• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption characteristics of a novel ceramsite for heavy metal removal from storm water runoff☆

    2018-05-25 07:50:44JianlongWangYuanlingZhaoPingpingZhangLiqiongYangHuaiaoXuGuangpengXi

    Jianlong Wang *,Yuanling Zhao Pingping Zhang 2,Liqiong Yang ,Huai’ao Xu Guangpeng Xi

    1 Key Laboratory of Urban Storm water System and Water Environment of the Ministry of Education,Beijing University of Civil Engineering and Architecture,Beijing 100044,China

    2 State Key Laboratory of Water Environment Simulation,School of Environment,Beijing Normal University,Beijing 100875,China

    3 Jiuquan Environmental Monitoring Branch,Jiuquan 735000,China

    1.Introduction

    Owing to rapid urbanization,impervious surfaces have markedly increased in urban areas,and storm water runoff has increased both in total volume and peak flow rate[1].Consequently,urban surface water quality has deteriorated as sewer pipe sediments(SPS)and river bed sediments(RBS)have become increasingly serious under storm water flushing[2–4].In addition,with increasing populations and industrialization,larger amounts of municipal sludge such as water supply treatment sludge(WSTS)and wastewater treatment sludge(WWTS)are being produced[5,6].

    SPS presents a widespread and serious problem owing to storm water flushing and a lack of daily sewer maintenance(especially in the old districts of many cities),because the sediments reduce the capacity of drainage pipes,increase hydraulic resistance,and produce over flow pollution in heavy rainfall events[3].Although several studies on SPS have mainly focused on the relationships influencing its flushing,composition,and impacts on receiving waters[7–11],research on SPS disposal methods is limited.Likewise,RBS pollution has become more serious owing to the accumulation of toxic pollutants,and its unreasonable disposal has been investigated by some researchers.Nevertheless,owing to its inorganic particles,RBS has been examined as a resource(e.g.for making bricks and ceramsite)and an agricultural input[4,12,13].

    Conventional water supply treatment usually includes coagulation,flocculation, filtration,sedimentation,and disinfection,and generates WSTS that contains large amounts of Fe and Al[5,14,15].Owing to its chemical properties,WSTS has been studied as a low-cost adsorbent for removing pollutants such as ammonium[16],phosphorus[17],and arsenate[18].Similarly,WWTS is generated during wastewater treatment after dewatering of excess activated sludge.It contains large quantities of organic matter,pathogenic bacteria,and harmful substances.Some researchers have shown that WWTS could be used as a foaming agent in ceramsite production[5,19].

    Currently,the disposal of the four sediments,SPS,RBS,WSTS,and WWTS,hasbeen attracting widespread attention.Owing to increasingly stringent sludge disposal regulations,both public and private sediment generators are being forced to re-evaluate their sediment management strategies.As a result,new energy-saving and environment-friendly urban sediment management techniques are urgently needed.Nowadays,sustainable development and natural resources preservation have gained significant importance.With the restriction of clay brick and its products,the application of clay as a raw material of ceramsite is limited[20].According to He et al.[5],a variety of raw materials can be used to form ceramsite if the chemical composition of the materials(without any additives)is in the following ranges(%):SiO2,48–68;Al2O3,12–18;Fe2O3,5–10;and K2O+N2O,2.5–7.0.As the four urban sediments contain inorganic components such as Al2O3,SiO2,Fe2O3,CaO,MgO,Na2O,and K2O(Table 1),these problematic sediments have the potential to be the raw materials for the development of a novel ceramsite.In addition,some researchers have shown that heavy metals in sludge-based ceramsite were immobilized and could not be easily released into the environment to cause secondary pollution[21–24].Therefore,a new effective approach to manage the four urban sediments is to produce ceramsite,which can both overcome constraints on raw material use and convert the problematic sediments into a resource.

    Table 1 Chemical characteristics of the four sediments(%)

    Heavy metal contamination is a serious problem that has prompted considerable research.In contrast to most of the organic pollutants,heavy metals are difficult to degrade in the natural environment and are easily accumulated in living organisms,thereby causing various diseases and disorders[25–27].Cd is readily taken up by growing plants from contaminated soil and enters the human food chain,leading to acute and chronic diseases[28–30].Excessive intake of Cu by humans may irritate the mucous membranes,leading to hepatic and renal damage,widespread capillary damage,and central nervous system problems[31–33].Various methods have been developed to remove heavy metals from water such as chemical precipitation,membrane filtration,and adsorption[23,34,35].Among them,adsorption has been regarded as an important process owing to its simplicity and efficiency[36–39].

    The key objective of successful application of sorption technology is to find a cost-effective,environment-friendly,and high-performance sorbent.The traditional sorbents applied in the removal of Cd mainly include zeolites,clays,activated carbons,biomass,and polymeric materials,none of which are cost-effective.However,in recent years,some low-cost waste byproducts have been used as the sorbent for removing heavy metals.An et al.[26]investigated an adsorbent based on jujube for the removal of toxic heavy metals.Hegazi[40]showed that agricultural and industrial waste byproducts such as rice husk and fly ash could be used for removing heavy metals from wastewater.Chen et al.[41]demonstrated that a novel ceramic adsorbent developed with a mixture of akadama mud,wheat starch,and Fe2O3could be used for arsenic removal from a water solution.Zou et al.[42]tested the nitrogen removal capacity of a self-made sludge-based ceramsite used as a carrier in a bio filter.Therefore,removal of Cu2+and Cd2+from storm water runoff using a novel ceramsite adsorbent made from a mixture of four urban sediments seems reasonable,and if successful,could lay a foundation for applying ceramsite as a bioretention medium to reduce storm water runoff pollution.

    The objectives of this study were to develop a novel ceramsite based on the four urban sediments(SPS,RBS,WSTS,and WWTS)and Na2SiO3,and to evaluate its Cu2+and Cd2+adsorption properties through dynamic and isothermal experiments combined with material characterization analysis.

    2.Materials and Methods

    2.1.Optimization of ceramsite composition

    SPS,RBS,WSTS,and WWTS were obtained from the following locations in Beijing,China:a road at Chegongzhuang West,a river near the Xizhimen subway station,the third water supply treatment plant of Beijing,and the Gaobeidian wastewater treatment plant,respectively.Na2SiO3was used as an adhesive.The chemical characteristics of the four sediments are shown in Table 1.

    The four sediments were dried by natural aeration,crushed into powders using a universal pulverizer,and mixed with Na2SiO3according to the optimum ratio determined from orthogonal test.The factors and levels of the orthogonal design are shown in Table2.The orthogonal test scheme and result analysis are presented in Table 3.The amount of SPS was considered to be a constant in the experiment,and the other four materials were considered as the main factors.Four levels of each factor were evaluated,creating an L16(45)orthogonal design.The Brunauer–Emmett–Teller(BET)specific surface area of the ceramsite was used as the assessment indicator owing to itsimpactson adsorption efficiency.The optimal mix(proportions of the four materials)wasdetermined as described previously[43].Wet ceramsite samples of approximately 10 mm diameter were manually developed,dried for 30 min at 105 °C in an oven,pretreated for 20 min at 400 °C in a muffle furnace,roasted for 5 min at 1100°C,and then cooled to obtain the ceramsite used in the experiments[5,14].

    Table 2 Factors and levels of the orthogonal design

    Table 3 Orthogonal test and resulting BET values

    2.2.Adsorption experiments

    2.2.1.Adsorption isotherms

    Adsorption isotherms can be determined by the adsorption process and mechanism.Often,the Langmuir and Freundlich isotherm models are used to describe the adsorption process of a material.The Langmuir adsorption isotherm can be expressed as[44]:

    where Qeis the equilibrium absorption amount(mg·g?1),Qmis the saturated adsorption amount(mg·g?1),Ceis the concentration of heavy metals(Cu2+and Cd2+)in solutions at equilibrium(mg·L?1),and KLis the Langmuir adsorption constant.

    The Freundlich adsorption isotherm can be expressed as[45]:

    where Kfis the Freundlich adsorption constant,n is a constant,and other terms are as defined previously.

    To investigate the adsorption isotherm,5 g·L?1ceramsite was respectively placed in five conical flasks,each containing a different concentration of Cu2+and Cd2+solution(300 ml;from Cu Cl2·H2O and Cd Cl2·H2O,respectively).The p H of these solutions was adjusted to 6.0–7.0,which is close to the p H of storm water runoff(p H=5–7).The Cu2+concentrations used were 21.5,22.2,27.1,29.4,and 32.1 mg·L?1,and the Cd2+concentrations employed were 15.3,17.0,19.3,23.5,and 32.1 mg·L?1.The five conical flasks were maintained at(25±1)°Cand shaken at 160 rpm on a shaking table.During shaking,the samples were obtained at certain times to determine the point of adsorption equilibrium.Then,the correlation coefficients of adsorption isotherms,defined using Eqs.(1)and(2),were determined.

    2.2.2.Adsorption kinetics

    Adsorption kinetics models can be used to explain the inherent law and essential process of adsorption.Often,a pseudo- first-order kinetic equation and a pseudo-second-order kinetic equation are used.The pseudo- first-order kinetic equation can be given as[46]:

    where Qtis the absorption amount at time t(mg·g?1)and k1is the equilibrium rate constant.

    The pseudo-second-order kinetic equation can be expressed as[47]:

    where k2is the equilibrium rate constant.

    The 5 g·L?1ceramsite was chosen as the research object,and the experimental conditions included 160 rpm and(25±1)°C.The Cu2+concentrations employed were 21.5,27.1,and 29.4 mg·L?1,and the Cd2+concentrations used were 10.7,17,and 23.5 mg·L?1.Sampling was performed at a certain time interval,and the samples were analyzed using a flame atomic absorption spectrophotometer(Z-2010,Hitachi,Tokyo,Japan).

    2.3.Characterization methods

    The specific surface area and pore-size distributions of the novel ceramsite were determined by gas adsorption using a BET specific surface analysis device(Mike ASAP 2020,USA).The chemical oxide composition was determined using a scanning wavelength dispersive X-ray fluorescence(XRF)instrument(Shimadzu XRF-1800).Scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and a Fourier transform infrared(FTIR)spectrometer(Vertex 20 V FTIR spectrometer,Bruker,Germany)were used to characterize the ceramsite before and after adsorption.The SEM and EDS were accomplished using a Hitachi SU8010 cold field emission scanning electron microscope.

    3.Results and Discussion

    3.1.Characterization of the novel ceramsite

    The orthogonal test design and BET analysis results are presented in Table 3.The different range values were RA=2.4897,RB=4.4623,RC=3.668,and RD=1.3152.Thus,RB>RC>RA>RD,and the order of impact of the four materials on BET was as follows:WSTS>RBS>W(wǎng)WTS>Na2SiO3.The orthogonal test revealed that the optimal mixture of the components for the development of novel ceramsite was A3B4C2D3,which consisted of(in proportions relative to SPS)20%WSTS,15%RBS,15%WWTS,and 10%Na2SiO3.Although the chemical composition of RBS is more consistent with the technical requirements for ceramsite developed,when compared with that of WSTS,the burning loss of WSTS during combustion is relatively higher,contributing to the formation of porous ceramsite[5,48].Therefore,the mass of WSTS produced the highest Influence on the BET of ceramsite.The addition of Na2SiO3could initiate Al3+and Si4+to form a stable skeleton structure,resulting in certain solidity of the ceramsite and laying a foundation for its application as a filter medium[24].The chemical composition of the ceramsite was similar to that reported previously[49,50](Table 4).The BET specific surface area of the novel ceramsite was 0.4967 m2·g?1and the pore size was 9.983 nm.

    Table 4 Chemical analysis of the novel ceramsite composition

    3.2.Adsorption characteristics

    3.2.1.Cu2+and Cd2+removal efficiency of the novel ceramsite

    Fig.1.The Cu2+(a)and Cd2+(b)removal rate(efficiency)of the novel ceramsite.

    Fig.2.Langmuir(a)and Freundlich(b)isotherms for Cu2+adsorption.

    Most of the previous studieshave focused on methods of developing sludge ceramsite,and there are only a few studies on Cu2+and Cd2+adsorption by ceramsite.Fig.1 shows that the equilibrium time of Cu2+and Cd2+adsorption by the novel ceramsite exceeded 20 h.The time to reach Cu2+and Cd2+equilibrium was about 950 and 1700 min,respectively,and Cu2+adsorption was more stable than Cd2+adsorption.The best removal rate for both the metals was 100%,and the Cu2+and Cd2+equilibrium adsorption amount was 4.96 and 3.84 mg·g?1,respectively.These results confirmed that both Cu2+and Cd2+can be effectively removed by the novel ceramsite.In a previousstudy,Xing et al.[39]showed that the maximum Cu2+removal efficiency of red loess was 100%at p H 8.Qin et al.[51]demonstrated that ceramsite made with lime mud and coal fly ash could be a highperformance product for wastewater recycling.In the present study,the longer equilibrium time and instability in the adsorption may be related to the adsorption mechanism,conditions of adsorption,and compositions of ceramsite.

    3.2.2.Adsorption isotherms

    Figs.2 and 3 show the Langmuir and Freundlich isotherms for Cu2+and Cd2+adsorption,respectively,and Table 5 presents the parameters of the Langmuir and Freundlich equations for Cu2+and Cd2+adsorption.The correlation coefficients showed that the Langmuir model described the adsorption process of Cu2+and Cd2+better than the Freundlich model,and that Cu2+and Cd2+adsorption on the ceramsite was characterized by monolayer sorption.Similar resultshave also been reported in previous studies on Cu2+and Cd2+adsorption on other sorbent materials[39,52–56].

    The value of the parameter RLdescribes the affinity between adsorbent and adsorbate,which can reflect the adsorption process[57].The RLequation can be given as:

    where C0is the initial concentration of Cu2+and Cd2+in solution(mg·L?1).When 0 < RL< 1,the adsorption process proceeds easily;when RL=1,the adsorption process is a linear function;when RL=0,the adsorption is irreversible;and when RL>1,the system is not conducive to adsorption[58,59].In the present study,all the RLvalues were between 0 and 1;thus,it can be concluded that the developed ceramsite exhibited good affinity for Cu2+and Cd2+and could feasibly be used for the adsorption and removal of these metals from water.

    3.2.3.Adsorption kinetics

    Fig.3.Langmuir(a)and Freundlich(b)isotherms for Cd2+adsorption.

    Table 5 Parameters for Langmuir and Freundlich equations for Cu2+and Cd2+adsorption

    Figs.4 and 5 showthe kinetic curves depicting Cu2+and Cd2+adsorption by the developed ceramsite,and Table 6 liststhe parameters for kinetic models describing the adsorption process.The comparison between pseudo- first-and pseudo-second-order kinetics revealed that the R2values(0.9971,0.9846,0.9811)of the pseudo- first-order kinetics model for Cu2+adsorption were reasonably higher than those of the pseudo-second-order kinetics model(0.9985,0.9769,0.9772).Furthermore,the R2values(0.9591,0.9556,0.9705)of the pseudofirst-order kinetics model describing Cd2+adsorption were obviously higher than those of the pseudo-second-order kinetics model(0.9340,0.9447,0.9443).Therefore,it can be concluded that pseudo- first-order kinetics provided a better description of both Cu2+and Cd2+adsorption(especially Cu2+adsorption)by the novel ceramsite than the pseudo-second-order kinetics.This finding indicated that adsorption efficiency was related to the effective adsorption sites of the ceramsite,initial concentration of the heavy metal solution,adsorption rates,and increased interaction time.These results are similar to those reported by Azizian[60],Bhattacharyya and Gupta[61],and Liu et al.[62].

    Fig.4.Kinetic equation fitting curve depicting Cu2+adsorption.(a)pseudo- first-order kinetics;(b)pseudo-second-order kinetics.

    3.3.Adsorption mechanism analysis

    Fig.6 shows the SEM image of the novel ceramsite before and after Cu2+and Cd2+adsorption.It can be noted from the figure that the surface of the ceramsite became smoother after Cu2+and Cd2+adsorption,which could probably be owing to the filling of poresby Cu2+and Cd2+.Sometiny pores in ceramsitecould provide the bas is for the physical adsorption function.Fig.7 presents the EDS results of the novel ceramsite before and after adsorption,which clearly showthe adsorbed Cu and Cd elements.These results indicated that the novel ceramsite allowed physical adsorption of Cu2+and Cd2+.In a previous study,Frost et al.[63]reported that SEM imaging and EDS analysis could be used to demonstrate the presence of Al,F,and S in the sulfate mineral.

    Fig.5.Kinetic equation fitting curve depicting Cd2+adsorption.(a)pseudo- first-order kinetics;(b)pseudo-second-order kinetics.

    Fig.8 illustrates the FTIR spectra of the novel ceramsite before and after Cu2+and Cd2+adsorption.Several peaks can be observed in the figure,suggesting that kaolinite is composed of various functional groups that are responsible for the binding of cations.It must be noted that the absorption band from 2360 to 4000 cm?1was unaffected before and after adsorption,revealing the absence of smectite in kaolinite[64].The absorption peaks near 1647 and 1057 cm?1can be attributed to the angular vibration of structural water and C--O bond stretching vibration of as mall amount of carboxylate,respectively,and the absorption peak at 1057 cm?1corresponded to the carbohydrate from ceramsite and C--O stretching vibration.The Si--O stretching vibration was observed at 779 cm?1,and the peak intensity recorded at 456 cm?1can beattributed to Al--O--Siskeletal vibrations[65].Similar spectra were noted after Cu2+and Cd2+adsorption by the novel ceramsite.The shifts in the C--O bond were observed from 1647 to 1636 cm?1following Cu2+adsorption,and from 1057 to 1038 cm?1following Cd2+adsorption.In addition,there was a shift in Si--O stretching vibration from 779 to 776 cm?1and a minor shift in the Al--O--Si skeletal vibration.These results indicated that the novel ceramsite initiated chemical adsorption of Cu2+and Cd2+.Similar results were also reported by Dawodu and Akpomie[66]who analyzed the FTIR spectrum of chemical constitution changes before and after Cd(II)adsorption by Nigerian kaolinite clay.

    Fig.6.SEM images of ceramsite before(a)and after adsorption of Cu2+(b)and Cd2+(c).

    Table 6 Parameters for Cu2+and Cd2+adsorption kinetic models

    Fig.7.EDS of ceramsite before(a)and after adsorption of Cu2+(b)and Cd2+(c).

    Fig.8.FTIR spectrum of ceramsite before(a)and after ad sorption of Cu 2+(b)and Cd 2+(c).

    4.Conclusions

    A novel ceramsite was developed by combining four urban sediments(SPS,WSTS,RBS,and WWTS)and a binder(Na2SiO3)at an optimal composition of(in proportion relative to SPS)20%WSTS,15%RBS,15%WWTS,and 10%Na2SiO3.The novel ceramsite could effectively remove Cu2+and Cd2+,and the adsorption process could be better described by the Langmuir isotherm and pseudo- first-order kinetics.The adsorption of Cu2+and Cd2+by the novel ceramsite involved both physical and chemical processes.Therefore,the novel ceramsite can be used as a sorbent for removing dissolved heavy metals from storm water runoff.In addition,the developed ceramsite presented the characteristic of solidity,suggesting its potential application as a bioretention medium to purify storm water.

    [1]W.Jianlong,Z.Pingping,Y.Liqiong,et al.,Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff,Chin.J.Chem.Eng.23(2015)1542–1550.

    [2]C.Y.Fan,Sewer Sediment and Control:A Management Practices Reference Guide,United States Environmental Protection Agency,washington,2004.

    [3]G.Yuan,W.Hongwu,Z.Shanfa,et al.,Current research progress in combined sewer sediments and their models,China Water Wastewater 2(27)(2010)15–18,27.

    [4]L.Guiyun,J.Peihua,Study on importance and approaches to the reutilization of river sediment,J.Donghua Univ.Nat.Sci.1(2002)33–36.

    [5]H.Jun,W.Qishan,R.Ailing,Technology research on waterworks sludge and sewage sludge for ceramsite,Chin.J.Environ.Eng.9(2009)1653–1657.

    [6]W.Jing,L.Zongwen,T.Shun,et al.,Existing state and development of sludgy researches in domestic and foreign,Munic.Eng.Technol.24(3)(2006)140–142.

    [7]C.Becouze-Lareure,L.Thiebaud,C.Bazin,et al.,Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer over flow discharges,Sci.Total Environ.539(2016)503–514.

    [8]I.Ebtehaj,H.Bonakdari,S.Shamshirband,et al.,A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer,Flow Meas.Instrum.47(2016)19–27.

    [9]L.Yiwen,N.Bingjie,R.Ganigué,et al.,Sul fide and methane production in sewer sediments,J.Water Res.70(2015)350–359.

    [10]J.Mattsson,A.Hedstr?m,R.M.Ashley,et al.,Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater–A review,J.Environ.Manag.161(2015)188–197.

    [11]R.Sakrabani,J.Vollertsen,R.M.Ashley,et al.,Biodegradability of organic matter associated with sewer sediments during first flush,Sci.Total Environ.407(8)(2009)2989–2995.

    [12]L.Guiyun,X.Danli,Experiment on producing ceramisite with river sediment,J.Donghua Univ.Nat.Sci.4(94)(2003)81–83,94.

    [13]W.S.W.Salim,S.F.Sadikon,S.M.Salleh,et al.,Assessment of physical properties and chemical composition of Kuala Perlis dredged marine sediment as a potential brick material,Business,Engineering and Industrial Applications(ISBEIA),IEEE Symposium on,IEEE 2012,pp.509–512.

    [14]H.Jun,W.Qishan,R.Ailing,Technology research on the production of high strength ceramsite by waterworks sewage,Ind.Saf.Environ.Prot.11(2010)51–52.

    [15]T.Yuanyuan,C.Siuwai,K.Shih,Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials,Waste Manag.34(6)(2014)1085–1091.

    [16]Y.Lan,J.Wei,L.Zhongyuan,et al.,Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater,Appl.Surf.Sci.330(2015)228–236.

    [17]Y.Lan,J.Wei,Z.Yumei,et al.,Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater,Appl.Surf.Sci.305(2014)337–346.

    [18]M.K.Gibbons,G.A.Gagnon,Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids,J.Water Res.44(19)(2010)5740–5749.

    [19]H.Jun,W.Qishan,R.Ailing,Use of sewage sludge for manufacturing light ceramsite,Urban Environ.Urban Ecol.16(6)(2003)13–14.

    [20]L.C.Herek,C.E.Hori,M.H.M.Reis,et al.,Characterization of ceramic bricks incorporated with textile laundry sludge,Ceram.Int.38(2)(2012)951–959.

    [21]Y.Jian,Z.Chunhui,X.Meiyan,et al.,Enhancement stabilization of heavy metals(Zn,Pb,Cr and Cu)during vermifiltration of liquid-state sludge,Bioresour.Technol.146(2013)649–655.

    [22]L.Xingwen,S.Kaimin,C.Hefa,Lead glass-ceramics produced from the beneficial use of waterworks sludge,J.Water Res.47(3)(2013)1353–1360.

    [23]T.Wang,W.Liu,N.Xu,et al.,Adsorption and desorption of Cd(II)onto titanate nanotubes and efficient regeneration of tubular structures,J.Hazard.Mater.250(2013)379–386.

    [24]X.Guoren,L.Mingwei,L.Guibai,Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment,J.Hazard.Mater.260(2013)74–81.

    [25]K.G.Akpomie,F.A.Dawodu,K.O.Adebowale,Mechanism on the sorption of heavy metals from binary-solution by a lowcost montmorillonite and its desorption potential,Alex.Eng.J.54(3)(2015)757–767.

    [26]B.An,C.G.Lee,M.K.Song,et al.,Applicability and toxicity evaluation of an adsorbent based on jujube for the removal of toxic heavy metals,React.Funct.Polym.93(2015)138–147.

    [27]S.E.Bailey,T.J.Olin,R.M.Bricka,et al.,A review of potentially low-cost sorbents for heavy metals,J.Water Res.33(11)(1999)2469–2479.

    [28]A.Oskarsson,A.Widell,M.Olsson,et al.,Cadmium in food chain and health effects in sensitive population groups,Biometals 17(5)(2004)531–534.

    [29]E.W.Shin,R.M.Rowell,Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation:The origin of sorption capacity improvement,Chemosphere 60(8)(2005)1054–1061.

    [30]Z.Guoping,M.Fukami,H.Sekimoto,Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage,Field Crops Res.77(2)(2002)93–98.

    [31]L.M.Gaetke,C.K.Chow,Copper toxicity,oxidative stress,and antioxidant nutrients,Toxicology 189(1)(2003)147–163.

    [32]S.Larous,A.H.Meniai,M.B.Lehocine,Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust,Desalination 185(1)(2005)483–490.

    [33]W.Hao,S.Qiyong,L.Haibo,et al.,Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper,Sensors Actuators B Chem.209(2015)336–342.

    [34]M.M.Matlock,B.S.Howerton,D.A.Atwood,Chemical precipitation of heavy metals from acid mine drainage,J.Water Res.36(19)(2002)4757–4764.

    [35]S.R.Younesi,H.Alimadadi,E.K.Alamdari,et al.,Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions,Hydrometallurgy 84(3)(2006)155–164.

    [36]W.W.Ngah,M.A.K.M.Hana fiah,Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review,Bioresour.Technol.99(10)(2008)3935–3948.

    [37]A.Roy,J.Bhattacharya,A binary and ternary adsorption study of wastewater Cd(II),Ni(II)and Co(II)by γ-Fe2O3nanotubes,Sep Purif.Technol.115(2013)172–179.

    [38]C.H.Xiong,C.P.Yao,Study on the adsorption of cadmium(II)from aqueous solution by D152 resin,J.Hazard.Mater.166(2)(2009)815–820.

    [39]X.Shengtao,Z.Meiqing,M.Zichuan,Removal of heavy metal ions from aqueous solution using red loess as an adsorbent,J.Environ.Sci.23(9)(2011)1497–1502.

    [40]H.A.Hegazi,Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents,HBRC J.9(3)(2013)276–282.

    [41]C.Rongzhi,Z.Zhenya,F.Chuanping,et al.,Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As(V)removal from water solution,Microporous Mesoporous Mater.131(1)(2010)115–121.

    [42]Z.Jinlong,X.Guoren,K.Pan,et al.,Nitrogen removal and bio film structure affected by COD/NH4+–N in a bio filter with porous sludge-ceramsite,Sep.Purif.Technol.94(2012)9–15.

    [43]X.Guoren,Z.Jinlong,L.Guibai,Ceramsite made with water and wastewater sludge and its characteristics affected by SiO2and Al2O3,J.Environ.Sci.Technol.42(19)(2008)7417–7423.

    [44]I.Langmiur,The constitution and fundamental properties of solids and liquids,J.Am.Chem.Soc.38(11)(1916)2221–2295.

    [45]H.M.F.Freundlich,Uber die adsorption in losungen,Z.Phys.Chem.A 57(1906)385–470.

    [46]S.Lagergren,K.Svenska,About the theory of so-called adsorption of soluble substances,K.Sven.Vetenskapsakad.Handl.24(1898)1–39.

    [47]Y.S.Ho,G.Mckay,Pseudo-second order model for sorption processes,Process Biochem.34(5)(1999)451–456.

    [48]C.M.Riley,Relation of chemical properties to the bloating of clays,J.Am.Ceram.Soc.34(4)(1951)121–128.

    [49]X.Shuhong,M.Chunyan,Z.Jingwei,et al.,Application of orthogonal design and regression analysis on ceramsite made of river sediment,Concrete 12(2008)022.

    [50]X.Guoren,Z.Jinlong,Y.Dai,Utilization of dried sludge for making ceramsite,Water Sci.Technol.54(9)(2006)69–79.

    [51]Q.Jun,C.Chong,C.Xiaoyu,et al.,Preparation and characterization of ceramsite from lime mud and coal fly ash,Constr.Build.Mater.95(2015)10–17.

    [52]D.Jinming,S.Bing,Removal characteristics of Cd(II)from acidic aqueous solution by modified steel-making slag,Chem.Eng.J.246(2014)160–167.

    [53]J.H.Potgieter,S.S.Potgieter-Vermaak,P.D.Kalibantonga,Heavy metals removal from solution by palygorskite clay,Miner.Eng.19(5)(2006)463–470.

    [54]S.Weiling,J.Bofeng,W.Fei,et al.,Effect of carbon nanotubes on Cd(II)adsorption by sediments,Chem.Eng.J.264(2015)645–653.

    [55]W.Pingxiao,Z.Qian,D.Yaping,X.Wang,et al.,Adsorption of Cu(II),Cd(II)and Cr(III)ions from aqueous solutions on humic acid modified Ca-montmorillonite,Geoderma 164(3)(2011)215–219.

    [56]W.Pan,D.Mingliang,Z.Han,et al.,Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions:p H effect,kinetics,isotherms and mechanism,J.Hazard.Mater.286(2015)533–544.

    [57]T.W.Weber,R.K.Chakravorti,Pore and solid diffusion mod els for fixed-bed adsorbers,AIChE J.20(2)(1974)228–238.

    [58]M.M.Rao,A.Ramesh,G.P.C.Rao,K.Seshaiah,Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls,J.Hazard.Mater.129(1)(2006)123–129.

    [59]M.F.Sawalha,J.R.Peralta-Videa,J.Romero-Gonzalez,et al.,Thermodynamic and isotherm studies of the biosorption of Cu(II),Pb(II),and Zn(II)by leaves of saltbush(Atriplex canescens),J.Chem.Thermodyn.39(3)(2007)488–492.

    [60]S.Azizian,Kinetic models of sorption:A theoretical analysis,J.Colloid Interface Sci.276(1)(2004)47–52.

    [61]K.G.Bhattacharyya,S.S.Gupta,Removal of Cu(II)by natural and acid-activated clays:An insight of adsorption isotherm,kinetic and thermodynamics,Desalination 272(1)(2011)66–75.

    [62]L.Weifeng,Z.Jian,C.Cheng,et al.,Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II)from aqueous solutions,Chem.Eng.J.175(2011)24–32.

    [63]R.L.Frost,R.Scholz,R.M.F.Lima,et al.,SEM,EDS and vibrational spectroscopic study of the sulphate mineral rostite AlSO4(OH,F)·5(H2O),Spectrochim.Acta A Mol.Biomol.Spectrosc.151(2015)616–620.

    [64]G.I.E.Ekosse,Fourier transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of Kaolin,J.Appl.Sci.Environ.Mgt.9(2)(2005)43–48.

    [65]A.B.?uki?,K.R.Kumri?,N.S.Vukeli?,et al.,Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics,J.Ceram.Int.41(3)(2015)5129–5137.

    [66]F.A.Dawodu,K.G.Akpomie,Simultaneous adsorption of Ni(II)and Mn(II)ions from aqueous solution unto a Nigerian kaolinite clay,J.Mater.Res.Technol.3(2)(2014)129–141.

    亚洲欧洲国产日韩| av在线老鸭窝| 少妇猛男粗大的猛烈进出视频 | 国产精品.久久久| 看黄色毛片网站| 极品教师在线视频| 亚洲成人久久爱视频| 91精品伊人久久大香线蕉| 久久99热6这里只有精品| 精品久久久久久久久久久久久| videos熟女内射| 国产乱人偷精品视频| 一级av片app| 亚洲精品国产av成人精品| 亚洲va在线va天堂va国产| 2021少妇久久久久久久久久久| 国产高清有码在线观看视频| 精品久久久久久久末码| 午夜爱爱视频在线播放| 国产激情偷乱视频一区二区| 亚洲精品自拍成人| 日本与韩国留学比较| 男女啪啪激烈高潮av片| 久久久午夜欧美精品| 国产在线男女| 精品久久久久久久久久久久久| 国产精品久久久久久久久免| 欧美成人免费av一区二区三区| 国产精品国产三级国产专区5o | 国产亚洲最大av| 亚洲欧美清纯卡通| 国产久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱码久久久v下载方式| 欧美成人a在线观看| 国产成人免费观看mmmm| 99久久精品热视频| 亚洲av成人精品一二三区| 22中文网久久字幕| 欧美区成人在线视频| 国产探花极品一区二区| 人妻制服诱惑在线中文字幕| 在线天堂最新版资源| .国产精品久久| 国产高清三级在线| 建设人人有责人人尽责人人享有的 | 毛片女人毛片| 国国产精品蜜臀av免费| av免费在线看不卡| 色综合亚洲欧美另类图片| 男女下面进入的视频免费午夜| 午夜福利网站1000一区二区三区| 夫妻性生交免费视频一级片| 国语自产精品视频在线第100页| 熟妇人妻久久中文字幕3abv| 欧美激情久久久久久爽电影| 免费人成在线观看视频色| 国产在线一区二区三区精 | 国产一级毛片在线| 最近2019中文字幕mv第一页| 欧美一区二区亚洲| 97在线视频观看| 国产精品无大码| 国产午夜精品久久久久久一区二区三区| 亚洲内射少妇av| 久久久色成人| 国产又色又爽无遮挡免| 欧美最新免费一区二区三区| 永久免费av网站大全| av福利片在线观看| 亚洲欧美成人精品一区二区| 麻豆成人av视频| 久久久久免费精品人妻一区二区| 成人综合一区亚洲| 在线播放国产精品三级| 一级av片app| 色视频www国产| 亚洲av不卡在线观看| 成人午夜精彩视频在线观看| h日本视频在线播放| 国产午夜福利久久久久久| 赤兔流量卡办理| 国产毛片a区久久久久| 日韩成人伦理影院| 亚洲国产日韩欧美精品在线观看| 国产伦一二天堂av在线观看| 亚洲国产精品合色在线| 精品国产露脸久久av麻豆 | 国产成人aa在线观看| a级毛色黄片| 青春草国产在线视频| 亚洲在线观看片| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 久久韩国三级中文字幕| 美女脱内裤让男人舔精品视频| 欧美区成人在线视频| 国产午夜福利久久久久久| 午夜福利在线观看免费完整高清在| 看十八女毛片水多多多| 日韩,欧美,国产一区二区三区 | 婷婷六月久久综合丁香| 国产高清视频在线观看网站| 美女大奶头视频| 最新中文字幕久久久久| 国产伦精品一区二区三区视频9| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 在线播放无遮挡| 欧美日本亚洲视频在线播放| 综合色av麻豆| 99久久精品国产国产毛片| 久久久色成人| 麻豆乱淫一区二区| 亚洲欧美精品综合久久99| 又爽又黄无遮挡网站| 精品99又大又爽又粗少妇毛片| videos熟女内射| 在线播放无遮挡| 精品一区二区三区人妻视频| 综合色丁香网| 国产色爽女视频免费观看| 天天一区二区日本电影三级| 欧美精品一区二区大全| 只有这里有精品99| 搡女人真爽免费视频火全软件| 精品久久久久久电影网 | 午夜福利在线观看吧| 国产片特级美女逼逼视频| 久久久色成人| 三级国产精品片| 伦精品一区二区三区| 午夜a级毛片| 嫩草影院入口| 久久99热6这里只有精品| 老女人水多毛片| 日韩在线高清观看一区二区三区| 91精品一卡2卡3卡4卡| 国产毛片a区久久久久| 日本-黄色视频高清免费观看| 国产乱人视频| 久久99热这里只有精品18| 免费大片18禁| 成年av动漫网址| 可以在线观看毛片的网站| 97超碰精品成人国产| 成人综合一区亚洲| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区免费观看| 精品熟女少妇av免费看| 女人久久www免费人成看片 | 亚洲18禁久久av| 丝袜美腿在线中文| 亚洲在线观看片| 亚洲中文字幕一区二区三区有码在线看| 国产精品福利在线免费观看| 亚洲一级一片aⅴ在线观看| 国产 一区精品| 久久精品国产自在天天线| 午夜福利在线在线| 91aial.com中文字幕在线观看| 亚洲欧洲国产日韩| 国产一区亚洲一区在线观看| 搡老妇女老女人老熟妇| 国产精品久久久久久精品电影小说 | 亚洲精品日韩在线中文字幕| 深夜a级毛片| 只有这里有精品99| 国产精品av视频在线免费观看| 亚洲自偷自拍三级| 99九九线精品视频在线观看视频| 午夜久久久久精精品| 在线观看66精品国产| 亚洲精品自拍成人| 成人国产麻豆网| 日本五十路高清| av国产免费在线观看| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 国产精品美女特级片免费视频播放器| 久久久久性生活片| 别揉我奶头 嗯啊视频| 国产色爽女视频免费观看| 欧美97在线视频| 中国美白少妇内射xxxbb| 伦理电影大哥的女人| 人妻夜夜爽99麻豆av| 国产一区亚洲一区在线观看| 一级二级三级毛片免费看| 亚洲av免费高清在线观看| 久热久热在线精品观看| 国产探花在线观看一区二区| 欧美最新免费一区二区三区| 蜜臀久久99精品久久宅男| 99久久中文字幕三级久久日本| www.色视频.com| 日韩强制内射视频| 最近手机中文字幕大全| 别揉我奶头 嗯啊视频| 黄色一级大片看看| 汤姆久久久久久久影院中文字幕 | 亚洲美女视频黄频| 最近视频中文字幕2019在线8| 亚洲va在线va天堂va国产| 免费黄网站久久成人精品| 日韩欧美在线乱码| 网址你懂的国产日韩在线| 中文亚洲av片在线观看爽| 精品人妻视频免费看| 九色成人免费人妻av| 女人被狂操c到高潮| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区| 有码 亚洲区| 偷拍熟女少妇极品色| 日韩高清综合在线| 美女高潮的动态| 国产精品人妻久久久久久| 日本-黄色视频高清免费观看| 日日撸夜夜添| 日本欧美国产在线视频| 欧美+日韩+精品| 久久久久久久久久黄片| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 国产成年人精品一区二区| 欧美成人一区二区免费高清观看| 如何舔出高潮| 日韩一区二区视频免费看| 三级经典国产精品| 汤姆久久久久久久影院中文字幕 | 午夜精品一区二区三区免费看| 特级一级黄色大片| 亚洲精品亚洲一区二区| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 亚洲成人av在线免费| 91av网一区二区| 九色成人免费人妻av| 狠狠狠狠99中文字幕| a级毛色黄片| 亚洲成av人片在线播放无| 在线a可以看的网站| 日本五十路高清| 精品午夜福利在线看| av国产久精品久网站免费入址| 国产精品蜜桃在线观看| 久久欧美精品欧美久久欧美| 在线观看美女被高潮喷水网站| 久久草成人影院| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 婷婷六月久久综合丁香| av在线播放精品| 国产精品久久久久久久久免| 美女被艹到高潮喷水动态| 九草在线视频观看| 亚洲精品自拍成人| 激情 狠狠 欧美| 国产精品美女特级片免费视频播放器| 亚洲欧美精品自产自拍| 中文字幕熟女人妻在线| 亚洲国产色片| 男女那种视频在线观看| 看免费成人av毛片| av免费观看日本| 国产男人的电影天堂91| 一区二区三区四区激情视频| 亚洲精品456在线播放app| 少妇高潮的动态图| 免费看a级黄色片| 偷拍熟女少妇极品色| 日本黄色片子视频| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 两个人视频免费观看高清| 老女人水多毛片| 午夜福利网站1000一区二区三区| 亚洲国产欧洲综合997久久,| 国产亚洲精品久久久com| 直男gayav资源| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 变态另类丝袜制服| 久99久视频精品免费| 久久精品熟女亚洲av麻豆精品 | 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 国产免费男女视频| 久久久久精品久久久久真实原创| 观看美女的网站| 干丝袜人妻中文字幕| 国产在线男女| 日本五十路高清| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 久久草成人影院| 国产伦在线观看视频一区| 国产 一区精品| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 亚洲成人av在线免费| 狠狠狠狠99中文字幕| 国产欧美日韩精品一区二区| 日日啪夜夜撸| 国产欧美另类精品又又久久亚洲欧美| 欧美成人一区二区免费高清观看| 成人亚洲精品av一区二区| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 99九九线精品视频在线观看视频| 91精品国产九色| 免费无遮挡裸体视频| 亚洲av男天堂| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 中文字幕av在线有码专区| 久久99蜜桃精品久久| 精品人妻熟女av久视频| 国产女主播在线喷水免费视频网站 | 欧美激情在线99| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 超碰97精品在线观看| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 国产日韩欧美在线精品| 女人久久www免费人成看片 | 在线免费观看不下载黄p国产| 亚洲成av人片在线播放无| 五月伊人婷婷丁香| 欧美性猛交╳xxx乱大交人| 亚洲av免费高清在线观看| 小蜜桃在线观看免费完整版高清| 纵有疾风起免费观看全集完整版 | 国产伦在线观看视频一区| 人人妻人人看人人澡| 国产精品一区二区性色av| 国产伦精品一区二区三区视频9| 日韩三级伦理在线观看| 欧美性猛交黑人性爽| 在线免费十八禁| 高清在线视频一区二区三区 | .国产精品久久| 日本猛色少妇xxxxx猛交久久| 麻豆av噜噜一区二区三区| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 一本久久精品| 久久久欧美国产精品| 亚洲av福利一区| 亚洲不卡免费看| 日韩精品有码人妻一区| 国产久久久一区二区三区| 亚洲欧美精品专区久久| 久久午夜福利片| 欧美xxxx性猛交bbbb| 男插女下体视频免费在线播放| 丰满少妇做爰视频| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 亚洲熟妇中文字幕五十中出| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 亚洲激情五月婷婷啪啪| 最近中文字幕高清免费大全6| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 我要看日韩黄色一级片| 日本欧美国产在线视频| 春色校园在线视频观看| 亚洲图色成人| 国产黄片美女视频| АⅤ资源中文在线天堂| 国产单亲对白刺激| 亚洲,欧美,日韩| 亚洲性久久影院| 成人国产麻豆网| 午夜精品在线福利| 亚洲人成网站在线观看播放| 男女下面进入的视频免费午夜| 六月丁香七月| 看片在线看免费视频| 久久精品国产自在天天线| 日韩亚洲欧美综合| 黄色配什么色好看| 国产精品一及| 久久精品国产亚洲网站| 成人午夜精彩视频在线观看| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 午夜福利成人在线免费观看| 午夜福利网站1000一区二区三区| 欧美zozozo另类| 男女那种视频在线观看| 久久99蜜桃精品久久| 一个人观看的视频www高清免费观看| 国产探花在线观看一区二区| 精品人妻视频免费看| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月| 国产又黄又爽又无遮挡在线| 日韩人妻高清精品专区| 色播亚洲综合网| 成人一区二区视频在线观看| 在线观看一区二区三区| 国产淫片久久久久久久久| 国产精品国产高清国产av| 国产亚洲91精品色在线| 亚洲欧美日韩高清专用| 午夜免费激情av| 欧美人与善性xxx| 欧美一区二区国产精品久久精品| 国产色爽女视频免费观看| 午夜a级毛片| 日本黄色片子视频| 日韩人妻高清精品专区| 99久国产av精品国产电影| 国产精品乱码一区二三区的特点| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 久久久亚洲精品成人影院| 午夜精品在线福利| 色网站视频免费| 国产高清有码在线观看视频| 久久亚洲国产成人精品v| 精品久久国产蜜桃| 精品久久久噜噜| 高清日韩中文字幕在线| 欧美成人午夜免费资源| 深夜a级毛片| 99热这里只有是精品在线观看| 91久久精品电影网| 亚洲高清免费不卡视频| 成年版毛片免费区| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 禁无遮挡网站| 一级黄色大片毛片| av在线播放精品| 国产伦在线观看视频一区| 综合色av麻豆| 成人欧美大片| 日韩欧美三级三区| 中文字幕人妻熟人妻熟丝袜美| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 色综合色国产| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 亚洲熟妇中文字幕五十中出| 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 久久久a久久爽久久v久久| 日本色播在线视频| 亚洲人与动物交配视频| 国产极品精品免费视频能看的| 毛片一级片免费看久久久久| 亚洲国产最新在线播放| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 欧美成人免费av一区二区三区| 午夜福利在线在线| 亚洲欧美中文字幕日韩二区| 如何舔出高潮| 亚洲av二区三区四区| 免费观看性生交大片5| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看 | 亚洲在线自拍视频| 日韩精品有码人妻一区| 久久久国产成人精品二区| 日本与韩国留学比较| av女优亚洲男人天堂| 国产一级毛片七仙女欲春2| 欧美激情在线99| 日韩成人伦理影院| 成年女人永久免费观看视频| 天堂影院成人在线观看| 尾随美女入室| 日本五十路高清| 老司机影院成人| 成年版毛片免费区| 狂野欧美激情性xxxx在线观看| 国产探花在线观看一区二区| 精品午夜福利在线看| 丝袜喷水一区| 国产大屁股一区二区在线视频| 国产乱人视频| 成人性生交大片免费视频hd| 一区二区三区高清视频在线| 国产精品久久久久久精品电影小说 | 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 国产黄a三级三级三级人| 大又大粗又爽又黄少妇毛片口| 天堂√8在线中文| 可以在线观看毛片的网站| 久久精品影院6| 国产在线男女| 深爱激情五月婷婷| 麻豆成人av视频| 一夜夜www| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| www.av在线官网国产| 国产成人a∨麻豆精品| 亚洲av二区三区四区| 午夜老司机福利剧场| 亚洲电影在线观看av| 一本一本综合久久| 我的老师免费观看完整版| 简卡轻食公司| 久久久午夜欧美精品| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看| 99热网站在线观看| 真实男女啪啪啪动态图| 又粗又硬又长又爽又黄的视频| 免费一级毛片在线播放高清视频| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 嫩草影院新地址| 成年版毛片免费区| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 人人妻人人澡欧美一区二区| 如何舔出高潮| 日本五十路高清| eeuss影院久久| 韩国av在线不卡| 久久久久久九九精品二区国产| 久久久久网色| 欧美一区二区精品小视频在线| 麻豆国产97在线/欧美| 乱系列少妇在线播放| 一区二区三区高清视频在线| 久久久国产成人免费| 欧美精品一区二区大全| 99久国产av精品国产电影| 精品一区二区三区人妻视频| 插阴视频在线观看视频| 一级黄色大片毛片| 18禁在线无遮挡免费观看视频| 亚洲国产高清在线一区二区三| 欧美色视频一区免费| 亚洲经典国产精华液单| 好男人视频免费观看在线| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看| 国产白丝娇喘喷水9色精品| 六月丁香七月| 国产精品一区二区性色av| 99热全是精品| 男女下面进入的视频免费午夜| 国产亚洲av片在线观看秒播厂 | 午夜福利高清视频| 国产精品一区www在线观看| 人人妻人人澡欧美一区二区| 欧美另类亚洲清纯唯美| 国产成人免费观看mmmm| 国产欧美日韩精品一区二区| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品| 国内精品宾馆在线| 国产极品天堂在线| 亚洲久久久久久中文字幕| 国产精品人妻久久久影院| 18+在线观看网站| 丝袜美腿在线中文| 亚洲国产高清在线一区二区三| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 丝袜喷水一区| 嫩草影院精品99| 亚洲色图av天堂| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 直男gayav资源| 有码 亚洲区| 成人高潮视频无遮挡免费网站| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 老女人水多毛片| 色综合站精品国产| 九草在线视频观看| 午夜精品在线福利| 亚洲自拍偷在线| 中文在线观看免费www的网站| 亚洲av成人av| 亚洲在久久综合| 亚洲va在线va天堂va国产| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄|