• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GPU-based discrete element simulation on flow stability of flat-bottomed hopper☆

    2018-05-25 07:50:39LiPengZhengZouLiboZhangQingshanZhuHongzhongLi

    Li Peng ,Zheng Zou ,Libo Zhang ,Qingshan Zhu ,*,Hongzhong Li ,*

    1 State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Hoppers have been widely employed to deposit or recycle granular materials in many areas such as chemical,energy,and food industries.A main issue concerned in using hoppers is the presence of unstable flow,which has a marked influence on operational stability of units.It is therefore important to study the factors affecting hopper flow stability,and establish the standard for judging the unstable hopper flow for reliable design and operation of hoppers.

    Actually,extensive studies have been performed to investigate the factors related to hopper flow stability,such as hopper pressure[1–3],hopper shapes[4,5],wall properties[6–9],and particle properties[10,11].Flow pattern has long been a hot topic in this field.By using the tracer technique,the flow pattern above the hopper outlet was first described by Kvapil[12]as four flow zones:slow motion zone,dilated core,dead zone,and free-fall zone.In 1961,Brown[13]developed the‘minimum energy theorem’to describe the boundary of the free-fall zone.Later Brown and Richards[14,15]photographed the free-fall boundary and named the boundary as the ‘free fall arch’.With increasing the pressure gradient in the hopper,the ‘free fall arch’evolves into a hemispherical cap which leads to an unstable flow.Hiroshi[16]put forward the critical point for the ‘free fall arch’between stable and unstable flow.According to his research,when the super ficial gas velocity(Ugs)through the boundary of the ‘free fall arch’was more than the minimum fluidization velocity(Umf),the hopper flow be came unstable.

    However,unstable flow occurs not only at the area above the hopper outlet,so the flow pattern inside the whole hopper was further studied.It has been accepted that there are two kinds of flow pattern inside the hopper:the mass flow[17]and the funnel flow[18].The most common flow pattern is the funnel flow.Tüzün[18]identified 4 zones in a flat bottomed hopper with the funnel flow:the stagnant zone,the converging flow zone,the transition flow zone and the plug flow zone.To exactly predict the flow zones,the discrete element method(DEM)[19–26]was adopted.In our previous work[27],the hopper flow was described as nine regions via the GPU-based DEM simulation,as shown in Fig.1.However,when the hopper flow trans forms into an unstable flow,it is not clear yet how the flow region change and the key transformation zone inside the hopper respond to the unstable state.Identification of the key transformation zone is helpful to establish a standard for judging the unstable flow,as well as for reliable design and operation of hoppers.

    The aim of this work was to identify the key transformation zone based on the hopper flow regions.The hopper flow was studied via both GPU-based DEM simulation[28]and experiments.The key transformation zone was revealed,and the standard for judging the unstable hopper flow was established.

    2.DEM Simulation

    The details about the DEM method[29–31]were given in our previous work[27];the Newton's second law was used to describe the motion of an individual particle as follows:

    Fig.1.Hopper flow regions.

    where miis the mass of the particle,g is the gravitational acceleration.viand ωiare the translational and angular velocity.Iiis the moment of inertial of the particle.R is the vector of the mass center of the particle to the contact point.μris the rolling friction coefficient.Rpis the particle radius.andare the normal and tangential contact forces.

    The simulation method is evaluated on the Mole-8.7 and Mole-8.5 GPU clusters at IPE,having 1 PetaELOPS peak performance in single precision[32]and using C2050(Fermi,with 448 thread processors)cards.The program runs at about 1.64×107pss.

    The parameters used in the DEM simulation as well as the properties of particles are listed in Table 1.The details were also given in our previous work[27].

    The voidage can be calculated by the correlations proposed by Liand Kwauk[33].The simulated voidage is compared with the results of correlations to validate the DEM model.The simulation process was the same in our early work[27].

    The results are illustrated in Fig.2.The Li's correlation is good at calculating the voidage.The simulated results agree well with Li's correlation.The flow regimes are studied based on both the particle velocity and voidage.The voidage agree well with the Li's correlation,and the flow rate reflecting particle velocity agree well with experimental ones in our early work[27],so the DEM model can be used to studied hopper flow regime.

    Table 1 Simulation parameters for the DEM model

    Fig.2.Voidage of the simulation and Li's correlation.

    3.Simulation and Experiments

    The flow rate was first simulated to study the hopper flow.The hopper structure is shown in Fig.3,the outlet size D0=13.3 mm.The simulation process is as follows:the hopper outlet was first closed.The hopper was packed with zirconia spheres to the height of 600 mm with the closed outlet.Then the hopper outlet was opened,the material height reduced with discharging.The discharge rate can be calculated at the bottom of the hopper.The simulated results are shown in Fig.4(a).

    The experiments were conducted to validate the simulation results.The structures of the experimental hopper and the simulated hopper are the same.The materials used in experiments were zirconia spheres,as shown in Fig.5.The zirconia spheres have a narrow particle size distribution and the averaged particle size is 0.73 mm.The experimental system is shown in Fig.6.The experimental process is the same with the simulation.The discharge rates can be measured by a container and a scale under the hopper.The mass of the container is changed every second to obtain the discharge rates of the hopper.The experimental results are shown in Fig.4(b).

    From the Fig.4,it can be seen that the simulation results showed good agreement with the experiments.As shown in Fig.4(a),with the material height(H)reducing,the discharge rate was nearly constant from H=600 mm to H=173 mm,the hopper discharge was stable.This is the same with the Janssen theory[1],which believes that the discharge rate is material height independent when the material height is higher than a critical value.

    Fig.3.Schematic diagram of the hopper.

    Fig.4.Discharge rate of the simulation and experiment.

    Fig.5.Zirconia spheres used in experiments.

    Fig.6.Schematic diagram of the experimental system.

    The discharge rate increased from H=173 mm in Fig.4(a),and decreased from H=124 mm.The experimental flow rate of the hopper with the material height of 130 mm was also higher than that of the other experimental results.It can be seen that when the material height in the hopper was less than 173 mm,the hopper discharge rate was not constant and started to fluctuate,which means the hopper discharge became unstable.

    4.Results and Discussion

    4.1.Flow regions

    Fig.7.Velocity distribution of the hopper with H h=362 mm:(a)UM:magnitude velocity;(b)UZ:Z-direction velocity;(c)UX:X-direction velocity;(d)UY:Y-direction velocity.

    Fig.8.Velocity distribution of the hopper with H l=150 mm:(a)UM:magnitude velocity;(b)UZ:Z-direction velocity;(c)UX:X-direction velocity;(d)UY:Y-direction velocity.

    To reveal the changes of the particle distribution,the flow regions of the hopper flow with the unstable discharge was com pared with that of the stable discharge.According to our research[27],the characteristics of the regions as follows:the loose packing region is the top area of the particles and has high axial voidage,which decreases with the height decrease along the hopper.The plug flow region has constant axial voidage.The transition flow region has nearly constant radial voidage.The shear layer has higher voidage than the hopper center area.For the converging flow region,the axial voidage increases with the height along the hopper decreasing,resulting the particles velocities increase with the height along the hopper decreasing.The vertical flow region,the centripetal flow region and the stagnant zone can be identified by the velocity distribution of particles.

    Based on the simulation,the discharge rate becomes unstable when the material height is less than 173 mm.So the hopper with H<173 mm can be chosen to analyze the flow regions of the unstable discharge,while the hopper with H>173 mm can be chosen to analyze the flow regions of the stable discharge.The flow regions of the hopper with the material height of 150 mm(Hl=150 mm)was compared with that of 362 mm(Hh=362 mm).The flow regions are analyzed based on the distributions of the velocity,axial voidage,and radial voidage.

    4.1.1.Velocity distribution

    The velocity distribution of the hopper with Hh=362 mm and Hl=150 mm are shown in Figs.7 and 8,respectively.The snapshots are cross-sections of 5 mm above the hopper outlet.For the hopper with Hh=362 mm,there are triangle zones as shown in Fig.7(a),where particles have the highest velocity due to the free-fall region.Just above the hopper outlet,particles have lower velocities than the free-fall region in the arch zone as shown in Fig.7(a),which can be divided into the vertical flow region and the centripetal flow region,as shown in Fig.7(b)and(c).As shown in Fig.8,for the hopper with Hl=150 mm,there are also free-fall region,centripetal region,and vertical flow region.

    4.1.2.Axial voidage

    The axial voidage of the hopper with Hh=362 mm and Hl=150 mm are shown in Fig.9.For the hopper with Hh=362 mm,at area C,the axial voidage is nearly constant due to the plug flow region,while for the hopper with Hl=150 mm,there is no constant axial voidage region,indicating that the plug flow region does not exist.

    Fig.9.Axial voidage of the hopper with H h=362 mm and H l=150 mm.

    Fig.10.Comparison of axial voidage of different radial positions for the hopper with H h=362 mm and H l=150 mm.

    Fig.11.Axial voidage of different radial positions of the hopper with H h=362 mm and H l=150 mm.

    Fig.12.Radial voidage distribution of the hopper with the material height of 362 mm and 150 mm.

    The axial distributions of voidage for different radial positions of the hopper with Hh=362 mm and Hl=150 mm are shown in Figs.10 and 11,respectively.As shown in Fig.10(d),for both hoppers,under the height of 80 mm,the voidage near the wall are a is the smallest because of the stagnant zone.In Fig.11 for 110 mm<h<362 mm,the axial voidage of r=11.2 mm is the highest compared to the other radii for the hopper with Hh=362 mm due to the shear layer,while for the hopper with Hl=150 mm,the axial voidage of r=11.2 mm is not the highest indicating that there is no shear layer.

    By comparison of the axial voidage distributions of different radial positions of the hopper,the hoppers with Hh=362 mm and Hl=150 mm both have loose packing region,converging flow region,and stagnant zone.However,the hopper with Hl=150 mm has no plug flow region and shear layer.

    4.1.3.Radial voidage

    The radial voidages of the hopper with Hh=362 mm and Hl=150 mm are shown in Fig.12.For the hopper with Hh=362 mm,the radial voidage of h=110 mm is different with the up and below area because of the transition flow region.While for the hopper with Hl=150 mm,the radial voidage all has the same trend,which indicates there is no transition flow region.

    By comparison of the radial voidage,the hopper with Hh=362 mm has transition flow region,but the hopper with Hl=150 mm has no transition flow region.

    4.1.4.Flow regions

    In summary,the flow regions for the hopper with unstable discharge(Hl=150 mm)are different from the hopper with stable discharge(Hh=362 mm).The hopper with the stable discharge has all the regions shown in Fig.1,but the hopper with the unstable discharge only has part of the regions,as illustrated in Fig.13.The hopper with unstable discharge has no plug flow region,transition flow region and shear layer.

    Fig.13.Flowregions for hopper with unstable discharge.

    4.2.Definition of the key transformation zone

    According to the analyses of the axial voidage in Fig.10,for h>110 mm,the voidage difference between stable discharge(Hh=362 mm)and unstable discharge(Hl=150 mm)is larger.And at h=110 mm,the largest difference shows around r=8.0 mm.According to the flow regions[27],particles around h=110 mm show characteristics of the transition flow region,so the biggest voidage difference shows around r=8.0 mm at the transition flow region,as the area A shown in Fig.14.The area A is defined as the key transformation zone.

    Fig.14.The key transformation zone.

    4.3.Standard for judging the unstable hopper flow

    4.3.1.Voidage of the key transformation zone

    To identify the relevance of the key transformation zone and the hopper flow stability,the voidage variation of the key transformation zone with the hopper material height decreasing was further studied.The result is shown in Fig.15.The voidage was nearly constant from H=600 mm to H=186 mm,however,the voidage clearly increased when the material height reduced to 186 mm.To further analyze the particle distribution in the hopper with the material height of 186 mm,the radial voidage of hopper with the material height of 186 mm(Hoper=186 mm)were compared with the hopper with Hh=362 mm and Hl=150 mm.

    4.3.2.Radial voidage

    Fig.15.Voidage of the key transformation zone with the material height reducing.

    Fig.16.Radial voidage of the hopper with H h=362 mm,H oper=186 mm and H l=150 mm.

    The radial voidages of the hopper with Hoper=186 mm,Hh=362 mm,and Hl=150 mm are shown in Fig.16.For h>110 mm,the voidage of the whole cross-section with Hoper=186 mm is larger than that with Hh=362 mm,but smaller than that with Hl=150 mm.For h<110 mm,the voidage of Hoper=186 mm is nearly the same with that of Hh=362 mm.At h=110 mm,the voidage at the wall area of Hoper=186 mm is different from that of Hh=362 mm.The voidage of r/R=8.0 with Hoper=186 mm is larger than that with Hh=362 mm,while the voidage of r/R=11.2 with Hoper=186 mm is smaller than that with Hh=362 mm.However at h=110 mm,the voidage at the hopper center area of Hoper=186 mm is nearly the same with that of Hh=362 mm.

    By comparison of the radial voidage,for the area up the transition flow region,the radial voidage of the hopper with Hoper=186 mm is different from that with the stable situation.For the area under the transition flow region,the axial voidage is still the same with the stable situation.While for the transition flow region,the particle distribution near the wall area changes,particles show the characteristic of the converging flow region.For the converging flow region,the axial voidage increases with the material height along the hopper decreasing[27].Based on the moving bed theory[33],the correlation of the stress acting on the particles and the voidage is as follows:

    So the stress acting on the particles decreases with the material height along the hopper decreasing,indicating the forces acting on the particles is not constant,resulting in the particles velocities are also not constant.Then the particles have been accelerated in the region.This can be understood by the stress analysis.The stress distribution of the hopper with Hh=362 mm and Hoper=186 mm are shown in Fig.17.For the hopper with Hh=362 mm,the stress around the h=110 mm is nearly constant,while for the hopper with Hoper=186 mm,the stress decreases form 1662 Pa to 1585 Pa.So particles around the h=110 mm have accelerations when the material height in the hopper reduces to 186 mm.

    It is reasonable to derive that the reduction of the material height inside the hopper would result in the variation of the particle distribution.At the key transformation zone,particle distribution changes and shows the characteristic of the converging flow region.This was believed to be an unstable state for the operation of the hopper because particles started to accelerate.Therefore,a sharp increase of the voidage at the key transformation zone is considered as the standard for judging the unstable hopper flow.

    In this work,the voidage increased when the material height was 186 mm,it is close to the total height of the area A and B are 180 mm in Fig.9(a).It can be assumed that the area Cwhich has constant particle voidage disappeared with the material height reducing.However,the top area A and the bottom area B were left.The voidage of the top area A is variable because of the loose packing region.While the voidage of the bottom area B is variable because of the converging flow region,so the particle distribution in the area A and B are both variables.To sum it up,the hopper flow is unstable when the hopper only has the top area and the bottom area,which is defined as the ‘Top–Bottom effect’of the hopper.

    Fig.17.Stress distribution of the hopper with H h=362 mm and H oper=186 mm(Pa).

    5.Conclusions

    In this study,the hopper flow stability is investigated via GPU-based DEM(discrete element method)simulation.The main findings are as follows:

    (1)The flow regions of unstable discharge were compared with that of stable discharge.Compared with the hopper with stable discharge,the hopper with unstable discharge has no plug flow region,transition flow region,and shear layer.

    (2)A key transformation zone was found in the hopper.The voidage in the key transformation zone showed the largest difference between unstable and stable discharge.

    (3)The voidage in the key transition zone clearly increased when the material height in the hopper reduced to 186 mm.By discussing the voidage variation and the stress distribution in the hopper,the particles accelerations in the key transition zone were determined.Therefore a sharp increase of the voidage in the key transformation zone is considered to be the standard for judging the unstable hopper flow.

    (4)The voidage of the top area inside the hopper is variable because of the loose packing region,while the voidage of the bottom area is variable because of the converging flow region.The hopper flow is unstable when the hopper only has the top area and the bottom area,which is defined as the ‘Top–Bottom effect’of the hopper.

    Nomenclature

    dpparticle diameter,m

    e restitution coefficient

    normal contact forces,N

    tangential contact forces,N

    g gravitational acceleration,m·s?2

    Iimoment of inertia of particle,kg·m?2

    knnormal spring stiffness,N·m?1

    kttangential spring stiffness,N·m?1

    mimass of particle,kg

    R vector of the mass center of the particle to contact point,m

    Rpparticle radius,m

    t time,s

    vitranslational velocity,m·s?1

    Y Young modulus,Pa

    ?ccompressed voidage

    μrrolling friction coefficient

    μsFriction coefficient

    average stress,N·m?2

    compressed average stress,N·m?2

    υ Poisson ratio

    ωiangular velocity,m·s?1

    [1]H.A.Janssen,Versuche über getreidedruck in silozellen,Z.Ver.Dtsch.Ing.39(35)(1895)1045.

    [2]S.Jing,H.Z.Li,Study on the flow of fine powders from hoppers connected to a moving-bed standpipe with negative pressure gradient,Powder Technol.101(3)(1999)266–278.

    [3]A.W.Roberts,Review of mass flow hopper design with respect to stress fields and surcharge loads,Particuology 8(6)(2010)591–594.

    [4]B.S.Jin,H.Tao,W.Q.Zhou,Flow behavior of non-spherical granules in rectangular hopper,Chin.J.Chem.Eng.18(6)(2010)931–939.

    [5]S.Albaraki,S.J.Antony,Howdoes internal angle of hoppers affect granular flow:experimental studies using digital particle image velocimetry,Powder Technol.268(2014)235–260.

    [6]K.Grudzien,Z.Chaniecki,A.Romanowski,M.Niedostatkiewicz,D.Sankowski,ETC image analysis method for shear zone measurements during silo discharging process,Chin.J.Chem.Eng.20(2)(2012)337–345.

    [7]A.W.Roberts,S.J.Wiche,Prediction of lining wear life of bins and chutes in bulk solids handling operations,Tribol.Int.26(5)(1992)345–351.

    [8]M.S.A.Bradley,A.N.Pittman,M.Bingley,R.J.Farnish,J.Pickering,Effect of wall material hardness on choice of wall materials for design of hoppers and silos for the discharge of hard bulk solids,Tribol.Int.33(12)(2000)845–853.

    [9]P.K.Xu,X.Z.Duan,G.Qian,X.G.Zhou,Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper,Powder Technol.284(2015)326–335.

    [10]H.Tao,W.Q.Zhong,B.S.Jin,Comparison of construction method for DEM simulation of ellipsoidal particles,Chin.J.Chem.Eng.21(7)(2013)800–807.

    [11]D.H?hner,S.Wirtz,V.Scherer,A study of the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method,Powder Technol.278(2015)286–305.

    [12]R.Kvapil,Theorie der Schuttgutbewegung,V.E.B,Verlag Technik,Berlin,1959.

    [13]R.L.Brown,Minimum energy theorem for flow of dry granules through apertures,Nature 191(4787)(1961)458–461.

    [14]R.L.Brown,J.C.Richards,Kinematics of the flow of dry powders and bulk solids,Rheol.Acta 4(3)(1965)153–165.

    [15]R.L.Brown,J.C.Richards,Principles of powder mechanics;essays on the packing and flow of powders and bulk solids,International Series of Monographs in Chemical Engineering,First ed.Pergamon Press,Oxford,NewYork,1970.

    [16]H.Nagashima,T.Ishikura,M.Ide,Flow characteristics of a small moving bed down comer with an orifice under negative pressure gradient,Powder Technol.192(1)(2009)110–115.

    [17]G.R.Watson,J.M.Rotter,A finite element kinematic analysis of planar granular solids flow,Chem.Eng.Sci.51(16)(1996)3967–3978.

    [18]U.Tüzün,R.M.Nedderman,Kinematic model for the flow of granular-materials,Powder Technol.22(2)(1979)243–253.

    [19]P.A.Langston,U.Tüzün,D.M.Heyes,Continuous potential discrete particle simulations of stress and velocity fields in hoppers:transition from fluid to granular flow,Chem.Eng.Sci.49(8)(1994)1259–1275.

    [20]P.A.Langston,U.Tüzün,D.M.Heyes,Discrete element simulation of granular flow in 2D and 3D hoppers:dependence of discharge rate and wall stress on particle interactions,Chem.Eng.Sci.50(6)(1995)967–987.

    [21]P.A.Langston,U.Tüzün,D.M.Heyes,Discrete element simulation of internal stress and flowfields in funnel flow hoppers,Powder Technol.85(2)(1995)153–169.

    [22]P.A.Langston,M.S.Nikitidis,U.Tüzün,D.M.Heyes,Microstructural simulation and imaging of granular flows in two-and three-dimensional hoppers,Powder Technol.94(1)(1997)59–72.

    [23]S.Mass on,J.Martinez,Effect of particle mechanical properties on silo flow and stresses from distinct element simulations,Powder Technol.109(1–3)(2000)164–178.

    [24]H.P.Zhu,A.B.Yu,The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow,Physica A 325(3–4)(2003)347–360.

    [25]H.P.Zhu,A.B.Yu,Micro-mechanic modeling and analysis of unsteady-state granular flowin a cylindrical hopper,J.Eng.Math.52(2005)307–320.

    [26]H.P.Zhu,A.B.Yu,Steady-state granular flow in a 3D cylindrical hopper with flat bottom:macroscopic analysis,Granul.Matter 7(2)(2005)97–107.

    [27]L.Peng,J.Xu,Q.S.Zhu,H.Z.Li,W.Ge,F.G.Chen,X.X.Ren,GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper,Powder Technol.304(2016)218–228.

    [28]J.Xu,H.B.Qi,X.J.Fang,L.Q.Lu,W.Ge,X.W.Wang,M.Xu,F.G.Chen,X.F.He,J.H.Li,Quasi-real-time simulation of rotation drum using discrete element method with parallel GPU computing,Particuology 9(4)(2011)446–450.

    [29]H.Hertz,über die Berührung fester elastischer K?rper,J.Reine Angew.Math.92(1881)156–171.

    [30]R.D.Mindlin,H.Deresiewica,Elastic spheres in contact under varying oblique forces,J.Appl.Mech.20(1953)327–344.

    [31]Y.C.Zhou,B.H.Xu,A.B.Yu,P.Zulli,An experimental and numerical study of the angle of repose of coarse spheres,Powder Technol.125(1)(2002)45–54.

    [32]F.G.Chen,W.Ge,L.Guo,X.F.He,B.Li,J.H.Li,X.P.Li,X.W.Wang,X.L.Yuan,Multi-scale HPC system for multi-scale discrete simulation-development and application of a supercomputer with 1 Peta flops peak performance in single precision,Particuology 7(4)(2009)332–335.

    [33]H.Li,M.Kwauk,Vertical pneumatic moving-bed transport I.Analysis of flow dynamics,Chem.Eng.Sci.44(2)(1989)249–259.

    日本午夜av视频| 超碰97精品在线观看| 一级爰片在线观看| 免费av不卡在线播放| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 欧美丝袜亚洲另类| 精品久久久久久久人妻蜜臀av| 老司机影院毛片| 欧美三级亚洲精品| 亚洲av中文av极速乱| 亚洲自偷自拍三级| 亚洲国产最新在线播放| 久久精品国产鲁丝片午夜精品| 日韩国内少妇激情av| 日韩人妻高清精品专区| 国产精品三级大全| 久99久视频精品免费| 日韩欧美国产在线观看| 成人亚洲欧美一区二区av| 黄片wwwwww| 综合色丁香网| 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 国产亚洲5aaaaa淫片| 国产男人的电影天堂91| 日本欧美国产在线视频| 国产高清三级在线| 最近中文字幕2019免费版| 男女下面进入的视频免费午夜| 综合色丁香网| 久热久热在线精品观看| 特级一级黄色大片| 国产 一区精品| 青春草亚洲视频在线观看| 能在线免费观看的黄片| 国产中年淑女户外野战色| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| 亚洲精品aⅴ在线观看| 久久精品人妻少妇| 日韩人妻高清精品专区| 91午夜精品亚洲一区二区三区| 中文天堂在线官网| 亚洲电影在线观看av| 精品国产一区二区三区久久久樱花 | 国产成人福利小说| 丰满乱子伦码专区| 免费观看性生交大片5| 少妇人妻精品综合一区二区| 国产亚洲精品av在线| 日韩一本色道免费dvd| 高清av免费在线| 一本一本综合久久| 天堂网av新在线| 国产av码专区亚洲av| 九九久久精品国产亚洲av麻豆| 精品午夜福利在线看| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品综合久久99| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 久久精品国产亚洲av天美| 国产精品一区二区三区四区免费观看| 午夜a级毛片| 国产成人a∨麻豆精品| 成年av动漫网址| 国产黄片美女视频| 久久99热这里只有精品18| 六月丁香七月| 国产成人a区在线观看| 永久网站在线| 成年女人永久免费观看视频| 麻豆乱淫一区二区| 欧美日韩国产亚洲二区| 黄片wwwwww| 毛片一级片免费看久久久久| av黄色大香蕉| av在线蜜桃| 精品久久久久久久久av| 麻豆精品久久久久久蜜桃| 色5月婷婷丁香| 亚洲欧美精品专区久久| 欧美激情在线99| 亚洲国产精品久久男人天堂| 亚洲成色77777| 久久久久久久久大av| 亚洲精品国产av成人精品| 亚洲人成网站高清观看| 国产乱人视频| 观看美女的网站| 成人亚洲精品av一区二区| 女人久久www免费人成看片 | 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 女人十人毛片免费观看3o分钟| 国产精品久久电影中文字幕| 人体艺术视频欧美日本| 国产亚洲91精品色在线| 免费黄色在线免费观看| 精品少妇黑人巨大在线播放 | 日本一本二区三区精品| 久久热精品热| 观看美女的网站| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 国产精品一区二区三区四区久久| 日韩一区二区三区影片| 三级经典国产精品| 国产成年人精品一区二区| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 神马国产精品三级电影在线观看| av在线播放精品| av线在线观看网站| 国产精品一区二区性色av| 国产精品日韩av在线免费观看| 韩国高清视频一区二区三区| 久久久久久久久久久免费av| 国产国拍精品亚洲av在线观看| 国产黄色视频一区二区在线观看 | 一区二区三区免费毛片| 久久精品熟女亚洲av麻豆精品 | 亚洲怡红院男人天堂| 18禁裸乳无遮挡免费网站照片| 国产精品麻豆人妻色哟哟久久 | 丰满乱子伦码专区| 老司机福利观看| 在线观看66精品国产| 国产精品人妻久久久影院| 亚洲成人久久爱视频| 91狼人影院| 午夜免费男女啪啪视频观看| 亚洲欧美日韩无卡精品| 亚洲精品影视一区二区三区av| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 亚洲精品一区蜜桃| ponron亚洲| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 日韩大片免费观看网站 | 国产老妇女一区| 国产精品一区二区三区四区久久| 久久精品国产亚洲网站| 女人久久www免费人成看片 | www.av在线官网国产| 美女国产视频在线观看| 热99re8久久精品国产| 日韩国内少妇激情av| 高清日韩中文字幕在线| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜 | 天美传媒精品一区二区| 国产在视频线在精品| 中文天堂在线官网| 69av精品久久久久久| 国产精品伦人一区二区| 国产又色又爽无遮挡免| 亚洲成色77777| 自拍偷自拍亚洲精品老妇| 97超视频在线观看视频| 免费观看性生交大片5| 麻豆乱淫一区二区| a级一级毛片免费在线观看| 高清午夜精品一区二区三区| 亚洲欧美成人综合另类久久久 | 久久久久久久久久成人| 午夜日本视频在线| 亚洲av免费在线观看| 国模一区二区三区四区视频| 久久精品国产亚洲网站| kizo精华| 亚洲乱码一区二区免费版| 成人特级av手机在线观看| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 99久久成人亚洲精品观看| 午夜福利高清视频| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品 | 亚洲精品色激情综合| 日韩 亚洲 欧美在线| 黄色配什么色好看| 国国产精品蜜臀av免费| 三级国产精品片| 青春草视频在线免费观看| 久久99精品国语久久久| av卡一久久| 联通29元200g的流量卡| 99视频精品全部免费 在线| 亚州av有码| 在线免费十八禁| 国产在视频线在精品| 午夜福利高清视频| 一夜夜www| 男女那种视频在线观看| 深夜a级毛片| 亚洲av免费高清在线观看| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 三级国产精品片| 人体艺术视频欧美日本| 日韩成人av中文字幕在线观看| 国产av一区在线观看免费| 22中文网久久字幕| 亚洲精品影视一区二区三区av| 亚洲av中文字字幕乱码综合| 久久婷婷人人爽人人干人人爱| 国产人妻一区二区三区在| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 18禁在线播放成人免费| 精品国内亚洲2022精品成人| 日韩精品有码人妻一区| 久久精品国产亚洲网站| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 日韩欧美三级三区| 国产91av在线免费观看| 久久久午夜欧美精品| 亚洲五月天丁香| 久久久久久久久中文| 亚洲美女视频黄频| 女人被狂操c到高潮| 日本黄色视频三级网站网址| 69av精品久久久久久| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| av福利片在线观看| 观看美女的网站| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 婷婷色av中文字幕| 国内少妇人妻偷人精品xxx网站| 六月丁香七月| 色5月婷婷丁香| 亚洲国产欧洲综合997久久,| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 乱系列少妇在线播放| 亚洲成色77777| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频| 亚洲无线观看免费| 一级毛片电影观看 | 日韩欧美精品v在线| 亚洲欧美清纯卡通| 白带黄色成豆腐渣| 黑人高潮一二区| 成人无遮挡网站| 淫秽高清视频在线观看| 午夜激情欧美在线| 麻豆一二三区av精品| 久久99蜜桃精品久久| 亚洲精品影视一区二区三区av| 又爽又黄a免费视频| 国产免费福利视频在线观看| 欧美精品国产亚洲| 人妻少妇偷人精品九色| 日韩在线高清观看一区二区三区| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 麻豆乱淫一区二区| 91久久精品国产一区二区成人| 韩国av在线不卡| 欧美日本视频| 日韩av在线免费看完整版不卡| 欧美一区二区亚洲| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站| 女人被狂操c到高潮| 亚洲最大成人中文| 国产不卡一卡二| 亚洲最大成人手机在线| 又爽又黄a免费视频| 中文欧美无线码| 丝袜美腿在线中文| av专区在线播放| 久久久成人免费电影| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱| 男女下面进入的视频免费午夜| 亚洲精品国产av成人精品| 搞女人的毛片| 男人舔女人下体高潮全视频| 性色avwww在线观看| 亚洲性久久影院| 又粗又硬又长又爽又黄的视频| 成人鲁丝片一二三区免费| 熟女电影av网| 变态另类丝袜制服| 国产视频内射| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 大香蕉97超碰在线| 精品久久久久久成人av| 2021少妇久久久久久久久久久| 午夜久久久久精精品| 国产精品一区二区性色av| 久久久久久久午夜电影| 亚洲人与动物交配视频| 精品国产露脸久久av麻豆 | 日日啪夜夜撸| 国产高清有码在线观看视频| 久久人妻av系列| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 国产久久久一区二区三区| 大话2 男鬼变身卡| 一级毛片电影观看 | 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 一个人看视频在线观看www免费| 国产视频首页在线观看| 国产亚洲精品av在线| a级毛片免费高清观看在线播放| 亚洲在线观看片| 亚洲怡红院男人天堂| 亚洲久久久久久中文字幕| 日产精品乱码卡一卡2卡三| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 永久网站在线| 一个人免费在线观看电影| 国产久久久一区二区三区| 汤姆久久久久久久影院中文字幕 | 国产91av在线免费观看| 婷婷六月久久综合丁香| 内地一区二区视频在线| 日韩制服骚丝袜av| 最近最新中文字幕大全电影3| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 成人国产麻豆网| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| 久久久久久久国产电影| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 欧美bdsm另类| 精品久久久久久久久久久久久| 亚洲伊人久久精品综合 | 日韩中字成人| 内地一区二区视频在线| 七月丁香在线播放| 精品久久久噜噜| 亚洲综合色惰| 久久久精品大字幕| 国国产精品蜜臀av免费| av在线亚洲专区| 国产精品精品国产色婷婷| kizo精华| 69人妻影院| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 成人亚洲欧美一区二区av| 丰满少妇做爰视频| 永久网站在线| 51国产日韩欧美| 亚洲精品久久久久久婷婷小说 | 边亲边吃奶的免费视频| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 嘟嘟电影网在线观看| 精华霜和精华液先用哪个| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合 | 色噜噜av男人的天堂激情| 内地一区二区视频在线| 日韩欧美三级三区| 日韩一区二区视频免费看| 国产精品日韩av在线免费观看| 国产午夜精品一二区理论片| 日本免费a在线| 黄色配什么色好看| 能在线免费看毛片的网站| 亚洲国产高清在线一区二区三| 一本一本综合久久| 亚洲精品乱码久久久久久按摩| 国产精品国产三级国产专区5o | videos熟女内射| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 波多野结衣高清无吗| 国产成年人精品一区二区| АⅤ资源中文在线天堂| 极品教师在线视频| 22中文网久久字幕| 天美传媒精品一区二区| videos熟女内射| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 夜夜爽夜夜爽视频| 亚洲成人精品中文字幕电影| 男人的好看免费观看在线视频| 国产探花极品一区二区| 国产亚洲最大av| 99久久成人亚洲精品观看| 少妇人妻一区二区三区视频| 一本一本综合久久| 成年版毛片免费区| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 日日撸夜夜添| 婷婷色av中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av成人精品| 看免费成人av毛片| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 美女国产视频在线观看| 极品教师在线视频| 午夜福利在线在线| 久久午夜福利片| 精品酒店卫生间| 亚洲最大成人av| 国产成人a区在线观看| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 亚洲精品日韩在线中文字幕| 亚洲欧美精品综合久久99| 精品一区二区免费观看| 美女被艹到高潮喷水动态| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 免费观看性生交大片5| 老司机影院毛片| 久久久久网色| 村上凉子中文字幕在线| 欧美成人午夜免费资源| 国产国拍精品亚洲av在线观看| 国产亚洲精品av在线| 久久6这里有精品| 一级黄色大片毛片| 麻豆成人午夜福利视频| 午夜福利在线在线| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 国产伦理片在线播放av一区| 午夜福利在线观看吧| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 久久久久久久久大av| 免费人成在线观看视频色| 18禁在线播放成人免费| 国产高清不卡午夜福利| 国产精品美女特级片免费视频播放器| 亚洲成人中文字幕在线播放| 国产单亲对白刺激| 成人av在线播放网站| 色网站视频免费| 天天躁日日操中文字幕| 免费av观看视频| 久久99热这里只有精品18| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 在现免费观看毛片| 欧美日韩综合久久久久久| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| 亚洲精品国产成人久久av| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区久久| 直男gayav资源| 亚洲成人中文字幕在线播放| 国产乱来视频区| 国产高潮美女av| 男人的好看免费观看在线视频| 欧美区成人在线视频| 一夜夜www| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 欧美+日韩+精品| 成年女人永久免费观看视频| 可以在线观看毛片的网站| 草草在线视频免费看| 99热这里只有精品一区| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 欧美成人免费av一区二区三区| 国产精品无大码| 韩国高清视频一区二区三区| 又粗又爽又猛毛片免费看| 午夜激情欧美在线| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 久久热精品热| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 免费观看在线日韩| 久久6这里有精品| 日韩,欧美,国产一区二区三区 | 综合色av麻豆| 成人美女网站在线观看视频| 色噜噜av男人的天堂激情| 欧美极品一区二区三区四区| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 国产欧美日韩精品一区二区| 欧美bdsm另类| 国产亚洲精品久久久com| 最近中文字幕2019免费版| 精品久久久久久久末码| 亚洲av二区三区四区| 国产免费视频播放在线视频 | 内射极品少妇av片p| 国产免费视频播放在线视频 | 成人毛片a级毛片在线播放| 午夜爱爱视频在线播放| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 精品不卡国产一区二区三区| 午夜免费激情av| 夫妻性生交免费视频一级片| 日韩高清综合在线| 久久久久久久久久久免费av| 春色校园在线视频观看| 精品一区二区三区人妻视频| 精品欧美国产一区二区三| 精品一区二区三区人妻视频| 日韩 亚洲 欧美在线| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 亚洲电影在线观看av| 午夜免费激情av| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 成人二区视频| eeuss影院久久| av黄色大香蕉| 国产私拍福利视频在线观看| 亚洲人成网站高清观看| 丰满乱子伦码专区| 天天一区二区日本电影三级| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 国产av码专区亚洲av| 成人av在线播放网站| 精品人妻偷拍中文字幕| 韩国av在线不卡| eeuss影院久久| 国产精品伦人一区二区| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品美女久久久久久| 国产真实乱freesex| 欧美又色又爽又黄视频| 啦啦啦啦在线视频资源| 黄片无遮挡物在线观看| 久久草成人影院| 色吧在线观看| 欧美变态另类bdsm刘玥| 观看美女的网站| 高清视频免费观看一区二区 | 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆 | 国产精品精品国产色婷婷| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 99在线人妻在线中文字幕| 欧美日本视频| 女人十人毛片免费观看3o分钟| 国产av码专区亚洲av| 国产人妻一区二区三区在| 少妇人妻一区二区三区视频| 十八禁国产超污无遮挡网站| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人精品一区二区| 舔av片在线| 国产免费男女视频| 亚洲五月天丁香| 精品一区二区三区人妻视频| 免费看av在线观看网站| 最近最新中文字幕免费大全7| 免费av观看视频| 国产精品久久视频播放| 亚洲激情五月婷婷啪啪| 高清毛片免费看|