• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation☆

    2018-05-25 07:50:46HuanLiuZhenMa
    關鍵詞:高職生思路培育

    Huan Liu,Zhen Ma*

    Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,Department of Environmental Science and Engineering,Fudan University,Shanghai 200433,China

    1.Introduction

    Heterogeneous catalysts are mostly composite materials,i.e.,they in most cases comprise at least two components.One typical case is supported catalysts,in which active components(e.g.,metal,metal oxide)are finely dispersed on solid supportsthat areoften metal oxides,SiO2,and zeolites.However,metal salts are traditionally not often used as catalyst supports,but LaPO4and hydroxyapatite(Ca10(PO4)6(OH)2)have been used to make supported catalysts such as Au/LaPO4[1–5],Pt/LaPO4[6,7],Pd/LaPO4[8],Rh/LaPO4[9–11],Ru/LaPO4[12],Au/hydroxyapatite[13–18],Rh/hydroxyapatite[10,19,20],and Ru/hydroxyapatite[21–25].The development of metal phosphate-supported catalysts is interesting,not only because such catalysts are limited in number,but also because these catalysts combine the acid–base and/or redox functions of the supports and the catalytic functions of the supported metals or metal oxides.

    CePO4is similar to LaPO4,i.e.,they both belong to lanthanide phosphates.CePO4can be used as a catalyst for the oxidative dehydrogenation of is obutane[26,27],amination of 1-octanol[28],vapor-phase O-alkylation of phenol[29],dehydration reaction of 2-propanol[30],and selective catalytic reduction of NO with NH3[31,32].It can also be used to make supported catalysts such as Ru/CePO4for the aerobic oxidation of alcohols[33],Pt/CePO4for the selective catalytic reduction activity of NOx[34],and Au/CePO4for CO oxidation[35].However,examples on CePO4-supported catalysts and their catalytic applications are still limited in number.

    CePO4presents two phases:hexagonal and monoclinic.Hexagonal CePO4nanoparticles can be prepared by direct precipitation[36,37],and hexagonal CePO4nanowirescan beprepared via hydrothermal process[38,39].Monoclinic CePO4can be prepared by calcining hexagonal CePO4at high temperatures[40,41].Ru/CePO4[33],Pt/CePO4[34],and Au/CePO4[35]mentioned above all contain hexagonal CePO4supports,but monoclinic CePO4-based catalysts have been rarely reported.

    N2O is an environmental pollutant with a green-house effect and may contribute to the ozone layer depletion.Catalysts used for the decomposition of N2O include metal oxides,ion-exchanged zeolites,and supported metal catalysts[42–44].In particular,some Rh-based catalysts showsuperior performance.Rh-based catalysts for N2O decomposition include Rh-ZSM-5[45],Rh/MgO[46],Rh/USY[47],Rh/Al2O3[48,49],Rh/CeO2[50,51],Rh/KIT-6[52],Rh/SBA-15[53,54],Rh/MCM-41[55],Rh2O3/LaPO4[10,11],and Rh2O3/hydroxyapatite[10,19,20].It would be interesting to explore other metal phosphate-based Rh2O3catalysts.

    In this work,we report Rh2O3supported on monoclinic CePO4nanoparticles and nanowires as well as the catalytic performance in N2O decomposition and CO oxidation.It was found that Rh2O3supported on monoclinic CePO4nanowires is much more active than Rh2O3supported on monoclinic CePO4nanoparticles.Reasons for these observations were elucidated through detailed characterization.

    2.Experimental

    2.1.Preparation

    2.1.1.Monoclinic CePO4nanoparticles[36,40]

    6.95 g Ce(NO3)3·6H2O(Aladdin,99.9%)and 1.84 g NH4H2PO4(Sinopharm,AR)were dissolved in 80 ml deionized water under magnetic stirring for 20 min.The p H value was adjusted to 7 by adding aqueous ammonia(27 wt%).The mixture was stirred continuously for 6 h.The precipitate was filtered,washed with ethanol,and dried at 80°C.The product(hexagonal CePO4nanorods)was calcined at 900°C for 3 h to form monoclinic CePO4nanoparticles(CePO4-MNP).

    2.1.2.Monoclinic CePO4nanowires[40]

    6.95 g Ce(NO3)3·6H2Oand 1.84 g NH4H2PO4were dissolved in 80 ml deionized water under magnetic stirring for 20 min.The p H value was adjusted to 1 by adding aqueous ammonia(27 wt%).The suspension was transferred into a Te flon-lined stainless steel autoclave and purged with flowing He for 1 h to prevent the oxidation of Ce3+to Ce4+before heating.After that,the suspension was heated at 150°C for 12 h in an oven.The precipitate was filtered,washed with ethanol,and dried at 80°C.The product(hexagonal CePO4nanowires)was calcined at 900°C for 3 h to form monoclinic CePO4nanowires(CePO4-MNW).

    2.1.3.Rh2O3/CePO4catalysts

    2 ml Rh(NO3)3solution(0.01 g·ml?1based on Rh)was placed in a agate mortar containing 1.98 g LaPO4.The mixture was ground till dry under an infrared lamp.The final powders were calcined at 500°Cfor 3 h.

    2.2.Characterization

    XRD data were collected on a MSALXD2 instrument under the conditions of:2θ =10°–80°,scanning rate 4(°)·min?1,and scanning step 0.01°.The specific BET surface areas were measured by N2adsorption–desorption at?196 °C on a Micromeritics Tris tar 3000 instrument.ICP-OES data on the Rh contents were obtained using a Perkin-Elmer OPTIMA 2100 DV optical emission spectrometer,following the procedure described elsewhere[56].

    TEM images were obtained on a JEM-2011F instrument coupled with EDS[11].The sizes of Rh2O3nanoparticles were obtained by measuring 100 particles for each sample,using the Digital Micrograph software.

    X-ray photoelectron spectroscopic(XPS)data were recorded on a Perkin-Elmer PHI 5000 C spectrometer with Mg KαX-ray source.The binding energies(BE)were corrected by C1s peak(284.8 eV).CASXPS software was used for analysis.

    CO2temperature-programmed desorption(CO2-TPD)experiments were performed on a FINESORB-3010 instrument[10,12].0.15 g of sample was pretreated at 200 °C with He(30 ml·min?1),and then cooled down to 50°C.The sample was saturated with 5%CO2/He(40 ml·min?1)for 1 h and swept by He flowat 50 °Cfor 3 h.The sample was then heated to 600°Cat aramping rate of 10°C·min?1.The amount of desorbed CO2was calibrated using 5%CO2/He with known volume.

    O2temperature-programmed desorption(O2-TPD)experiments were carried out on a FINESORB-3010 instrument[10,12].A sample(0.15 g)was pretreated with He(30 ml·min?1)at 500 °C for 1 h,and cooled to 50 °C.Then O2(30 ml·min?1) flowed through the sample at 50°C for 1 h.After that,the system was purged by flowing He(30 ml·min?1)for 3 h,and the sample was then heated from 50 to 600 °C with a heating rate of 10 °C·min?1.

    Temperature-programmed reduction (H2-TPR) experiments were carried out on a self-built instrument.50 mg of sample was pretreated at 200 °C with N2(30 ml·min?1)for 1 h and then cooled down to 50 °C.10%H2/N2(30 ml·min?1) flowed through the sample for 2–3 h until the baseline reached stable,and then the sample was heated to 350 °C at a ramping rate of 5 °C·min?1.H2consumption was analyzed by FULI 9750 gas chromatograph.

    2.3.Catalytic activity measurements

    N2O decomposition was studied in a fixed bed reactor.0.25 g of catalyst was loaded into a U-shaped quartz tube(7 mm diameter)[20,57].0.5%N2O/He( flow rate:60 ml·min?1)was introduced into the quartz tube.The catalyst was maintained at room temperature for 1 h,and the reaction temperature was then increased stepwise and kept at each temperature step for 0.5 h.The effluent gas was analyzed every 10 min using an on-line GC(Agilent 7890A).The N2O conversion was calculated as([N2O]in?[N2O]out)/[N2O]in×100%.

    The effect of co-fed CO2,O2,H2O and O2/H2O vapor on the catalytic activity was studied by adding 2%CO2,5%O2,or 2%H2O into there action mixture whereas the concentration of N2O was still 0.5%,and the total flow rate of the gas was still 60 ml·min?1.

    Catalytic CO oxidation was studied in a fixed bed reactor described elsewhere[5].The reaction conditions are:0.25 g catalyst in a U-shaped quartz tube(5 mm inner diameter),1%CO in air, flow rate 50 ml·min?1.The catalyst was maintained at room temperature for 1 h in the presence of flowing 1%CO,and heated to 200°C with a ramping rate of 0.5 °C·min?1.The effluent gas was analyzed every 10 min using an on-line gas chromatograph(GC;Agilent 7890A,equipped with a TCD detector).The CO conversion was calculated as([CO]in?[CO]out)/[CO]in×100%.

    3.Results

    Fig.1 shows the XRD patterns of CePO4and Rh2O3/CePO4.CePO4-MNP[36,40]and CePO4-NMW[38,40]prepared according to the methods in the literature both show monoclinic phase(PDF#32-0199).The XRD patterns of Rh2O3/CePO4samples are similar to those of their corresponding supports.No Rh2O3phase can be detected,probably due to the lowRh content(~1 wt%).

    Fig.1.XRD patterns of Rh2O3/CePO4 catalysts.

    Fig.2 shows the TEM and HRTEM images of Rh2O3/CePO4catalysts.Rh2O3/CePO4-MNP is primarily composed of large CePO4nanoparticles with sizes of 40–200 nm.Rh2O3/CePO4-MNW exhibits CePO4nanowires with widths of 15–80 nm and lengths of 100–900 nm.The interplanar distances of CePO4-MNP and CePO4-MNW are 0.602 and 0.606 nm,respectively,corresponding to the(100)plane of monoclinic CePO4[58].

    Fig.2.TEM and HRTEM images of Rh2O3/CePO4 catalysts.

    Supported Rh2O3particles on CePO4supports can be seen clearly in Figs.S1–S2.On the basis of 100 particles for each sample,the mean Rh2O3particle sizes are estimated to be(3.0±0.9)nm and(2.5±0.7)nm for Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW,respectively.The difference in Rh2O3particle sizes may be due to the nature of supports,i.e.,the BET surface areas of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are <1 m2·g?1and 16.6 m2·g?1,respectively.The fact that the surface area of Rh2O3/CePO4-MNP is lower than that of Rh2O3/CePO4-MNW is consistent with the fact that the XRD peaks of Rh2O3/CePO4-MNP are much sharper than the corresponding XRD peaks of Rh2O3/CePO4-MNW(Fig.1).In general,support with a larger surface area tends to better disperse the supported active component and make its size smaller.

    3.1.Catalytic performance

    Fig.3.N2O conversions over Rh2O3/CePO4 catalysts as a function of reaction temperature.

    Fig.3 shows N2O conversion over Rh2O3/CePO4catalysts.The T50(temperature required for reaching 50%conversion)values of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are 348 and 291°C,respectively,indicating that the latter is much more active than the former.The N2O conversions of these catalysts at 325°C are 24.3%and 90.1%,respectively.The actual Rh contents on CePO4-MNP and CePO4-MNW are determined by ICP-OES as 1.02 wt%and 0.99 wt%,respectively.Thus,the specific rates of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW at 325 °C are calculated to be 77 and 292 mmol·(g Rh)?1·h?1,respectively,meaning that Rh2O3/CePO4-MNW is significantly more active than Rh2O3/CePO4-MNP.The corresponding CePO4supports showno activity below400°C.

    The stability of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW as a function of reaction time on stream was tested at 400 and 325°C,respectively.As shown in Fig.4,the initial N2O conversions(90%and 96%for Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW,respectively)are consistent with the N2O conversion read out from the conversion curves in Fig.3.After 40 h on stream,the N2O conversions on Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are 84%and 92%,respectively,i.e.,both catalysts are relatively stable.

    We additionally tested the Influence of co-fed CO2,O2,H2O,or O2/H2O on catalytic activity.As shown in Fig.5,2%CO2has no effect on the activity of the two catalysts.The catalytic activities of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are only slightly inhibited in the presence of 5%O2,but the presence of 2%H2O seriously inhibits the catalytic activity,as the T50values of these catalysts increase by 87 °C and 88 °C,respectively.The obvious inhibiting effect is due to the competitive adsorption of H2O[10,12].The catalytic activity is further inhibited in the presence of both O2and H2O,as the T50values of these catalysts increase by 89 °C and 113 °C,respectively.

    Fig.4.N2O conversions over Rh2O3/CePO4-MNP(reaction temperature:400°C)and Rh2O3/CePO4-MNW(reaction temperature:325°C),as a function of time on stream.

    The inhibiting effect and its reversibility were studied by isothermal gas-switching experiments.As shown in Fig.6a,the N2O conversion on Rh2O3/CePO4-MNP is about 91%at 400°C in the first step,consistent with the value seen in Fig.3.The N2O conversion decreases to 79%when 5%O2is introduced.By removing O2,the N2O conversion returns to 86%.After two cycles,the N2O conversion decreases by 8%.The same trend is found with the introduction and retraction of 2%H2O.The data indicate that the inhibiting effect of O2and H2Oon Rh2O3/CePO4-MNPis reversible.

    Fig.5.The Influence of co-feed 2%CO2,5%O2,2%H2Oor 5%O2+2%H2Oon the conversion of N2O over Rh2O3/CePO4-MNP(a)and Rh/CePO4-MNW(b).

    Fig.6.N2O conversions over Rh2O3/CePO4-MNP in the absence or presence of 5%O2 or 2%H2O at 400°C.

    Fig.7 shows the effect of co-fed 5%O2or 2%H2O on the performance of Rh2O3/CePO4-MNW at 325°C.The introduction of 5%O2or 2%H2O can cause a sudden drop of N2O conversion,but the catalytic activity can be completely restored after removing 5%O2or 2%H2O in two cycles.

    Fig.7.N2O conversion over Rh2O3/CePO4-MNW in the absence or presence of 5%O2 or 2%H2O at 325°C.

    The stability of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW as a function of reaction time on stream was also tested at 450°C in the presence of 5%O2and 2%H2O.As shown in Fig.S3,the N2O conversion at 450°C increases slightly from 62%to 65%on Rh2O3/CePO4-MNP during the initial 2 h.After 40 h of continuous reaction,the N2O conversion decreases slightly to 59%.On Rh2O3/CePO4-MNW,the N2O conversion is maintained at 97%after 40 h of continuous reaction.TEM characterization of the spent Rh2O3/CePO4-MNP(Fig.S4)and Rh2O3/CePO4-MNW(Fig.S5)shows that the mean Rh2O3particle sizes on these catalysts are(3.0±0.7)nm and(2.5±0.6)nm,respectively.

    These catalysts were also tested in CO oxidation because it is a conventional and sensitive probe reaction.As shown in Fig.S6,Rh2O3/CePO4-MNW is still more active than Rh2O3/CePO4-MNP.The CO conversionsover these two catalystsat 90°Care9.1%and 38.3%,respectively.For comparison,the CO conversions achieved over Rh2O3/hexagonal CePO4nanorods and Rh2O3/hexagonal CePO4nanowires at 90°C are 65.1%and 86.6%,respectively(Fig.S7).The data show that the advantage of CePO4nanowires over CePO4nanorods/nanoparticles in making supported Rh2O3catalysts for CO oxidation is general,i.e.,regardless of hexagonal or monoclinic phase.

    The stability of Rh2O3/CePO4-MNW and Rh2O3/CePO4-MNP was tested at 100 and 145°C,respectively(Fig.S8).The catalytic activity of two catalysts decreases rapidly in the initial 2 h,probably due to the accumulation of carbonate/formate on catalyst surfaces.After that,the catalytic activity continues to decline to 28%on Rh2O3/CePO4-MNP,but it can be maintained at around 65%on Rh2O3/CePO4-MNW.

    首先,思政課教師的思想激勵作用。“工匠精神培育的最佳時機就在高職生入學的開始一二年,這段時間也正是公共必修思政課的開課時期,把工匠精神的培育有效地融入高職思政教育必然有助于增加具有工匠精神人才的有效供給,為我國制造業(yè)的升級轉型培養(yǎng)更多具有高級職業(yè)精神和高尚愛國主義情操的高素質人才。[5]”思政課要有針對性,能夠解決學生在學習生活中的困難和疑慮,至少能給學生一種直面問題的思路和方法。學生在專業(yè)的學習上會遇到各種各樣的困難,思政課教師要從思想上發(fā)揮答疑解惑的作用,引導學生去面對困難,用勇氣解決困難。這是培養(yǎng)學生工匠精神必須具備的思路。

    3.2.Additional characterization of CePO4 and Rh2O3/CePO4 catalysts

    Fig.S9 shows the Rh 3d XPS spectra Rh2O3/CePO4catalysts.The binding energies of two catalysts locate at 306–311 and 311–318 eV,assigned to Rh3+3d5/2and Rh3+3d3/2[59,60],respectively.The data confirm that the Rh species exist as Rh2O3.

    Fig.S10 shows the Ce 3d XPS spectra of Rh2O3/CePO4catalysts.The spectra display two multiplets assigned to the spin orbit split 3d5/2and 3d3/2core holes[31],respectively.The doublet peaks at 880.5–881.5 and 898.8–899.5 eV correspond to Ce(III)3d94f1O2p6.The doublet peaks at 884.4–884.9 and 902.8–903.5 eV are assigned to Ce(III)3d94f2O2p5[61,62].The data prove that cerium exists as Ce3+,with no Ce4+in both samples.

    Fig.S11 shows the O 1s spectra of Rh2O3/CePO4catalysts.The main peaks at ca.530.4 eV correspond to lattice oxygen and a shoulder peak at ca.532.5 eV is attributed to hydroxyl groups[31,63].The ratio of hydroxyl groups(among all oxygen species)in Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW is similar(11.6%and 11.8%,respectively).

    Fig.8.CO2-TPD pro files of Rh2O3/CePO4 catalysts.

    Fig.8 shows the CO2-TPD pro files of CePO4and Rh2O3/CePO4.CO2desorption peak is not detected on CePO4-MNP and Rh2O3/CePO4-MNP.For comparison,CePO4-MNW and Rh2O3/CePO4-MNW both exhibit a CO2desorption peak ranging from ~150 °C to ~450 °C.The amounts of basic sites of CePO4-MNW and Rh2O3/CePO4-MNW are 31 and 28 μmol·g?1,respectively.The data indicate that the basicity of catalysts mainly originates from the supports.

    Fig.9 shows the O2-TPD pro files of CePO4and Rh2O3/CePO4.CePO4-MNP and Rh2O3/CePO4-MNP do not showany O2desorption peak,indicating that O2does not adsorb on CePO4-MNP and Rh2O3/CePO4-MNP at 50°C.CePO4-NMW and Rh2O3/CePO4-MNW both exhibit a broad O2desorption peak,and the desorption of O2starts at 129 and 133°C,respectively.

    Fig.9.O2-TPD pro files of Rh2O3/CePO4 catalysts.

    Fig.10 shows the H2-TPR pro files of Rh2O3/CePO4.These catalysts showa single peak corresponding to the reduction of Rh2O3to metallic Rh.The TPR main peaks of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are at 91 and 85°C,respectively.

    Fig.10.H2-TPR pro files of Rh2O3/CePO4 catalysts.

    4.Discussion

    In this work,monoclinic CePO4nanoparticles and nanowires were prepared by calcining hexagonal CePO4nanorods and CePO4nanowires at 900°C,respectively.TEM images(Fig.2)showthat CePO4-MNP is composed of large nanoparticles,whereas CePO4-MNW exhibits uniform nanowires.Both supports are monoclinic in nature,as confirmed by XRD data(Fig.1)and HRTEM images(Fig.2).These monoclinic CePO4materials were used to support Rh2O3.Rh2O3/CePO4-MNW is much more active than Rh2O3/CePO4-MNP in N2O decomposition(Fig.3)and CO oxidation(Fig.S6).

    The Rh contents on CePO4-MNP and CePO4-MNW are measured by ICP-OES as 1.02 wt%and 0.99 wt%,all closed to 1 wt%.The Rh species is present as Rh2O3on both catalysts(Fig.S9).The average sizes of Rh2O3particles on CePO4-MNP and CePO4-MNW are(3.0±0.9)nm and(2.5±0.7)nm,respectively(Figs.S1 and S2).The specific surface areas of Rh2O3/CePO4-MNP and Rh2O3/CePO4-MNW are<1 m2·g?1and 16.6 m2·g?1,respectively.The size of Rh2O3particles seems to be related to the surface area,as supports with larger surface areas tend to disperse active species better.The size of Rh2O3species may Influence the activity of catalysts in N2O decomposition[64,65].

    CO2-TPD data(Fig.8)show the basicity of supports and catalysts.It has been reported that the basic property of support is beneficial for N2O decomposition[10,12,66].Huang et al.[19]and Haber et al.[49]found some correlations among the basicity of support,the rhodium dispersion,and the catalytic activity.In the present work,the amount of basic sites of CePO4-MNW is 31 μmol·g?1,higher than that of CePO4-MNP(0 μmol·g?1),and Rh2O3nanoparticles disperse better on CePO4-MNW,as judged from the average sizes of Rh2O3nanoparticles on CePO4-MNW[(2.5±0.6)nm]and CePO4-MNP[(3.0±0.7)nm].This difference may be correlated to the difference in catalytic activity.

    O2-TPD data(Fig.9)reveal that O2starts to desorb from Rh2O3/CePO4-MNW at 133°C.On the other hand,no O2desorbs from Rh2O3/CePO4-MNP,indicating that O2does not adsorb on Rh2O3/CePO4-MNP at 50°C(the adsorption temperature).For N2O decomposition,the desorption of O2from catalyst surface is considered as the ratedetermining step.If oxygen is not rapidly desorbed from the catalyst surface,it will be adsorbed on the active site,leading to the inhibition of N2O decomposition[10].Here the easy desorption or reversible adsorption of O2on both catalysts is consistent with the observation that the co-fed O2has a minor effect on the catalytic activity of both catalysts(Fig.5).The insignificant inhibiting effect of co-fed O2on Rh2O3/CePO4-MNP(Fig.6)versus Rh2O3/CePO4-MNW(Fig.7),as also seen in Fig.5,is consistent with the O2-TPD data(Fig.9).

    H2-TPR data(Fig.10)show that Rh2O3on CePO4-MNW can be reduced at a lower temperature.The reducibility of supported metal oxide species was sometimes correlated to the catalytic performance in N2O decomposition[46,51,67–69].For instance,Zheng et al.[70]found that Ru Ox/TiO2is more active than Ru Ox/Al2O3,Ru Ox/SiO2,RuOx/CeO2,and RuOx/MgO in N2O decomposition because RuOxon TiO2can be reduced more easily.Imamura et al.[71]found that the relatively low reduction temperature of Rh Oxin RhOx/CeO2is correlated to its high catalytic activity in N2O decomposition.These observations are in line with our finding that Rh2O3/CePO4-MNW is more easily reduced than Rh2O3/CePO4-MNW and the former catalyst is more active than the latter.

    The most active Rh2O3/CePO4-MNW is compared with other Rhbased catalysts.As shown in Table S1,the specific rate of Rh2O3/CePO4-MNW in N2O decomposition at 325 °Cis292 mmol·(g Rh)?1·h?1,higher than those of RhOx/LaPO4(26 mmol·(g·Rh)?1·h?1)[10],Rh2O3/γ-Al2O3(187 mmol·(g Rh)?1·h?1) [51],Rh2O3/SBA-15 (39 mmol·(g Rh)?1·h?1)[54],and Rh2O3/KIT-6(0 mmol·(g Rh)?1·h?1)[72],although lower than that of Rh2O3/mesoporous CoOx–Al2O3(324 mmol·(g Rh)?1·h?1)[56],Rh2O3/mesoporous Al2O3(306 mmol·(g Rh)?1·h?1)[56],and Rh2O3/CeO2(>1071 mmol·(g Rh)?1·h?1)[50].Further optimization of the catalyst is possible.As shown in Fig.S12,the pretreatment of Rh2O3/CePO4-MNW in 4%H2at 350°C for 3 h can enhance the catalytic activity to some extent,as the case with the pretreatment of Rh2O3/LaPO4[10]and Rh2O3/hydroxyapatite[10,19]in 4%H2.

    As shown in Table S2,the specific rate of Rh2O3/CePO4-MNW in CO oxidation at 100 °C is 422 mmol·(g Rh)?1·h?1,higher than those of Rh2O3/mesoporous Al2O3(70 mmol·(g Rh)?1·h?1)[56],Rh2O3/mesoporous MnOx–Al2O3(119 mmol·(g Rh)?1·h?1)[56],and Rh2O3/γ-Al2O3(0 mmol·(g Rh)?1·h?1)[73],although lower than that of Rh2O3/LaPO4-nanowires(>515 mmol·(g Rh)?1·h?1)[11].It is difficult to compare the catalytic activities of Rh2O3/CePO4-MNW(422 mmol·(g Rh)?1·h?1),Rh/TiO2(>321 mmol·(g Rh)?1·h?1)[74],and Rh2O3/CeO2(>107 mmol·(g Rh)?1·h?1)[75]at 100 °C because the latter two catalysts show100%CO conversion below90°C.Thus,we chose alower reaction temperature for comparison.The specific rates of Rh2O3/CePO4-MNW,Rh2O3/CeO2[75],and Rh/TiO2[74]at 25°C are 43,28,and >321 mmol·(g Rh)?1·h?1,respectively(Table S3).

    5.Conclusions

    Monoclinic CePO4nanoparticles were prepared by calcining hexagonal CePO4nanorods(prepared by precipitation)at 900°C.Monoclinic CePO4nanowires were prepared by calcining hexagonal CePO4nanowires(prepared by hydrothermal synthesis at 150 °C)at 900 °C.CePO4-supported Rh2O3catalysts were tested in N2O decomposition and CO oxidation.Rh2O3/CePO4-MNW was found to be more active than Rh2O3/CePO4-MNP in both reactions.Rh2O3/CePO4-MNW has smaller Rh2O3particles,more basic sites,and low reduction temperature of Rh2O3species.The co-fed CO2had no effect on the activity of both catalysts.The co-fed O2only slightly inhibits catalytic activity.The co-fed H2O or O2+H2O can inhibit the activity,but the inhibiting effect is reversible on both catalysts.Although here we only studied N2O decomposition and CO oxidation,we believe that it would be interesting to study the applications of Rh2O3/CePO4catalysts in other reactions.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2017.02.007.

    [1]W.F.Yan,S.Brown,Z.W.Pan,S.M.Mahurin,S.H.Overbury,S.Dai,Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate,Angew.Chem.Int.Ed.45(2006)3614–3618.

    [2]Z.Ma,H.F.Yin,S.H.Overbury,S.Dai,Metal phosphates as a newclass of supports for gold nanocatalysts,Catal.Lett.126(2008)20–30.

    [3]Z.Ma,H.F.Yin,S.Dai,Influence of preparation methodson the performance of metal phosphate-supported gold catalysts in CO oxidation,Catal.Lett.138(2010)40–45.

    [4]M.J.Li,Z.L.Wu,S.H.Overbury,CO oxidation on phosphate-supported Au catalysts:Effect of support reducibility on surface reactions,J.Catal.278(2011)133–142.

    [5]H.Liu,Y.Lin,Z.Ma,Au/LaPO4nanowires:Synthesis,characterization,and catalytic CO oxidation,J.Taiwan Inst.Chem.Eng.62(2016)275–282.

    [6]X.S.Qian,H.M.Qin,T.Meng,Y.Lin,Z.Ma,Metal phosphate-supported Pt catalysts for CO oxidation,Materials 7(2014)8105–8130.

    [7]B.Pan,S.J.Luo,W.Y.Su,X.X.Wang,Photocatalytic CO2reduction with H2O over LaPO4nanorods deposited with Pt cocatalyst,Appl.Catal.B Environ.168–169(2015)458–464.

    [8]H.Tamai,T.Ikeya,F.Nishiyama,H.Yasuda,K.Iida,S.Nojima,NO decomposition by ultra fine noble metals dispersed on the rare earth phosphate hollowparticles,J.Mater.Sci.35(2000)4945–4953.

    [9]M.Machida,T.Eidome,S.Minami,H.P.Buwono,S.Hinokuma,Y.Nagao,Y.Nakahara,Tuning the electron density of Rh supported on metal phosphates for three-way catalysis,J.Phys.Chem.C 119(2015)11653–11661.

    [10]Y.Lin,T.Meng,Z.Ma,Catalytic decomposition of N2O over RhOxsupported on metal phosphates,J.Ind.Eng.Chem.28(2015)138–146.

    [11]H.Liu,Z.Ma,Effect of different LaPO4supports on the catalytic performance of Rh2O3/LaPO4in N2O decomposition and CO oxidation,J.Taiwan Inst.Chem.Eng.71(2017)373–380.

    [12]Y.W.Cui,H.Liu,Y.Lin,Z.Ma,Metal phosphate-supported RuOxcatalysts for N2O decomposition,J.Taiwan Inst.Chem.Eng.67(2016)254–262.

    [13]J.Huang,L.C.Wang,Y.M.Liu,Y.Cao,H.Y.He,K.N.Fan,Gold nanoparticles supported on hydroxylapatite as high performance catalysts for lowtemperature COoxidation,Appl.Catal.B Environ.101(2011)560–569.

    [14]M.I.Domínguez,F.Romero-Sarria,M.A.Centeno,J.A.Odriozola,Gold/hydroxyapatite catalysts:Synthesis,characterization and catalytic activity to CO oxidation,Appl.Catal.B Environ.87(2009)245–251.

    [15]K.F.Zhao,B.T.Qiao,J.H.Wang,Y.J.Zhang,T.Zhang,A highly active and sinteringresistant Au/FeOx-hydroxyapatite catalyst for CO oxidation,Chem.Commun.47(2011)1779–1781.

    [16]N.Phonthammachai,Z.Y.Zhong,J.Guo,Y.F.Han,T.J.White,Synthesis of high performance hydroxyapatitie-gold catalysts for CO oxidation,Gold Bull.41(2008)42–50.

    [17]H.Sun,F.Z.Su,J.Ni,Y.Cao,H.Y.He,K.N.Fan,Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes,Angew.Chem.Int.Ed.Eng.48(2009)4390–4393.

    [18]Y.Liu,H.Tsunoyama,T.Akita,S.Xie,T.Tsukuda,Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite:Size effect in the sub-2 nm regime,ACS Catal.1(2011)2–6.

    [19]C.Y.Huang,Z.Ma,P.F.Xie,Y.H.Yue,W.M.Hua,Z.Gao,Hydroxy apatite-supported rhodium catalysts for N2O decomposition,J.Mol.Catal.A Chem.400(2015)90–94.

    [20]C.Y.Huang,Y.X.Jiang,Z.Ma,P.F.Xie,Y.Lin,T.Meng,C.X.Miao,Y.H.Yue,W.M.Hua,Z.Gao,Correlation among preparation methods/conditions,physicochemical properties,and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition,J.Mol.Catal.A Chem.420(2016)73–81.

    [21]A.Venugopal,M.S.Scurrell,Hydroxyapatite as a novel support for gold and ruthenium catalysts:Behavior in the water gas shift reaction,Appl.Catal.A Gen.245(2003)137–147.

    [22]J.W.Jaworski,D.Kim,K.Jung,S.Kim,J.H.Jung,J.O.Jeong,H.S.Jeon,B.K.Min,K.Y.Kwon,Surface modification of hydroxyapatite for hydrogen generation,J.Colloid Interface Sci.358(2011)598–603.

    [23]Z.Opre,D.Ferri,F.Krumeich,T.Mallat,A.Baiker,Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite,J.Catal.241(2006)287–295.

    [24]Z.Opre,D.Ferri,F.Krumeich,T.Mallat,A.Baiker,Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy,J.Catal.251(2007)48–58.

    [25]C.Mondelli,D.Ferri,A.Baiker,Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol:An in situ ATR-IR spectroscopy study,J.Catal.258(2008)170–176.

    [26]Y.Takita,X.Qing,A.Takami,H.Nishiguchi,K.Nagaoka,Oxidative dehydrogenation of isobutane to isobutene III reaction mechanism over CePO4catalyst,Appl.Catal.A Gen.296(2005)63–69.

    [27]Y.Takita,K.I.Sano,T.Muraya,H.Nishiguchi,N.Kawata,M.Ito,T.Akbay,T.Ishihara,Oxidative dehydrogenation of iso-butane to iso-butene II.Rare earth phosphate catalysts,Appl.Catal.A Gen.170(1998)21–23.

    [28]C.Dume,W.F.H?èlderich,Amination of 1-octanol,Appl.Catal.A Gen.183(1999)167–176.

    [29]G.S.Devi,D.Giridhar,B.M.Reddy,Vapour phase O-alkylation of phenol over alkali promoted rare earth metal phosphates,J.Mol.Catal.A Chem.181(2002)173–178.

    [30]H.Onoda,H.Nariai,A.Moriwaki,H.Maki,I.Motooka,Formation and catalytic characterization of various rare earth phosphates,J.Mater.Chem.12(2002)1754–1760.

    [31]W.Y.Yao,Y.Liu,X.Q.Wang,X.L.Weng,H.Q.Wang,Z.B.Wu,The superior performance of sol–gel made Ce–O–P catalyst for selective catalytic reduction of NO with NH3,J.Phys.Chem.C 120(2016)221–229.

    [32]F.Li,Y.B.Zhang,D.H.Xiao,D.Q.Wang,X.Q.Pan,X.G.Yang,Hydrothermal method prepared Ce–P–O catalyst for the selective catalytic reduction of NO with NH3in a broad temperature range,ChemCatChem 2(2010)1416–1419.

    [33]Y.J.Zhang,J.H.Wang,T.Zhang,Novel Ca-doped CePO4supported ruthenium catalyst with superior catalytic performance for aerobic oxidation of alcohols,Chem.Commun.47(2011)5307.

    [34]M.Itoh,M.Takehara,M.Saito,K.Machida,NOxreduction activity over phosphatesup ported platinum catalysts with hydrogen under oxygen-rich condition,IOP Conf.Ser.:Mater.Sci.Eng.18(2011)172007.

    [35]F.Romero-Sarria,M.I.Domínguez,M.A.Centeno,J.A.Odriozola,CO oxidation at lowtemperature on Au/CePO4:Mechanistic aspects,Appl.Catal.B Environ.107(2011)268–273.

    [36]S.Lucas,E.Champion,D.Bregiroux,D.Bernache-Assollant,F.Audubert,Rare earth phosphate powders RePO4·n H2O(Re=La,Ce or Y)—Part I.Synthesis and characterization,J.Solid State Chem.177(2004)1302–1311.

    [37]X.L.Weng,R.J.Mei,M.P.Shi,Q.Y.Kong,Y.Liu,Z.B.Wu,CePO4catalyst for elemental mercury removal in simulated coal- fired fluegas,Energy Fuels29(2015)3359–3365.

    [38]Y.P.Fang,A.W.Xu,R.Q.Song,H.X.Zhang,L.P.You,J.C.Yu,H.Q.Liu,Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires,J.Am.Chem.Soc.125(2003)16025–16034.

    [39]Y.J.Zhang,H.M.Guan,Hydrothermal synthesisand characterization of hexagonal and monoclinic CePO4single-crystal nanowires,J.Cryst.Growth 256(2003)156–161.

    [40]F.Y.Lu,Y.Q.Shen,X.Sun,Z.L.Dong,R.C.Ewing,J.Lian,Size dependence of radiationinduced amorphization and recrystallization of synthetic nanostructured CePO4monazite,Acta Mater.61(2013)2984–2992.

    [41]D.Palma-Ramírez,M.A.Domínguez-Crespo,A.M.Torres-Huerta,H.Dorantes-Rosales,E.Ramírez-Meneses,E.Rodríguez,Microwave-assisted hydrothermal synthesis of CePO4nanostructures:Correlation between the structural and optical properties,J.Alloys Compd.643(2015)S209–S218.

    [42]F.Kapteijn,J.Rodriguez-Mirasol,J.A.Moulijn,Heterogeneous catalytic decomposition of nitrous oxide,Appl.Catal.B Environ.9(1996)25–64.

    [43]M.Konsolakis,Recent advances on nitrous oxide(N2O)decomposition over nonnoble-metal oxide catalysts:Catalytic performance,mechanistic considerations,and surface chemistry aspects,ACS Catal.5(2015)6397–6421.

    [44]Z.M.Liu,F.He,L.L.Ma,S.Peng,Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts,Catal.Surv.Asia 20(2016)121–132.

    [45]E.Kondratenko,V.Kondratenko,M.Santiago,J.Perezramirez,Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition,J.Catal.256(2008)248–258.

    [46]H.Beyer,J.Emmerich,K.Chatziapostolou,K.K?hler,Decomposition of nitrous oxide by rhodium catalysts:Effect of rhodium particle size and metal oxide support,Appl.Catal.A Gen.391(2011)411–416.

    [47]K.Yuzaki,T.Yarimizu,K.Aoyagi,S.Ito,K.Kunimori,Catalytic decomposition of N2O over supported Rh catalysts:Effects of supports and Rh dispersion,Catal.Today 45(1998)129–134.

    [48]P.S.S.Reddy,N.Seshu Babu,N.Pasha,N.Lingaiah,P.S.Sai Prasad,Influence of microwave irradiation on catalytic decomposition of nitrous oxide over Rh/Al2O3catalyst,Catal.Commun.9(2008)2303–2307.

    [49]J.Haber,M.Nattich,T.Machej,Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition,Appl.Catal.B Environ.77(2008)278–283.

    [50]A.Bueno-Lopez,I.Such-Basanez,C.S.M.D.Lecea,Stabilization of active Rh2O3species for catalytic decomposition of N2O on La-,Pr-doped CeO2,J.Catal.244(2006)102–112.

    [51]S.Parres-Esclapez,M.J.Illán-Gómez,C.S.-M.de Lecea,A.Bueno-López,On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh,Pd and Pt,Appl.Catal.B Environ.96(2010)370–378.

    [52]M.Hussain,D.Fino,N.Russo,Development of modified KIT-6 and SBA-15-spherical supported Rh catalysts for N2O abatement:From powder to monolith supported catalysts,Chem.Eng.J.238(2014)198–205.

    [53]J.M.Du,W.W.Kuang,H.L.Xu,W.Shen,D.Y.Zhao,The Influence of precursors on Rh/SBA-15 catalysts for N2O decomposition,Appl.Catal.B Environ.84(2008)490–496.

    [54]L.Chmielarz,P.Ku?trowski,M.Drozdek,M.Rutkowska,R.Dziembaj,M.Michalik,P.Cool,E.F.Vansant,SBA-15 mesoporous silicamodified with rhodium by MDDmethod and its catalytic role for N2O decomposition reaction,J.Porous.Mater.18(2010)483–491.

    [55]L.Kuboňová,D.Fridrichová,A.Wach,P.Ku?trowski,L.Obalová,P.Cool,Catalytic activity of rhodium grafted on ordered mesoporous silica materials modified with aluminum in N2O decomposition,Catal.Today 257(2015)51–58.

    [56]H.Liu,Y.Lin,Z.Ma,Rh2O3/mesoporous MOx–Al2O3(M=Mn,Fe,Co,Ni,Cu,Ba)catalysts:Synthesis,characterization,and catalytic applications,Chin.J.Catal.37(2016)73–82.

    [57]T.Meng,N.Ren,Z.Ma,Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition,J.Mol.Catal.A Chem.404–405(2015)233–239.

    [58]M.Cao,C.Hu,Q.Wu,C.Guo,Y.Qi,E.Wang,Controlled synthesis of LaPO4and CePO4nanorods/nanowires,Nanotechnology 16(2005)282–286.

    [59]L.Li,S.F.Niu,Y.Qu,Q.Zhang,H.Li,Y.S.Li,W.R.Zhao,J.L.Shi,One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and lowpower consumption methane catalytic combustion micro-sensor,J.Mater.Chem.22(2012)9263–9267.

    [60]M.Machida,S.Minami,S.Hinokuma,H.Yoshida,Y.Nagao,T.Sato,Y.Nakahara,Unusual redox behavior of Rh/AlPO4and its impact on three-way catalysis,J.Phys.Chem.C 119(2015)373–380.

    [61]L.M.Qiu,F.Liu,L.Z.Zhao,Y.Ma,J.N.Yao,Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder,Appl.Surf.Sci.252(2006)4931–4935.

    [62]E.Bêche,P.Charvin,D.Perarnau,S.Abanades,G.Flamant,Ce 3d XPS investigation of cerium oxides and mixed cerium oxide(CexTiyOz),Surf.Interface Anal.40(2008)264–267.

    [63]K.F.Zhao,H.L.Tang,B.T.Qiao,L.Li,J.H.Wang,High activity of Au/γ-Fe2O3for CO oxidation:Effect of support crystal phase in catalyst design,ACS Catal.5(2015)3528–3539.

    [64]M.Piumetti,M.Hussain,D.Fino,N.Russo,Mesoporous silica supported Rh catalysts for high concentration N2Odecomposition,Appl.Catal.BEnviron.165(2015)158–168.

    [65]S.Parres-Esclapez,F.E.López-Suárez,A.Bueno-López,M.J.Illán-Gómez,B.Ura,J.Trawczynski,Rh–Sr/Al2O3catalyst for N2O decomposition in the presence of O2,Top.Catal.52(2009)1832–1836.

    [66]L.Obalová,K.Karásková,A.Wach,P.Kustrowski,K.Mamulová-Kutláková,S.Michalik,K.Jirátová,Alkali metals as promoters in Co–Mn–Al mixed oxide for N2O decomposition,Appl.Catal.A Gen.462–463(2013)227–235.

    [67]L.Obalová,K.Jirátová,F.Kovanda,K.Pacultová,Z.Lacny,Z.Mikulová,Catalytic decomp osition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds,Appl.Catal.B Environ.60(2005)289–297.

    [68]L.Xue,H.He,C.Liu,C.B.Zhang,B.Zhang,Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt–cerium composite oxide catalysts for N2O decomposition,Environ.Sci.Technol.43(2009)890–895.

    [69]Z.Ma,Y.Ren,Y.Lu,P.G.Bruce,Catalytic decomposition of N2O on ordered crystalline metal oxides,J.Nanosci.Nanotechnol.13(2013)5093–5103.

    [70]J.Zheng,S.Meyer,K.K?hler,Abatement of nitrous oxide by ruthenium catalysts:Influence of the support,Appl.Catal.A Gen.505(2015)44–51.

    [71]S.Imamura,J.I.Tadani,Y.Saito,Y.Okamoto,H.Jindai,C.Kaito,Decomposition of N2O on Rh-loaded Pr/Ce composite oxides,Appl.Catal.A Gen.201(2000)121–127.

    [72]M.Hussain,P.Akhter,D.Fino,N.Russo,Modified KIT-6 and SBA-15-sphericalsupported metal catalysts for N2O decomposition,J.Environ.Chem.Eng.1(2013)164–174.

    [73]Y.P.Cai,H.G.Stenger Jr.,C.E.Lyman,Catalytic CO oxidation over Pt-Rh/γ-Al2O3catalysts,J.Catal.161(1996)123–131.

    [74]H.Guan,J.Lin,B.Qiao,X.Yang,L.Li,S.Miao,J.Y.Liu,A.Q.Wang,X.D.Wang,T.Zhang,Catalytically active Rh sub-nanoclusters on TiO2for CO oxidation at cryogenic temperatures,Angew.Chem.Int.Ed.55(2016)2820–2824.

    [75]V.R.Pérez,á.V.M.Beltrán,Q.G.He,Q.Wang,C.S.M.D.Lecea,B.A.López,Preparation of ceria-supported rhodium oxide sub-nanoparticles with improved catalytic activity for CO oxidation,Catal.Commun.33(2013)47–50.

    猜你喜歡
    高職生思路培育
    不同思路解答
    第十二道 共同的敵人
    未來或可培育無味榴蓮
    拓展思路 一詞多造
    換個思路巧填數(shù)
    三年制高職生與五年制高職生學習力比較研究
    思路一變 輕松賺錢
    基于自律的當代高職生自我教育探析
    念好"四部經(jīng)"培育生力軍
    中國火炬(2014年3期)2014-07-24 14:44:39
    要為高職生打造更多的“學習路徑”
    日韩一区二区视频免费看| 人妻一区二区av| 精品少妇黑人巨大在线播放| 亚洲精品自拍成人| 又粗又硬又长又爽又黄的视频| 两个人视频免费观看高清| 免费在线观看成人毛片| 久久精品国产亚洲av天美| 国产成人一区二区在线| 亚洲欧美精品专区久久| 亚洲av一区综合| 成人性生交大片免费视频hd| 十八禁国产超污无遮挡网站| 亚洲欧美一区二区三区黑人 | 欧美成人a在线观看| 国产亚洲一区二区精品| 中文字幕久久专区| 1000部很黄的大片| 在线免费观看的www视频| 卡戴珊不雅视频在线播放| 女人被狂操c到高潮| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 搡老乐熟女国产| 简卡轻食公司| 国产成人精品一,二区| 色网站视频免费| 国内揄拍国产精品人妻在线| 亚洲精品影视一区二区三区av| 啦啦啦啦在线视频资源| 内射极品少妇av片p| 亚洲精品aⅴ在线观看| 国产欧美另类精品又又久久亚洲欧美| 99久久精品国产国产毛片| 亚洲国产精品国产精品| 国产av码专区亚洲av| 成人国产麻豆网| 最近中文字幕高清免费大全6| 干丝袜人妻中文字幕| 国产又色又爽无遮挡免| 国产午夜精品久久久久久一区二区三区| 有码 亚洲区| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 亚洲自偷自拍三级| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 国产三级在线视频| 丝袜美腿在线中文| 乱码一卡2卡4卡精品| 老司机影院毛片| 亚洲av成人精品一二三区| 69av精品久久久久久| 欧美日韩亚洲高清精品| 免费av不卡在线播放| 日韩中字成人| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 人妻一区二区av| 亚洲欧美精品专区久久| 啦啦啦中文免费视频观看日本| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 久久这里有精品视频免费| 边亲边吃奶的免费视频| 亚洲av福利一区| 男人爽女人下面视频在线观看| 青春草视频在线免费观看| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 六月丁香七月| 精品久久久噜噜| 午夜福利在线观看免费完整高清在| 3wmmmm亚洲av在线观看| 成人午夜高清在线视频| 亚洲人成网站在线播| 少妇高潮的动态图| 日本午夜av视频| 亚洲aⅴ乱码一区二区在线播放| 狠狠精品人妻久久久久久综合| 黄色配什么色好看| 最新中文字幕久久久久| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 午夜福利高清视频| 国产黄a三级三级三级人| 成人av在线播放网站| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 三级国产精品片| 人妻一区二区av| av国产免费在线观看| 一区二区三区四区激情视频| 老女人水多毛片| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 国产精品久久久久久av不卡| 欧美3d第一页| 尾随美女入室| 免费观看在线日韩| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 久久久久久久久中文| 亚洲精品久久久久久婷婷小说| 色综合站精品国产| 人妻系列 视频| 人妻一区二区av| 精品久久久久久久久亚洲| 成人午夜高清在线视频| 中文字幕久久专区| 精华霜和精华液先用哪个| av卡一久久| 午夜久久久久精精品| 亚洲电影在线观看av| 亚洲av成人av| 人妻系列 视频| 亚洲欧美日韩东京热| 婷婷色综合大香蕉| 大香蕉97超碰在线| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 91久久精品国产一区二区成人| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 男人爽女人下面视频在线观看| 免费看不卡的av| 国产一区二区三区av在线| 乱人视频在线观看| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲网站| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 99re6热这里在线精品视频| 日韩av不卡免费在线播放| av播播在线观看一区| 男女国产视频网站| 在线免费十八禁| 久久精品久久久久久久性| 日韩欧美一区视频在线观看 | 久久精品国产亚洲av涩爱| 看十八女毛片水多多多| 欧美精品一区二区大全| av在线观看视频网站免费| 亚洲av成人精品一二三区| 亚洲av福利一区| 亚洲欧美日韩卡通动漫| 国产精品一区www在线观看| 又爽又黄无遮挡网站| 又黄又爽又刺激的免费视频.| 中国美白少妇内射xxxbb| 日本免费在线观看一区| 久久国产乱子免费精品| 亚洲欧洲日产国产| 禁无遮挡网站| 免费黄网站久久成人精品| 久久久久久久久久成人| 人妻夜夜爽99麻豆av| 精品国产三级普通话版| 18禁在线播放成人免费| 国产综合懂色| 国产免费一级a男人的天堂| 亚洲欧美成人综合另类久久久| 国内精品宾馆在线| 亚洲精品一二三| 免费观看a级毛片全部| 国产黄a三级三级三级人| 亚洲国产精品成人久久小说| 亚洲欧美日韩东京热| 中文字幕av成人在线电影| 激情五月婷婷亚洲| 伊人久久国产一区二区| ponron亚洲| 少妇裸体淫交视频免费看高清| 99久久人妻综合| 亚洲欧美一区二区三区黑人 | 中国美白少妇内射xxxbb| 少妇丰满av| 亚洲精品国产av成人精品| 午夜视频国产福利| 亚洲怡红院男人天堂| 国产精品一区www在线观看| 亚洲在久久综合| 免费av毛片视频| 亚洲欧美一区二区三区国产| 又爽又黄无遮挡网站| av天堂中文字幕网| 舔av片在线| 高清在线视频一区二区三区| 自拍偷自拍亚洲精品老妇| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品 | 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 极品教师在线视频| 国产成人精品久久久久久| 精品久久久久久久久av| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 日本av手机在线免费观看| 午夜久久久久精精品| 免费高清在线观看视频在线观看| 美女cb高潮喷水在线观看| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 高清毛片免费看| 欧美xxⅹ黑人| 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 黄片wwwwww| 国内精品宾馆在线| 亚洲经典国产精华液单| 欧美一区二区亚洲| 欧美97在线视频| 少妇人妻一区二区三区视频| 简卡轻食公司| 精品国产一区二区三区久久久樱花 | 激情 狠狠 欧美| 亚洲精品一区蜜桃| 国产亚洲5aaaaa淫片| 一区二区三区免费毛片| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 亚洲人与动物交配视频| 久久久久久久久久人人人人人人| 国产综合精华液| 国产一区有黄有色的免费视频 | 久99久视频精品免费| 日韩国内少妇激情av| 精品午夜福利在线看| 蜜桃亚洲精品一区二区三区| 午夜福利在线在线| 老司机影院成人| 免费看光身美女| 午夜激情久久久久久久| 日日啪夜夜爽| 国产 一区精品| 日韩亚洲欧美综合| 国产男女超爽视频在线观看| 免费观看性生交大片5| 免费观看精品视频网站| 亚洲av.av天堂| 久久久久性生活片| 永久免费av网站大全| 卡戴珊不雅视频在线播放| 人人妻人人看人人澡| 高清日韩中文字幕在线| 亚洲人成网站在线播| 国产黄色免费在线视频| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 国产综合懂色| 搡女人真爽免费视频火全软件| 国产中年淑女户外野战色| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频 | 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 九草在线视频观看| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 国产成人91sexporn| 麻豆精品久久久久久蜜桃| 精品熟女少妇av免费看| 性色avwww在线观看| 国产成人freesex在线| 国产一区二区亚洲精品在线观看| 十八禁国产超污无遮挡网站| 日日撸夜夜添| av线在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久精品电影小说 | 女人被狂操c到高潮| 成人毛片a级毛片在线播放| 丝袜美腿在线中文| 中文资源天堂在线| 97在线视频观看| 亚洲av在线观看美女高潮| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品| 黄色一级大片看看| 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 女的被弄到高潮叫床怎么办| 91av网一区二区| 国产美女午夜福利| 国产精品一区二区性色av| 欧美成人a在线观看| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 久久这里只有精品中国| 蜜桃久久精品国产亚洲av| av播播在线观看一区| 91在线精品国自产拍蜜月| av在线老鸭窝| 纵有疾风起免费观看全集完整版 | 国产美女午夜福利| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影| 国产精品熟女久久久久浪| 又黄又爽又刺激的免费视频.| 国产黄色免费在线视频| 久久99热这里只频精品6学生| 在线观看人妻少妇| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 国产爱豆传媒在线观看| 又粗又硬又长又爽又黄的视频| 在线免费观看不下载黄p国产| 国产探花极品一区二区| 久久久久久久久大av| 国产精品一区www在线观看| 色5月婷婷丁香| 精品久久久久久电影网| 亚洲国产色片| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 一区二区三区乱码不卡18| av专区在线播放| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 亚洲成人中文字幕在线播放| 一区二区三区乱码不卡18| 91精品一卡2卡3卡4卡| 日日撸夜夜添| 国产亚洲一区二区精品| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 你懂的网址亚洲精品在线观看| 亚洲av一区综合| 成人一区二区视频在线观看| 国产精品一及| 男人狂女人下面高潮的视频| 国产老妇女一区| 观看美女的网站| 成人欧美大片| 亚洲av成人精品一二三区| 免费在线观看成人毛片| 波野结衣二区三区在线| 日本爱情动作片www.在线观看| 成人美女网站在线观看视频| 91aial.com中文字幕在线观看| 久久国内精品自在自线图片| 白带黄色成豆腐渣| 免费大片18禁| 国产午夜精品一二区理论片| www.色视频.com| 中文字幕制服av| 亚洲精品日韩在线中文字幕| 一本久久精品| 欧美激情久久久久久爽电影| 97在线视频观看| 亚洲在线观看片| 草草在线视频免费看| 一级黄片播放器| 插逼视频在线观看| 国精品久久久久久国模美| 最近最新中文字幕大全电影3| 国内揄拍国产精品人妻在线| 嘟嘟电影网在线观看| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 亚洲成人av在线免费| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 亚洲国产精品专区欧美| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 丰满少妇做爰视频| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 国产单亲对白刺激| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 日韩,欧美,国产一区二区三区| 久久久成人免费电影| 男人爽女人下面视频在线观看| av福利片在线观看| 国产av国产精品国产| 久久亚洲国产成人精品v| 国产男人的电影天堂91| av线在线观看网站| 精品久久久久久久久亚洲| 久久精品夜色国产| 男的添女的下面高潮视频| 99久国产av精品国产电影| 免费av不卡在线播放| 免费观看无遮挡的男女| 少妇的逼水好多| 日韩三级伦理在线观看| 中文字幕制服av| 国产黄色免费在线视频| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 亚洲精华国产精华液的使用体验| 久久久久久国产a免费观看| 99热这里只有是精品50| 日本午夜av视频| 色视频www国产| 国产高潮美女av| 国模一区二区三区四区视频| 国产亚洲精品av在线| 亚州av有码| av线在线观看网站| 神马国产精品三级电影在线观看| 毛片女人毛片| 免费大片黄手机在线观看| 亚洲熟妇中文字幕五十中出| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 春色校园在线视频观看| 国产精品1区2区在线观看.| 久久综合国产亚洲精品| 国产伦精品一区二区三区四那| 久久久久久伊人网av| 久久久久性生活片| 91久久精品电影网| 一本久久精品| 久久久久国产网址| 一级二级三级毛片免费看| 久久精品熟女亚洲av麻豆精品 | av播播在线观看一区| 久久久久网色| av福利片在线观看| 在线观看免费高清a一片| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 日本-黄色视频高清免费观看| 嫩草影院新地址| 美女被艹到高潮喷水动态| 99久久精品热视频| 精品熟女少妇av免费看| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 国产精品麻豆人妻色哟哟久久 | 青青草视频在线视频观看| 亚洲人成网站在线播| 99视频精品全部免费 在线| 国产男人的电影天堂91| 又爽又黄无遮挡网站| 国产精品久久久久久久电影| 夫妻午夜视频| 国产精品蜜桃在线观看| 欧美区成人在线视频| 国产亚洲午夜精品一区二区久久 | 97在线视频观看| 久久久色成人| 中文在线观看免费www的网站| 国产成人a区在线观看| 麻豆久久精品国产亚洲av| 亚洲国产欧美在线一区| 亚洲av成人精品一二三区| 免费观看无遮挡的男女| av国产久精品久网站免费入址| 国产91av在线免费观看| 在线天堂最新版资源| 2018国产大陆天天弄谢| 六月丁香七月| 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站| 国产精品久久视频播放| 精品酒店卫生间| 色播亚洲综合网| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区| 精品久久久久久电影网| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 最近手机中文字幕大全| 欧美最新免费一区二区三区| 淫秽高清视频在线观看| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 国产男女超爽视频在线观看| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品 | 日本wwww免费看| 国产69精品久久久久777片| 国产乱人视频| 2021少妇久久久久久久久久久| 免费av观看视频| 亚洲av免费在线观看| 日本黄色片子视频| 在线天堂最新版资源| av卡一久久| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 国产精品精品国产色婷婷| av在线老鸭窝| 精品午夜福利在线看| 亚洲在线观看片| 亚洲精品色激情综合| 国产成人a区在线观看| 少妇的逼好多水| 美女被艹到高潮喷水动态| 精品久久久久久久久av| 国产淫语在线视频| 国产成人精品婷婷| 久久久a久久爽久久v久久| 日韩av免费高清视频| 国产亚洲精品av在线| 午夜日本视频在线| 国产精品嫩草影院av在线观看| 日本黄大片高清| 亚洲精品第二区| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 婷婷色麻豆天堂久久| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 18+在线观看网站| 淫秽高清视频在线观看| 日韩成人伦理影院| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 成人美女网站在线观看视频| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久 | 免费在线观看成人毛片| 日本黄大片高清| 久久久色成人| 国产精品一区二区性色av| 国产亚洲精品久久久com| 永久网站在线| 午夜激情欧美在线| 国产 一区精品| 中文字幕免费在线视频6| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 一级毛片 在线播放| 天堂网av新在线| 色综合站精品国产| 青春草视频在线免费观看| 国产成人91sexporn| 尤物成人国产欧美一区二区三区| 亚洲国产精品专区欧美| 精品亚洲乱码少妇综合久久| 亚洲伊人久久精品综合| 国产久久久一区二区三区| 久久99热这里只有精品18| 18禁动态无遮挡网站| 亚洲怡红院男人天堂| 中文在线观看免费www的网站| 亚洲av免费在线观看| av专区在线播放| 在线观看美女被高潮喷水网站| 看免费成人av毛片| av国产久精品久网站免费入址| av.在线天堂| 国产精品一区www在线观看| 免费看a级黄色片| 国产69精品久久久久777片| 日韩伦理黄色片| 国产亚洲av片在线观看秒播厂 | av在线播放精品| 国产伦理片在线播放av一区| 亚洲18禁久久av| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 成年版毛片免费区| 欧美一区二区亚洲| 久久久久久久久中文| 日韩三级伦理在线观看| 高清在线视频一区二区三区| eeuss影院久久| 国产精品一二三区在线看| 日韩欧美 国产精品| 亚洲欧美清纯卡通| 免费大片黄手机在线观看| av在线天堂中文字幕| 可以在线观看毛片的网站| 国产精品一及| 欧美成人午夜免费资源| 精品人妻视频免费看| 少妇熟女欧美另类| 男的添女的下面高潮视频| 性色avwww在线观看| 黄色日韩在线| 久久6这里有精品| 99re6热这里在线精品视频|