• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oil–water pre-separation with a novel axial hydrocyclone☆

    2018-05-25 07:50:40MeiliLiuJiaqingChenXiaoleiCaiYanheHanSiXiong

    Meili Liu,Jiaqing Chen*,Xiaolei Cai,Yanhe Han*,Si Xiong

    Department of Environmental Engineering,Beijing Institute of Petrochemical Technology,Beijing 102617,China

    1.Introduction

    With the large-scale development of deep-sea petroleum resources,the water content of output fluids is ever-increasing so that most of water treatment systems have reached their maximum capacity[1].To overcome this problem,the technology of down hole oil–water separation(DOWS)was proposed utilizing down hole installation of hydrocyclones to pre-separate oil and water,after which the oil was pumped to the surface and the water was re-injected back into the well[2].Hydrocy clones are devices which separate two phases of different densities with the aid of the strong centrifugal force generated by the swirling flow[3–5].Deoiling hydrocyclones used for oily waste water in offshore platforms,are the most common examples of liquid–liquid hydrocyclones[6].However,some disadvantages have been found during the practical application of traditional deoiling hydrocyclone which has tangential inlet for swirl generation[7,8].The vortex flow is easy to swing due to the non-axisymmetric inlet of tangential hydrocyclone[9,10],which brings about oil droplet breakup and high turbulent intensity and then reduces the separation efficiency[11,12].Moreover,the tangential inlet not only leads to large bulk but also consumes high energy.In order to solve the above defects,axial hydrocyclone has been developed[13,14].

    Compared to tangential hydrocyclone,axial hydrocyclone has advantages of low-level turbulence,small pressure drop and high handling capacity,which is more feasible for down hole oil–water separation[15–17].The axial hydrocyclone for oil–water separation was first proposed by Dirkz wager[18],which a guide vane was installed in a straight pipe to generate swirling flow.The following studies showed that the separation of oil and water was successfully carried out in the strong swirling flow field generated by the guide vane[19,20].Thereafter,different kinds of axial hydrocy clone were presented and studied[2,21–23].The research results show that axial hydrocyclone with small size,straight-through flow and low pressure drop is an ideal candidate for DOWS application.However,most of studies only present qualitative information and the maximum capacity of the reported axial hydrocyclone is 12 m3·h?1.The handling capacity needs to be further increased.

    Ever since the first efficient design of deoiling hydrocyclone proposed by Thew[24],experimental method has been an effective way to investigate the influence of operating parameters or geometry parameters on the separation efficiency[25,26].Recently,in view of the high cost and time consumption of experimental investigation,many attempts have been performed numerically for analysis of oil–water flow through the hydrocyclones.Huang[24]simulated the multiphase flow behavior for the Colman–The whydrocy clone using the Eulerian–Eulerian method,the separation curve of which agreed well with measured ones.Maddahian et al.[27]also used the same approach for the simulation of two-phase flow behavior within two typical designs of hydrocyclones.Results showed that different swirl distributions of two configurations caused differences in velocity and volume fraction.Noroozi et al.[28,29]analyzed the effect of inlet types and inlet chamber body pro files on the separation efficiency of deoiling hydrocyclones by using algebraic slip mixture model.Their simulations showed that the separation efficiency could be improved approximately 8%–10%by a suitabledesign.The Eulerian–Lagrangian approach was applied to study the performance of the de-oiling hydrocyclones as well[8].A complete review of hydrocyclones used for deoiling purpose was summarized by Kharoua[30].Moreover,with the progress of computer technology and numerical analysis theory,several investigations have also been reported for deep understanding of the fundamental fluid mechanics,such as dynamic characteristics[31,32],droplet breakup and coalescence[33–35],G force distribution[36]and rheological behavior[37].The above literature review reveals that numerical simulation has provided another effective tool for investigation of hydrocyclone.

    The objective of this study is to present a novel axial hydrocyclone with high handling capacity.The influences of the guide blades,the cone angle of the reducing section as well as the tapered section and the diameter of the over flow pipe on the oil–water separation efficiency are studied using the numerical method.The optimum design of AHC is carried out by using response surface methodology and the feasibility of the optimum AHC is verified by experiments.

    2.Novel Hydrocyclone

    The AHC consists of four axisym metric sections,which are named cylindrical section,reducing section,tapered section and tail pipe section,as shown in Fig.1.The mixture of oil and water enters into the annular geometry of the cylindrical section,where curved blades used as guide vanes are located,replacing of the tangential inlet used by conventional hydrocyclones.By deflecting it over an angle,the cascade of vanes imposes a tangential velocity on the mixture,establishing a symmetric flow field with a low level of turbulence.Moreover,the built-in vane can reduce the outer dimensions of the apparatus.

    The reducing section,which is also an annular space,is designed to achieve higher tangential acceleration by conservation of angular momentum,whilereducing the pressure drop and the shear stress to an acceptable level to avoid droplet breakup.A tube named over flow pipe is mounted on the bottom of the reduction section,via which the reversed flow in the central body exits the hydrocyclone.

    The tapered section with lowangle is where most of the separation occurs,because this segment retains high swirl intensity and long residence time.The oil droplets migrate towards the center and form an oil rich core by the action of centrifugal force.Meanwhile,the oil rich core drifts to the over flow pipe under the suction of the adverse pressure gradient in the centerline.

    The last part of the design is a long tail pipe with cylindrical cross section.This configuration gives a stable flow for the smallest droplets migrate to the reverse flow while the separated water continues to move upward and is discharged from the under flow out.

    3.Numerical Methods

    Currently,there are two approaches for the numerical simulation of multiphase flows:the Eulerian–Lagrangian approach and the Eulerian–Eulerian approach.It depends on the concentration of the dispersed phase in the continuous phase using which approach to perform multiphase simulations.The Eulerian–Lagrangian approach models primary and dispersed phase separately.A low volume fraction usually less than 10%is appropriate for this approach[24,30,32].Therefore,the model is unsuitable for liquid–liquid hydrocyclones in the current case.The Eulerian–Eulerian approach is an alternate of the Lagrangian approach and indispensable when simulation with high loading(more than 10%)of dispersed phase is desired.This approach treats the different phases as in terpenetrating continua and can completely capture the multiphase nature of flows in deoiling hydrocyclones by solving conservation equations for each phase[24,30].A full Eulerian approach is used in this paper,which permits simulating the effects of turbulence on dispersed phase and the interaction of dispersed phase with primary phase.

    3.1.Governing equations

    Water is considered as continuous phase,while oil droplets are considered as dispersed phase.For each phase,the model consists of continuity,momentum and turbulence equations.The continuity and momentum equation is expressed as Eqs.(1)and(2).

    where k denotes water(w)or oil(o),α refers to the volume fraction(αw+αo=1),ρ is the density,is the velocity,is the acceleration due to gravity andis the k th phase stress–strain tensor which is calculated by Eq.(3).

    Here μkand λkare the shear and bulk viscosity of phase k.The term ofin Eq.(2)represents the interaction between dispersed and continuous phase,including the drag force,the lift force and the virtual mass force.In this work,the lift force is discounted because of the small diameter of droplets and the virtual mass force is also ignored due to the lowdensity differences between the two liquids.Therefore,only the drag force is considered in the interphase momentum exchange term via Eq.(4):

    where dois droplet diameter and CDis drag coefficient.

    Fig.1.Dimensions and parameters of the hydrocyclone.

    3.2.Turbulence model

    The turbulence closure model is a key component in the description of the fluid dynamics of the hydrocyclone.Previous numerical simulations show applicability of Reynolds stress model(RSM)for swirling flow in hydrocyclones,which can predict anisotropic turbulence and capture fluctuations of highly swirling flow bounded by curved surface[38,39].ALarge Eddy Simulations(LES)also provides good prediction of turbulence encountered in hydrocyclones[31,40],however,it requires much higher computational resources when compared with RSM.So RSM model has been used for simulations of the momentum transport induced by turbulence.

    3.3.Geometry and mesh generation

    AHC with a capacity of 30 m3·h?1is adopted in the simulation,and its geometry size is given in Table 1.In order to keep consistent with actual operation process,the hydrocyclone is located in acylindrical vessel with a diameter of 200 mm,as shown in Fig.2.Four non-uniform structured hexahedron grids are used for three-dimensional simulations in order to take into account of mesh in dependency.A mesh refinement is done in the region with high gradient of phase volume fraction and velocity,such as areas near the wall and the central core.Fig.2 shows the generated mesh.A cylindrical coordinate is used in the simulation and the origin of the coordinate is set at the bottom end of reducing section.

    Table 1 Geometrical dimensions of AHC(mm)

    3.4.Boundary conditions

    The inlet of the cylindrical vessel is defined as velocity inlet,where the velocity magnitude is calculated according to the in flow-rates and the oil volume fraction is set to be 15%.The density and viscosity of the oil are set to be 890 kg·m?3and 0.00332 Pa·s,respectively.The mean diameter of oil is 60 μm.The hydraulic diameter method is used for specification of turbulence at in flow boundaries.The outlet flow is assumed to be fully developed,and the mass flow rate is given by specifying the flow rate weighting.The walls are regarded as the no-slip boundary conditions,where the standard wall function is applied to determine the flow near walls.

    3.5.Solution methodology

    The governing equations mentioned in the section of Governing Equations are discretized with the QUICK scheme and solved by using the commercial CFD code FLUENT 15.0.The coupling between velocity and pressure is dealt with the phase-coupled SIMPLE algorithm.The solution is considered to be converged when the scaled residual of the continuity is below1×10?4.

    4.Results and Discussions

    4.1.Grid dependence

    Fig.3 shows the tangential and the axial velocity at a location of the tapered section.It is evident that the velocity pro files obtained by different meshes are mostly overlapping with each other when the grid number exceeds 238065.To ensure the reliability,the mesh density of 423525 is chosen for the subsequent study.

    4.2.Flow characteristics

    Fig.4 shows the velocity contours for a longitudinal section and the velocity vectors for different cross sections.As can be found from Fig.4,the flow in the outer cylindrical vessel is close to a plug- flow and the velocity magnitude is relatively small.When the flow moves through the cylindrical section,the fluid gains a rotating momentum under the action of guide vanes,resulting in a little increase of the velocity magnitude.As the flow moves into the reducing section,in order to remain the same angular momentum,a gradual increase of the rotating velocity is observable.The above rotating flow generates a double swirling flow in the tapered section.The outer flow near the wall spirals to the tail pipe with a large diameter,whereas the inner flow spirals towards the over flow pipe with a relatively small diameter.The rotation intensity decays along with the fluid moves into the tail pipe.Obviously,the designed axial hydro cyclone produces a symmetry swirling flow being suitable for oil–water separation[8,18,28].

    Fig.2.The schematic diagram of the mesh topology.

    Fig.3.Comparison of(a)tangential and(b)axial velocity simulated with different grids.

    Fig.4.Velocity contours in longitudinal section and velocity vectors in different cross sections.

    Fig.5 shows the variation of oil concentration over time,that is,the formation of the oil core.In the early stage,the amount of fluid flows into AHC is so small that the swirl intensity is too low to be effective,as seen in Fig.5(a)and(b).As the time progresses,the gradual stability of the rotating flow makes the oil concentrate towards the axis,forming an oil core near the over flow pipe,as shown in Fig.5(c),(d)and(e).When the double swirling flow goes steady,the oil–water separation in the tapered section becomes predominant,bringing about a stable oil core with highly concentrated oil in the AHC center,as shown in Fig.5(f).The above condition certifies the feasibility of the AHC design.

    4.3.Influence of structure parameters

    A large of research shows that the oil–water separating process is influenced significantly by the separator structure[28,29,31].Therefore,cylindrical section,reducing section,tapered section and over flow pipe are investigated in the following work.The separation efficiency is calculated by Eq.(5):

    where˙morepresents mass flow rate of oil in the over flow and˙minrepresents mass flow rate of oil in the in flow.

    4.3.1.Effect of cylindrical section

    Fig.5.Variation of oil concentration over time.

    Fig.6.Effect on the AHC performance of cylindrical section(a)with different blade heights and(b)with different blade deflecting angles.

    The effect of cylindrical section on the AHC performance is largely caused by the blades located in cylindrical section.Therefore,the influence of the blade structure on the separation performance is investigated,as shown in Fig.6.With the blade height increase,the flow area increases,resulting in a decrease of flow velocity and available rotational energy.It is well known that the high rotating velocity is conducive to oil–water separation whilst inducing high-energy consumption.So the separation efficiency and the pressure drop decrease as the blade height increases,as shown in Fig.6(a).This indicates that the diminution of blade height can effectively improve the separation efficiency.However,a small flow area induces huge energy consumption.Therefore,the blade height should be controlled in a reasonable range.Fig.6(b)shows that the separation efficiency raises with the increase of blade deflecting angle.That because the rotating velocity can be enlarged by increasing blade deflecting angle.Meanwhile,the pressure drop increases due to the energy consumption caused by the change of the flow direction.Even more importantly,droplet breakup is likely to occur if the rotation intensity is large enough.So,the blade deflecting angle should also be controlled in a reasonable range.

    4.3.2.Effect of reducing section

    Fig.7 shows the effect of reducing section on the AHC performance.Variation of the coneangle α has only influence on the rate of change in the flow field but not on the final distribution of the velocity in the tapered section.However,a larger cone angle brings lower turbulence intensity in the vortex.Therefore,the separation efficiency and the pressure drop increase slightly when the cone angle rises from 10°to 30°,as shown in Fig.7.

    4.3.3.Effect of tapered section

    The flow with high swirl intensity in tapered section is the main role for oil–water separation.Researches indicate smaller tapered angle equate to better performance[31,41,42].Hence,the tapered angle is controlled to be less than 10°.Fig.8 shows the effect of tapered section on the AHC performance.The separation efficiency decreases with the increasing tapered angle.As revealed in researches,the smaller the tapered angle is,the longer the residence time is,resulting in enhanced oil–water separation.Meanwhile,the pressure drop increases with the increasing tapered angle.Hence,small tapered angle is recommend in the case of footprint allows.

    4.3.4.Effect of over flow pipe

    In order to keep smooth discharge of concentrated oil,the results of orthogonal test show that the diameter of over flow pipe should be controlled at least 20 mm.Fig.9 shows the effect of over flow pipe on the AHC performance.The separation efficiency increases regularly with over flow pipe diameter increasing from 20 to 26 mm,and then decreases abruptly when the over flow pipe diameter rises from 26 to 28 mm.This indicates that a low velocity of oil discharge is not allowed due to its weak suction effect on the inner oil core.

    4.4.Optimum structural design

    On the basis of above single factor experiments,response surface methodology is employed to investigate the interaction effect and to obtain optimum matching relations between structures,the results of which are shown in Fig.10.The tapered section has strongest interaction with the reducing section and has moderate interaction with the cylindrical section.In accordance with results of single factor,large tapered angle with the combination of small cone angle is the last choice.However,smallest tapered angle with largest coneangle cannot acquire the highest efficiency,as shown in Fig.10(a)and(b).It can be seen from Fig.10(b)and(c)that large blade deflecting angle combined with small tapered angle and moderate cone angle will gain high separation efficiency.Optimum structure parameters are obtained on the base of results of response surface methodology.

    Fig.7.Effect of reducing section on(a)separation performance and(b)turbulence intensity at the bottom of reducing section.

    Fig.9.Effect of over flow pipe on separation performance.

    Fig.10.Response surface of separation efficiency on different factors.

    Fig.11.Comparison of separation efficiency between experiment and simulation.

    4.5.Performance validation by laboratory experiment

    In order to validate the feasibility of the AHC design,an experimental device with the capacity of 1 m3·h?1is set up according to the principle of similitude.Due to the restriction in university labs,the maximum oil volume fraction at the AHC inlet is10%.The numerical and experimental results of the AHC are shown in Fig.11.The separation efficiency increases with the increasing split ratio as well as the increasing inlet volume fraction.Simulation results agree well with experimental data,the maximum deviation of which is 3.3%.Therefore,the comparison results shown in Fig.11 indicate excellent performance of the designed AHC as well as reliability of the simulation method.

    5.Conclusions

    Numerous oil fields are encountering the problem of high water content.In order to overcome the above problem,an axial hydro cyclone with the capacity of 30 m3·h?1is proposed to separate water from crudeoil.The effect of structure parameters on the oil–water separation is discussed by using CFD methods.Narrowing the blade height and increasing the blade deflecting angle will effectively increase the rotating velocity in hydrocy clone.Therefore,increasing the blade deflecting angle and reducing the blade height can significantly enhance the oil–water separation efficiency.Small tapered angle will keep oil droplets in separation space for a long time,so separation efficiency increases with the decreasing tapered angle.Relatively,reducing section and over flow pipe have less influence on the oil–water separation.However,the strong interaction between reducing section and tapered section cannot be ignored in AHC design.An optimum design of AHC is obtained by using response surface methodology.Laboratory experiments exhibit that the designed AHC has an excellent performance for oil–water separation.

    [1]B.E.Bowers,R.F.Brownlee,P.J.Schrenkel,Development of a down hole oil/water separation and reinjection system for offshore application,SPE J.15(2000)115–122.

    [2]S.Y.Shi,J.Y.Xu,Flow field of continuous phase in a vane-type pipe oil-water separator,Exp.Thermal Fluid Sci.60(2015)208–212.

    [3]B.Wang,K.W.Chu,A.B.Yu,Numerical study of particle- fluid flowin a hydrocyclone,Ind.Eng.Chem.Res.46(2007)4695–4705.

    [4]H.L.Wang,Y.H.Zhang,J.G.Wang,H.L.Liu,Cyclonic separation technology:Researches and developments,Chin.J.Chem.Eng.20(2012)212–219.

    [5]R.A.Johnson,W.E.Gibson,D.R.Libby,Performance of liquid–liquid cyclones,Ind.Eng.Chem.Fundam.15(1976)110–115.

    [6]A.Belaidi,M.T.Thew,S.J.Munaweera,Hydrocyclone performance with complex oil–water emulsions in the feed,Can.J.Chem.Eng.81(2010)1159–1170.

    [7]Z.S.Bai,H.L.Wang,S.T.Tu,Oil–water separation using hydrocyclones enhanced by air bubbles,Chem.Eng.Res.Des.89(2011)55–59.

    [8]M.Nascimento,I.Bicalho,J.Mognon,C.Ataide,C.Duarte,Performance of a new geometry of deoiling hydrocyclones:Experiments and numerical simulations,Chem.Eng.Technol.36(2013)98–108.

    [9]J.G.Wang,Z.S.Bai,Q.Yang,Y.Fan,H.L.Wang,Investigation of the simultaneous volumetric 3-component flow field inside a hydrocyclone,Sep.Purif.Technol.163(2016)120–127.

    [10]Y.F.Chang,A.C.Hoffmann,A Lagrangian study of liquid flow in a reverse- flowhydrocyclone using positron emission particle tracking,Exp.Fluids 56(2015)1–14.

    [11]L.Wang,J.Feng,X.Gao,X.Peng,Investigation on the oil–gas separation efficiency considering oil droplets breakup and collision in a swirling flow,Chem.Eng.Res.Des.117(2017)394–400.

    [12]P.Qian,J.Ma,Y.Liu,X.J.Yang,Y.H.Zhang,H.L.Wang,Concentration distribution of droplets in a liquid–liquid hydrocyclone and its application,Chem.Eng.Technol.39(2016)953–959.

    [13]S.Amini,D.Mowla,M.Golkar,F.Esmaeilzadeh,Mathematical modelling of a hydrocyclone for the down-hole oil–water separation(DOWS),Chem.Eng.Res.Des.90(2012)2186–2195.

    [14]Y.Zhang,M.H.Jiang,Numerical simulation of multi-grade separators for multiphase fluid med ia d own hole in offshore oil field,International Conference on Ocean,Offshore and Arctic Engineering,Shanghai,China,2010.

    [15]A.D.Rocha,A.C.Bannwart,M.M.Ganzarolli,Numerical and experimental study of an axially induced swirling pipe flow,Int.J.Heat Fluid Flow53(2015)81–90.

    [16]Z.B.Wang,Y.Ma,Y.H.Jin,Simulation and experiment of flow field in axial- flowhydrocyclone,Chem.Eng.Res.Des.89(2011)603–610.

    [17]S.Y.Shi,J.Y.Xu,H.Q.Sun,J.Zhang,D.H.Li,Y.X.Wu,Experimental study of a vanetype pipe separator for oil–water separation,Chem.Eng.Res.Des.90(2012)1652–1659.

    [18]M.Dirkzwager,A newaxial cyclone design for fluid- fluid separation,Ph D Thesis,Delft University of Technology,Delft,1996.

    [19]S.Murphy,R.Delfos,M.J.B.M.Pourquié,?.Oluji?,P.J.Jansens,F.T.M.Nieuwstadt,Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes,Chem.Eng.Sci.62(2007)1619–1635.

    [20]L.van Campen,R.F.Mudde,J.Slot,H.Hoeijmakers,A numerical and experimental survey of a liquid–liquid axial cyclone,Int.J.Chem.React.Eng.10(2012)1205–1224.

    [21]Y.Ma,Z.B.Wang,Y.H.Jin,Droplet coalescence and breakup and its influence factors in vane-guided hydrocyclone,CIESC J.62(2011)420–426(in Chinese).

    [22]L.J.A.M.Van Campen,Bulk dynamics of droplets in liquid-liquid axial cyclones,Ph D Thesis,Delft University of Technology,Delft,2014.

    [23]Y.Zhang,Y.Wang,L.X.Zhao,F.Li,F.S.Wang,G.X.Zheng,Design of hydrocyclone with axial inlet and its performance used in well bore,International Conference on Ocean,Offshore and Arctic Engineering,San Francisco,USA,2014.

    [24]S.Huang,Numerical simulation of oil-water hydrocyclone using Reynolds-stress model for Eulerian multiphase flows,Can.J.Chem.Eng.83(2005)829–834.

    [25]T.Husveg,O.Rambeau,T.Drengstig,T.Bilstad,Performance of a deoiling hydrocyclone during variable flow rates,Miner.Eng.20(2007)368–379.

    [26]N.Y.Zhou,Y.X.Gao,W.An,M.Yang,Investigation of velocity field and oil distribution in an oil-water hydrocyclone using a particle dynamics analyzer,Chem.Eng.J.157(2010)73–79.

    [27]R.Maddahian,M.Asadi,B.Farhanieh,Numerical investigation of the velocity field and separation efficiency of deoiling hydrocyclones,Pet.Sci.9(2012)511–520.

    [28]S.Noroozi,S.H.Hashemabadi,CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency,Chem.Eng.Technol.32(2009)1885–1893.

    [29]S.Noroozi,S.H.Hashemabadi,CFD analysis of inlet chamber body pro file effects on de-oiling hydrocyclone efficiency,Chem.Eng.Res.Des.89(2011)968–977.

    [30]N.Kharoua,L.Khezzar,Z.Nemouchi,Hydrocyclones for de-oiling applications-a review,Pet.Sci.Technol.28(2010)738–755.

    [31]M.Saidi,R.Maddahian,B.Farhanieh,Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones,Heat Mass Transf.49(2013)247–260.

    [32]M.Saidi,R.Maddahian,B.Farhanieh,H.Afshin,Modeling of flowfield and separation efficiency of a deoiling hydrocyclone using large eddy simulation,Int.J.Miner.Process.112(2012)84–93.

    [33]S.Amini,D.Mowla,M.Golkar,Developing a newapproach for evaluating a de-oiling hydrocyclone efficiency,Desalination 285(2012)131–137.

    [34]S.Schutz,G.Gorbach,M.Piesche,Modeling fluid behavior and droplet interactions during liquid-liquid separation in hydrocyclones,Chem.Eng.Sci.64(2009)3935–3952.

    [35]S.Noroozi,S.H.Hashemabadi,A.Chamkha,Numerical analysis of drops coalescence and breakage effects on de-oiling hydrocyclone performance,Sep.Sci.Technol.48(2013)991–1002.

    [36]C.Banerjee,K.Chaudhury,A.K.Majumder,S.Chakraborty,Swirling flow hydrodynamics in hydrocyclone,Ind.Eng.Chem.Res.54(2015)522–528.

    [37]C.J.Li,Q.Huang,Rheology-based computational fluid dynamics modeling for deoiling Hydrocyclone efficiency,Chem.Eng.Technol.39(2016)899–908.

    [38]A.M.Jawarneh,G.H.Vatistas,A.M.Jawarneh,G.H.Vatistas,Reynolds stress model in the prediction of confined turbulent swirling flows,J.Fluids Eng.128(2006)1377–1382.

    [39]M.Ghadirian,R.E.Hayes,J.Mmbaga,A.Afacan,Z.Xu,On the simulation of hydrocyclones using CFD,Can.J.Chem.Eng.91(2013)950–958.

    [40]J.A.Delgadillo,R.K.Rajamani,Large-Eddy simulation(LES)of large Hydrocyclones,Part.Sci.Technol.25(2007)227–245.

    [41]R.Delfos,S.Murphy,D.Stanbridge,?.Oluji?,P.J.Jansens,A design tool for optimising axial liquid–liquid hydrocyclones,Miner.Eng.17(2004)721–731.

    [42]L.G.M.Vieira,B.C.Silvério,J.J.R.Damasceno,M.A.S.Barrozo,Performance of hydrocyclones with different geometries,Can.J.Chem.Eng.89(2011)655–662.

    99久国产av精品国产电影| 99久久人妻综合| a级毛片a级免费在线| 国产一区二区在线观看日韩| 日韩人妻高清精品专区| 国语自产精品视频在线第100页| 免费人成在线观看视频色| 别揉我奶头 嗯啊视频| 国产精品一二三区在线看| 精品一区二区三区视频在线| 午夜福利在线观看吧| 卡戴珊不雅视频在线播放| 久久久久久久午夜电影| 亚洲国产欧美在线一区| 日本色播在线视频| 日韩精品青青久久久久久| 九草在线视频观看| 欧美+日韩+精品| 赤兔流量卡办理| 亚洲丝袜综合中文字幕| 国产成人精品一,二区 | 国产乱人偷精品视频| 精品人妻熟女av久视频| av卡一久久| 久久久久久久午夜电影| 天堂√8在线中文| 美女黄网站色视频| 99久久中文字幕三级久久日本| 国产三级在线视频| 大型黄色视频在线免费观看| 国产午夜福利久久久久久| 久久久久国产网址| 欧美日韩国产亚洲二区| 午夜免费男女啪啪视频观看| 国产欧美日韩精品一区二区| 直男gayav资源| 欧美高清性xxxxhd video| 91精品国产九色| 国产一级毛片在线| 亚洲成a人片在线一区二区| 国产亚洲欧美98| 一级黄片播放器| 欧美xxxx性猛交bbbb| 简卡轻食公司| 精品欧美国产一区二区三| 男插女下体视频免费在线播放| 欧美zozozo另类| 精品免费久久久久久久清纯| 日日干狠狠操夜夜爽| 一区二区三区四区激情视频 | 精品久久久久久久久久久久久| 欧美3d第一页| 午夜精品国产一区二区电影 | 国产精品精品国产色婷婷| 国产一区二区激情短视频| 国产一区二区在线av高清观看| 久久久久久国产a免费观看| 变态另类丝袜制服| 深夜精品福利| 国产黄a三级三级三级人| 亚洲内射少妇av| 精品久久国产蜜桃| 色综合站精品国产| 一级毛片电影观看 | 夫妻性生交免费视频一级片| 久久久久国产网址| 亚洲av二区三区四区| 日本成人三级电影网站| 在线观看免费视频日本深夜| 中文亚洲av片在线观看爽| 熟女电影av网| 女同久久另类99精品国产91| 你懂的网址亚洲精品在线观看 | 看免费成人av毛片| 特级一级黄色大片| 日本熟妇午夜| 大香蕉久久网| av天堂中文字幕网| 免费观看在线日韩| av在线蜜桃| 在线观看av片永久免费下载| 亚洲精品乱码久久久久久按摩| 亚洲精品日韩在线中文字幕 | 亚洲国产精品成人综合色| 色播亚洲综合网| 亚洲七黄色美女视频| 亚洲国产精品成人综合色| 亚洲婷婷狠狠爱综合网| 中国美女看黄片| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久国产高清桃花| 午夜福利视频1000在线观看| 麻豆国产av国片精品| 亚洲人与动物交配视频| 麻豆乱淫一区二区| 国产精品伦人一区二区| 亚洲av不卡在线观看| 级片在线观看| 亚洲在线自拍视频| 精品久久久久久久久久免费视频| 99热这里只有是精品50| 看片在线看免费视频| 亚洲欧美成人精品一区二区| 麻豆成人av视频| 九草在线视频观看| 亚洲人成网站在线播放欧美日韩| 麻豆久久精品国产亚洲av| 在线观看av片永久免费下载| 国产 一区精品| 精品一区二区免费观看| 免费电影在线观看免费观看| 99久久中文字幕三级久久日本| 久久久久久久久大av| 久久精品影院6| 成人特级av手机在线观看| 白带黄色成豆腐渣| 欧美变态另类bdsm刘玥| 国产伦在线观看视频一区| 亚洲经典国产精华液单| 亚洲人成网站在线播放欧美日韩| 悠悠久久av| 免费看a级黄色片| 男人舔女人下体高潮全视频| 久久这里只有精品中国| 亚洲一级一片aⅴ在线观看| 久久久精品94久久精品| 乱人视频在线观看| 日日干狠狠操夜夜爽| 一级毛片我不卡| 国产淫片久久久久久久久| 国产亚洲欧美98| 国产在视频线在精品| 亚洲丝袜综合中文字幕| 一个人看视频在线观看www免费| 三级经典国产精品| 日韩欧美 国产精品| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩无卡精品| 亚洲欧美成人综合另类久久久 | 亚洲欧美精品专区久久| 久久亚洲精品不卡| 爱豆传媒免费全集在线观看| 我要看日韩黄色一级片| 日日干狠狠操夜夜爽| 亚洲va在线va天堂va国产| 国产淫片久久久久久久久| 成人二区视频| 亚洲美女搞黄在线观看| 美女被艹到高潮喷水动态| 欧美日韩国产亚洲二区| 看片在线看免费视频| 网址你懂的国产日韩在线| 成人特级黄色片久久久久久久| 国产熟女欧美一区二区| 中文字幕av成人在线电影| 精品久久久久久久久亚洲| 99久久精品热视频| 精品久久久久久久久av| 亚洲欧美日韩卡通动漫| 99久久精品国产国产毛片| 人妻系列 视频| 色尼玛亚洲综合影院| 国产欧美日韩精品一区二区| 亚洲最大成人中文| 女同久久另类99精品国产91| 久久久午夜欧美精品| 男女做爰动态图高潮gif福利片| 成年女人永久免费观看视频| 日韩成人av中文字幕在线观看| videossex国产| 简卡轻食公司| 精品久久久久久成人av| 久久这里有精品视频免费| 免费看光身美女| 国产女主播在线喷水免费视频网站 | 国产乱人偷精品视频| 麻豆成人av视频| 熟女电影av网| 亚洲精品日韩av片在线观看| 我的女老师完整版在线观看| 搡老妇女老女人老熟妇| 好男人在线观看高清免费视频| 女的被弄到高潮叫床怎么办| 国产精品麻豆人妻色哟哟久久 | 床上黄色一级片| 欧美在线一区亚洲| 精品欧美国产一区二区三| 国产v大片淫在线免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品合色在线| 身体一侧抽搐| 黄片无遮挡物在线观看| av免费在线看不卡| 我要看日韩黄色一级片| 亚洲av免费高清在线观看| 免费看日本二区| 国产伦精品一区二区三区四那| 白带黄色成豆腐渣| 此物有八面人人有两片| 亚洲一级一片aⅴ在线观看| 欧美一区二区国产精品久久精品| 亚洲va在线va天堂va国产| 国产亚洲欧美98| 日韩视频在线欧美| 国产毛片a区久久久久| 亚洲精品自拍成人| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 亚洲国产精品成人久久小说 | 国产av在哪里看| 精品午夜福利在线看| 亚洲欧美日韩卡通动漫| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 欧美日韩国产亚洲二区| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 亚洲国产欧美人成| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看的亚洲视频| 中文字幕人妻熟人妻熟丝袜美| 国产伦理片在线播放av一区 | 三级经典国产精品| 亚洲av中文av极速乱| 精品久久久久久久久亚洲| 成人特级av手机在线观看| 国模一区二区三区四区视频| 青春草国产在线视频 | 亚洲经典国产精华液单| 波多野结衣高清无吗| 99热只有精品国产| 国产黄色小视频在线观看| 人妻少妇偷人精品九色| 在线播放国产精品三级| 日韩欧美在线乱码| 你懂的网址亚洲精品在线观看 | 91aial.com中文字幕在线观看| 一级毛片电影观看 | 久久99热这里只有精品18| 欧美激情在线99| 在线免费观看不下载黄p国产| 最近最新中文字幕大全电影3| 成年版毛片免费区| 亚洲自拍偷在线| 麻豆国产97在线/欧美| 性色avwww在线观看| 国产精品伦人一区二区| 国产成人午夜福利电影在线观看| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| av在线天堂中文字幕| 精品欧美国产一区二区三| 亚洲国产精品国产精品| 成人高潮视频无遮挡免费网站| 久久久午夜欧美精品| 黑人高潮一二区| 国产成人影院久久av| 午夜精品国产一区二区电影 | 国产精品久久久久久精品电影小说 | 日韩,欧美,国产一区二区三区 | 男的添女的下面高潮视频| 日韩三级伦理在线观看| 美女内射精品一级片tv| 国产精品一二三区在线看| 赤兔流量卡办理| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影| 欧美成人a在线观看| 久久精品久久久久久久性| 看黄色毛片网站| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影| 99久久无色码亚洲精品果冻| 久久久久性生活片| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 日韩欧美一区二区三区在线观看| 日韩av在线大香蕉| 成人二区视频| 在线国产一区二区在线| 12—13女人毛片做爰片一| 久久久久久久久久黄片| 一区二区三区免费毛片| 内地一区二区视频在线| 成年版毛片免费区| 最新中文字幕久久久久| 欧美zozozo另类| 中文字幕制服av| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 亚洲无线在线观看| 熟女人妻精品中文字幕| 成人美女网站在线观看视频| 欧美区成人在线视频| 高清日韩中文字幕在线| 性色avwww在线观看| 国产久久久一区二区三区| 白带黄色成豆腐渣| 少妇丰满av| 丝袜美腿在线中文| 中出人妻视频一区二区| 成人永久免费在线观看视频| 日韩欧美精品v在线| 中国国产av一级| 秋霞在线观看毛片| 精品久久久久久久人妻蜜臀av| 亚洲精品自拍成人| 淫秽高清视频在线观看| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 久久久久久九九精品二区国产| 国产亚洲91精品色在线| 99久久精品国产国产毛片| 午夜精品一区二区三区免费看| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 日本爱情动作片www.在线观看| av在线亚洲专区| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| 日日啪夜夜撸| 日韩中字成人| 六月丁香七月| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 最近中文字幕高清免费大全6| 久久草成人影院| 婷婷亚洲欧美| 精品一区二区免费观看| 99久久中文字幕三级久久日本| 乱系列少妇在线播放| 国产av麻豆久久久久久久| 成年女人看的毛片在线观看| 国产av不卡久久| 久久久国产成人免费| 欧美日本视频| 久久人人精品亚洲av| 18禁在线播放成人免费| 亚洲精品456在线播放app| 欧美日韩国产亚洲二区| 少妇人妻一区二区三区视频| а√天堂www在线а√下载| 老司机福利观看| 大香蕉久久网| 国产精品一及| 国产老妇伦熟女老妇高清| 午夜视频国产福利| 亚洲欧美精品专区久久| av在线播放精品| 国产av一区在线观看免费| 亚洲欧美精品自产自拍| 男女边吃奶边做爰视频| 日韩 亚洲 欧美在线| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 欧美xxxx黑人xx丫x性爽| 欧美极品一区二区三区四区| 亚洲一区二区三区色噜噜| 99热只有精品国产| 人妻少妇偷人精品九色| av在线亚洲专区| 午夜a级毛片| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 高清午夜精品一区二区三区 | 级片在线观看| 国产女主播在线喷水免费视频网站 | 中国美女看黄片| 欧美最黄视频在线播放免费| 蜜臀久久99精品久久宅男| 69人妻影院| 国产一级毛片在线| 国产精品1区2区在线观看.| 免费不卡的大黄色大毛片视频在线观看 | 国产精品永久免费网站| 国内精品美女久久久久久| 久久久精品欧美日韩精品| 如何舔出高潮| 亚洲国产高清在线一区二区三| 色哟哟·www| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 亚洲欧美成人综合另类久久久 | 国模一区二区三区四区视频| 黄色欧美视频在线观看| 亚洲精品自拍成人| 免费大片18禁| 国产大屁股一区二区在线视频| 国产爱豆传媒在线观看| 免费大片18禁| 日韩欧美国产在线观看| ponron亚洲| 最近中文字幕高清免费大全6| 男女那种视频在线观看| 久久精品人妻少妇| 日本爱情动作片www.在线观看| 99久久人妻综合| 久久久久久九九精品二区国产| av在线天堂中文字幕| 亚洲国产精品国产精品| 91午夜精品亚洲一区二区三区| 校园人妻丝袜中文字幕| 国产在线精品亚洲第一网站| 日本与韩国留学比较| 一区二区三区免费毛片| 啦啦啦韩国在线观看视频| 久久久午夜欧美精品| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 国产精品福利在线免费观看| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 久久久成人免费电影| 人妻少妇偷人精品九色| 亚洲最大成人中文| 97超视频在线观看视频| 中文字幕精品亚洲无线码一区| 特级一级黄色大片| av免费在线看不卡| 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线 | 国产成人精品一,二区 | 最近的中文字幕免费完整| 婷婷亚洲欧美| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 男女那种视频在线观看| 黄片无遮挡物在线观看| 毛片女人毛片| 日本熟妇午夜| 亚洲内射少妇av| 特大巨黑吊av在线直播| 亚洲欧美精品自产自拍| 狠狠狠狠99中文字幕| 国产成人精品一,二区 | 99热这里只有是精品在线观看| 亚洲成人av在线免费| 中国国产av一级| 久久久a久久爽久久v久久| 久久国产乱子免费精品| 久久九九热精品免费| 日韩国内少妇激情av| 少妇的逼好多水| 欧美另类亚洲清纯唯美| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 国产在线精品亚洲第一网站| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 看十八女毛片水多多多| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 久久久午夜欧美精品| 在线观看午夜福利视频| 欧美日本视频| av免费在线看不卡| 久久草成人影院| 1000部很黄的大片| 亚洲五月天丁香| 亚洲无线观看免费| 亚洲国产欧美在线一区| 校园春色视频在线观看| 亚洲精品自拍成人| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 高清在线视频一区二区三区 | 中文字幕av在线有码专区| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 亚洲人成网站在线播放欧美日韩| 最近中文字幕高清免费大全6| 精品国内亚洲2022精品成人| 日韩制服骚丝袜av| 91精品国产九色| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 丰满乱子伦码专区| 一本精品99久久精品77| 久久精品久久久久久噜噜老黄 | 简卡轻食公司| 国产老妇女一区| 一个人免费在线观看电影| 国产成人精品一,二区 | 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站 | 在线免费观看不下载黄p国产| 亚洲电影在线观看av| 黄色视频,在线免费观看| 99热精品在线国产| 久久久成人免费电影| 婷婷色av中文字幕| 男女啪啪激烈高潮av片| 一本一本综合久久| 少妇熟女aⅴ在线视频| 激情 狠狠 欧美| 国产色婷婷99| 99热网站在线观看| 久久草成人影院| 亚洲精品乱码久久久久久按摩| 最近手机中文字幕大全| 熟妇人妻久久中文字幕3abv| 亚洲最大成人av| 国内精品久久久久精免费| 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 高清毛片免费观看视频网站| 搞女人的毛片| 我要看日韩黄色一级片| 日韩欧美国产在线观看| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 亚洲av免费高清在线观看| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 久久亚洲国产成人精品v| 亚洲精品粉嫩美女一区| 久久久精品大字幕| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品日韩av片在线观看| 桃色一区二区三区在线观看| 又粗又爽又猛毛片免费看| 老司机影院成人| 午夜福利在线观看免费完整高清在 | 国产精品久久视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 美女xxoo啪啪120秒动态图| 在线播放无遮挡| 欧美性猛交黑人性爽| 欧美潮喷喷水| 五月玫瑰六月丁香| 国产高清三级在线| 日韩欧美三级三区| 真实男女啪啪啪动态图| 美女国产视频在线观看| 一级av片app| 免费看a级黄色片| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 插阴视频在线观看视频| 网址你懂的国产日韩在线| 99国产精品一区二区蜜桃av| 国产毛片a区久久久久| av在线播放精品| 婷婷亚洲欧美| 91久久精品国产一区二区成人| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 麻豆成人av视频| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产亚洲精品av在线| 欧美性感艳星| 欧美人与善性xxx| 嫩草影院新地址| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 18+在线观看网站| 成人漫画全彩无遮挡| 成人永久免费在线观看视频| 日本av手机在线免费观看| 亚洲最大成人中文| 欧美zozozo另类| 亚洲色图av天堂| 六月丁香七月| 99视频精品全部免费 在线| 午夜福利视频1000在线观看| 日本黄大片高清| 亚洲国产精品成人久久小说 | 一级毛片我不卡| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 国产成人aa在线观看| 欧美又色又爽又黄视频| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 看非洲黑人一级黄片| 国产精品永久免费网站| 日韩欧美三级三区| 青春草视频在线免费观看| 成年女人永久免费观看视频| 欧美高清成人免费视频www| 免费大片18禁| 大香蕉久久网| 97热精品久久久久久| 亚洲人成网站在线播放欧美日韩| 美女cb高潮喷水在线观看| 亚洲成人久久性| 99热6这里只有精品| 亚洲自拍偷在线| 欧美极品一区二区三区四区|