美国产在线视频| 大香蕉久久网| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 国产男女内射视频| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 免费看日本二区| 久久99精品国语久久久| 色视频www国产| 欧美精品人与动牲交sv欧美| 黄色视频在线播放观看不卡| 国产女主播在线喷水免费视频网站| 欧美xxxx黑人xx丫x性爽| 免费看光身美女| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| 黑人猛操日本美女一级片| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 午夜福利在线在线| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 毛片女人毛片| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 午夜免费男女啪啪视频观看| 亚洲av电影在线观看一区二区三区| 国产高清三级在线| 交换朋友夫妻互换小说| 久久人人爽人人爽人人片va| 熟女人妻精品中文字幕| 老熟女久久久| 高清黄色对白视频在线免费看 | a级毛片免费高清观看在线播放| a级毛色黄片| av天堂中文字幕网| xxx大片免费视频| 日本一二三区视频观看| 另类亚洲欧美激情| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| 中文字幕制服av| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 久久久久性生活片| 伊人久久精品亚洲午夜| 少妇人妻久久综合中文| 国产 精品1| 精品少妇黑人巨大在线播放| av在线观看视频网站免费| 男男h啪啪无遮挡| 国产大屁股一区二区在线视频| 精华霜和精华液先用哪个| 啦啦啦啦在线视频资源| 国产 一区精品| 午夜激情福利司机影院| 国产永久视频网站| 丝袜脚勾引网站| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 交换朋友夫妻互换小说| 久久人人爽人人片av| 中文字幕av成人在线电影| 欧美xxxx性猛交bbbb| 国产永久视频网站| 建设人人有责人人尽责人人享有的 | 日日撸夜夜添| 少妇精品久久久久久久| 亚洲一级一片aⅴ在线观看| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www | 国产av一区二区精品久久 | 亚洲精品乱码久久久v下载方式| 看非洲黑人一级黄片| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 一级av片app| 婷婷色综合大香蕉| 国产欧美日韩一区二区三区在线 | 亚洲第一区二区三区不卡| 精品久久久精品久久久| 欧美xxⅹ黑人| 久久久久网色| freevideosex欧美| 极品教师在线视频| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 夜夜爽夜夜爽视频| 国产高清国产精品国产三级 | 舔av片在线| 亚洲无线观看免费| 久久国产亚洲av麻豆专区| 亚洲中文av在线| 国产精品久久久久久av不卡| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| av在线蜜桃| 一本一本综合久久| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 久久久久久人妻| 日韩制服骚丝袜av| 精品亚洲成a人片在线观看 | 日日摸夜夜添夜夜添av毛片| 国产av国产精品国产| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 一个人看的www免费观看视频| 一级毛片我不卡| 免费观看av网站的网址| 麻豆成人午夜福利视频| 国产精品偷伦视频观看了| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 国产免费又黄又爽又色| 噜噜噜噜噜久久久久久91| 人人妻人人爽人人添夜夜欢视频 | 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 国产人妻一区二区三区在| 午夜日本视频在线| 在线亚洲精品国产二区图片欧美 | 观看av在线不卡| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 久久精品国产a三级三级三级| 丰满人妻一区二区三区视频av| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 九草在线视频观看| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 亚洲熟女精品中文字幕| 久久久久久人妻| 一本色道久久久久久精品综合| 黄色欧美视频在线观看| 亚洲国产精品一区三区| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 日韩av不卡免费在线播放| 国产成人aa在线观看| 国产精品无大码| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 日韩一区二区视频免费看| 搡老乐熟女国产| 国产在线免费精品| 美女cb高潮喷水在线观看| 久久久久久九九精品二区国产| 美女高潮的动态| 亚洲精品日韩在线中文字幕| 亚洲精品国产av蜜桃| 久久久久视频综合| 日韩一区二区视频免费看| 少妇裸体淫交视频免费看高清| 亚洲成色77777| 日韩免费高清中文字幕av| 国产乱人视频| 亚洲精品国产av蜜桃| 国产欧美另类精品又又久久亚洲欧美| 国产av一区二区精品久久 | 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 亚洲经典国产精华液单| 亚洲综合精品二区| 中文天堂在线官网| 18禁动态无遮挡网站| 亚洲av.av天堂| 80岁老熟妇乱子伦牲交| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线 | 搡女人真爽免费视频火全软件| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 制服丝袜香蕉在线| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 亚洲三级黄色毛片| 青青草视频在线视频观看| 亚洲av二区三区四区| 丝袜脚勾引网站| 亚洲成人中文字幕在线播放| 最近最新中文字幕大全电影3| 狂野欧美激情性xxxx在线观看| 免费看不卡的av| 男女国产视频网站| 美女中出高潮动态图| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 精华霜和精华液先用哪个| 免费看日本二区| 精华霜和精华液先用哪个| 韩国av在线不卡| 日日啪夜夜撸| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 日韩电影二区| 啦啦啦在线观看免费高清www| 中文字幕久久专区| 777米奇影视久久| h视频一区二区三区| 国国产精品蜜臀av免费| 人妻 亚洲 视频| 激情五月婷婷亚洲| 亚洲av中文字字幕乱码综合| 色哟哟·www| 成人午夜精彩视频在线观看| 成人影院久久| 在线播放无遮挡| 久久久久久久精品精品| 久久鲁丝午夜福利片| 国产av国产精品国产| 黑丝袜美女国产一区| 免费观看的影片在线观看| 91久久精品电影网| 97精品久久久久久久久久精品| 国产午夜精品久久久久久一区二区三区| 国产大屁股一区二区在线视频| 亚洲国产精品一区三区| 日本免费在线观看一区| 亚洲精品中文字幕在线视频 | 国产精品人妻久久久影院| 色5月婷婷丁香| 99久久精品国产国产毛片| 少妇人妻一区二区三区视频| 日韩视频在线欧美| 久久 成人 亚洲| 日韩一本色道免费dvd| 亚洲av在线观看美女高潮| 久久久久人妻精品一区果冻| 你懂的网址亚洲精品在线观看| a级毛色黄片| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 毛片女人毛片| 最黄视频免费看| 久久精品熟女亚洲av麻豆精品| av在线播放精品| 国产爱豆传媒在线观看| 久久久久久久久久久丰满| 精品一区在线观看国产| 国产熟女欧美一区二区| 日本黄色片子视频| 欧美精品国产亚洲| 国产黄片美女视频| a级毛色黄片| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 国产片特级美女逼逼视频| 成人国产麻豆网| 18+在线观看网站| 日本一二三区视频观看| 五月伊人婷婷丁香| 午夜视频国产福利| 国产在视频线精品| 日韩中字成人| 国产精品国产av在线观看| 欧美xxxx黑人xx丫x性爽| av播播在线观看一区| 青春草视频在线免费观看| 国产精品久久久久久av不卡| av在线观看视频网站免费| 国产日韩欧美在线精品| 一区二区三区四区激情视频| av网站免费在线观看视频| 蜜桃久久精品国产亚洲av| 男女国产视频网站| 免费观看在线日韩| 中文字幕免费在线视频6| 搡老乐熟女国产| 国产成人精品久久久久久| 欧美高清性xxxxhd video| 丰满迷人的少妇在线观看| 国产免费一级a男人的天堂| 老熟女久久久| 午夜免费鲁丝| 国产乱人视频| 国产色爽女视频免费观看| 啦啦啦视频在线资源免费观看| 汤姆久久久久久久影院中文字幕| 一级爰片在线观看| 毛片一级片免费看久久久久| 国产精品成人在线| 黄色欧美视频在线观看| 好男人视频免费观看在线| 黄片无遮挡物在线观看| 美女中出高潮动态图| 能在线免费看毛片的网站| 欧美日韩精品成人综合77777| 国产av一区二区精品久久 | 91狼人影院| 国产精品嫩草影院av在线观看|