(1南華大學(xué) 核科學(xué)技術(shù)學(xué)院,湖南 衡陽421001;2南華大學(xué) 鈾礦冶生物技術(shù)國(guó)防重點(diǎn)學(xué)科實(shí)驗(yàn)室,湖南 衡陽421001;3南華大學(xué) 污染控制與資源化技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 衡陽 421001)
鈾礦冶產(chǎn)生的大量低濃度含鈾放射性廢水對(duì)生態(tài)環(huán)境構(gòu)成嚴(yán)重威脅[1-2]。鈾作為一種重金屬,不僅具有放射性,且具有動(dòng)態(tài)的生物毒性和化學(xué)毒性[3-4]。我國(guó)的污水綜合排放標(biāo)準(zhǔn)規(guī)定鈾的最高允許排放濃度不超過0.05mg/L,而鈾礦冶等生產(chǎn)排放的廢水中鈾的質(zhì)量濃度一般在5mg/L左右[5]。因此,開展含鈾廢水處理技術(shù)的研究,使廢水達(dá)標(biāo)排放對(duì)于核工業(yè)可持續(xù)發(fā)展及環(huán)境保護(hù)具有重要的意義和應(yīng)用前景。廢水中鈾的傳統(tǒng)去除方法有化學(xué)沉淀法、離子交換法、吸附法、膜分離等[6-7]。吸附法以其操作簡(jiǎn)單、吸附速率快而被廣泛關(guān)注,在低濃度含鈾廢水處理領(lǐng)域得到了很快的發(fā)展,是目前該領(lǐng)域最有前景的處理技術(shù)之一[8-11]。吸附法的關(guān)鍵是選擇合適的吸附劑,目前研究者們致力于探索價(jià)廉高效的吸附劑,如黏土礦物[12-14]、二氧化硅[15-18]及沸石[19-22]等。石墨烯(graphene,GN)是一種由單原子層的碳原子通過sp2雜化,組成六角形呈蜂巢晶格狀的二維材料[23],其理論比表面積高達(dá)2630m2/g,具有非常強(qiáng)的吸附能力,成為納米吸附劑研究中的熱點(diǎn)。氧化石墨烯(graphene oxide, GO)是石墨烯的氧化物,其表面有諸多含氧官能團(tuán)[24],使其具有親水的特性,吸附性能更佳。Romanchuk等[25]將石墨烯氧化物原子薄片用于快速吸收受污染水中的放射性廢物,實(shí)驗(yàn)發(fā)現(xiàn)GO吸附U(VI) 的能力比傳統(tǒng)的吸附劑膨潤(rùn)土和活性炭要高很多。王云等[26]采用化學(xué)方法將多壁碳納米管打開得到富含氧基團(tuán)的氧化石墨烯納米帶,其對(duì)鈾的最大吸附量可達(dá)394mg/g。GO還可通過化學(xué)改性或與一些化學(xué)材料復(fù)合來接枝特定吸附功能基團(tuán),來提高吸附效果和吸附選擇性[27-33]。學(xué)者們開展大量氧化石墨烯復(fù)合材料吸附鈾的研究,并取得一定的成果,但氧化石墨烯復(fù)合材料對(duì)鈾的吸附性能及作用機(jī)制的綜述仍然很少[31]。本文綜述了氧化石墨烯復(fù)合材料對(duì)鈾的吸附性能、吸附影響因素及吸附機(jī)理,并對(duì)它們?cè)阝檹U水處理中的應(yīng)用前景和發(fā)展趨勢(shì)做了展望,以期為后續(xù)相關(guān)研究及實(shí)際應(yīng)用提供參考依據(jù)。
石墨烯的高比表面積使其成為理想的吸附材料[25,31],然而,完整結(jié)構(gòu)的二維石墨烯晶體化學(xué)穩(wěn)定性高,呈惰性,另外其相鄰片層之間的π-π作用使石墨烯容易產(chǎn)生團(tuán)聚或者重新堆積成石墨,從而妨礙了石墨烯在吸附方面的研究及應(yīng)用,學(xué)者們通常利用石墨烯的衍生物——GO作為吸附材料[32-33]。石墨烯(圖1)[23]與GO的結(jié)構(gòu)(圖2)[24]大致相同,只是在二維基面上連有一些官能團(tuán)如羥基,環(huán)氧基,羧基,羰基等,這些含氧官能團(tuán)能賦予了GO一些新的特性如分散性、親水性及對(duì)聚合物的兼容性等,使GO成為一種優(yōu)良的支撐材料,可以結(jié)合化學(xué)功能基團(tuán)或復(fù)合其他材料,官能團(tuán)還可提供活性吸附位點(diǎn)吸附鈾等環(huán)境污染物,進(jìn)而有效分離廢水中的鈾等污染物[31-33]。目前學(xué)者們對(duì)氧化石墨烯復(fù)合材料吸附鈾的性能進(jìn)行了一些研究,表1匯總了氧化石墨烯材料對(duì)鈾吸附性能的主要參數(shù)[34-59],這些研究發(fā)現(xiàn)該材料能有效吸附水中的鈾,等溫吸附模型能較好地符合Langmiur模型,吸附熱力學(xué)研究發(fā)現(xiàn)石墨烯基復(fù)合材料對(duì)鈾的吸附為自發(fā)放熱的過程。
圖1 石墨烯結(jié)構(gòu)示意圖[23]Fig.1 Basic structure of graphene[23]
圖2 氧化石墨烯的 Dékán 結(jié)構(gòu)模型[24]Fig.2 Dékán structural model of graphene oxide[24]
氧化石墨烯復(fù)合材料對(duì)鈾的吸附效果受到很多因素的影響,如溶液pH值、吸附溫度、離子強(qiáng)度、接觸時(shí)間和吸附劑用量等,因此,不同因素下氧化石墨烯復(fù)合材料對(duì)鈾離子的吸附性能往往存在一定的差異,且不同的氧化石墨烯材料的吸附能力受這些因素的影響各不相同。
溫度是影響吸附的重要環(huán)境因子之一,對(duì)重金屬的吸附-解吸、沉淀-溶解、氧化-還原等一系列化學(xué)和物理過程都有不同程度的影響。因此,溫度的變化也可能導(dǎo)致吸附量的變化。Cheng等[37]研究發(fā)現(xiàn)溫度對(duì)氧化石墨烯/海泡石復(fù)合材料(GO@sepiolite)吸附鈾的影響較大,隨著溫度升高,GO@sepiolite對(duì)鈾的吸附效果提高,當(dāng)溫度從298K升高至338K時(shí),GO@sepiolite對(duì)鈾的吸附量約增加到原來的2.2倍。Zhang等[45]研究了288.15~323.15K溫度范圍內(nèi)磺化氧化石墨烯(GOS)對(duì)鈾的吸附,結(jié)果表明,溫度越高越有利鈾的吸附。其他學(xué)者的相關(guān)研究也得到了一致的實(shí)驗(yàn)結(jié)論,發(fā)現(xiàn)氧化石墨烯復(fù)合材料對(duì)鈾的吸附是一個(gè)放熱自發(fā)的過程,溫度升高能促進(jìn)吸附反應(yīng)的進(jìn)行(見表1)[34-39,41-42,44-46,48-51]。這種現(xiàn)象可能是因?yàn)樗娜軇┗饔?,在水溶液中鈾離子以水合離子狀態(tài)存在,要吸附至石墨烯基材料表面上需要脫去鈾離子表面的水合鞘,這個(gè)脫水過程需要消耗能量,是吸熱過程,而離子吸附到吸附劑表面的過程是放熱過程[48,63],當(dāng)鈾離子脫水的能量超過鈾離子吸附于氧化石墨烯材料放出的能量時(shí),整個(gè)吸附過程表現(xiàn)為吸熱反應(yīng),溫度越高鈾離子脫水越容易,因此越有利于氧化石墨烯材料對(duì)鈾離子的吸附[34]。
表1 石墨烯基復(fù)合材料對(duì)鈾的吸附容量及主要參數(shù)Table 1 Adsorption capacities and mainly parameters of graphene-based composite materials for uranium
Note:RT-room temperature; n.a.-not application.
溶液的離子強(qiáng)度會(huì)影響鈾離子存在形態(tài),又能影響氧化石墨烯材料雙靜電層厚度而改變吸附劑的結(jié)合位點(diǎn)數(shù),從而影響其對(duì)鈾離子的吸附[64]。不同氧化石墨烯材料吸附鈾的效果受離子強(qiáng)度影響的情況不盡相同,在一些實(shí)際的吸附研究中,它們吸附鈾的效果隨離子強(qiáng)度變化敏感[40,46]或不敏感的情況均有發(fā)生[36,45,47,49-52,54]。Zhang等[45]研究發(fā)現(xiàn)離子強(qiáng)度對(duì)氧化石墨烯和磺化氧化石墨烯吸附鈾的影響不顯著。Zhao等[36]研究發(fā)現(xiàn)在實(shí)驗(yàn)的pH值范圍內(nèi)偕胺肟磁性氧化石墨烯(AOMGO)對(duì)U(VI)的吸附效率幾乎不受離子強(qiáng)度的影響,這主要是由于U(VI)與AOMGO表面偕胺肟基及其他含氧官能團(tuán)形成了內(nèi)層表面絡(luò)合物,而不是形成外層表面絡(luò)合物或者發(fā)生離子交換[65]。Sun等[66]報(bào)道了pH值>4時(shí)離子強(qiáng)度對(duì)U(VI)吸附于氧化石墨烯和功能化氧化石墨烯上的影響甚微,同理,也是由于鈾吸附于材料是通過內(nèi)層表面絡(luò)合,且內(nèi)層表面絡(luò)合吸附機(jī)制通過常用于確定吸附劑與金屬離子之間的相互作用機(jī)制[67-68]的X射線吸收精細(xì)結(jié)構(gòu)譜(EXAFS)得以證實(shí)。而有些文獻(xiàn)則得出了不一樣的結(jié)論,Wang等[46]報(bào)道了氧化石墨烯納米帶 (GONRs)吸附鈾的能力對(duì)溶液離子強(qiáng)度的變化敏感。Song等[40]研究發(fā)現(xiàn)NaClO4濃度的增加會(huì)導(dǎo)致環(huán)糊精/氧化石墨烯(CD/GO)對(duì)鈾的吸附能力下降,因?yàn)榇嬖谟诟唠x子濃度溶液中的鈾離子,其活性會(huì)嚴(yán)重下降,從而抑制其轉(zhuǎn)移到CD/GO表面,此外,高離子強(qiáng)度能夠減少CD/GO材料之間的靜電斥力,從而導(dǎo)致CD/GO產(chǎn)生團(tuán)聚和吸附能力降低。
達(dá)到吸附平衡所需要的反應(yīng)時(shí)間是影響吸附劑對(duì)鈾吸附能力的又一重要因素,吸附量隨吸附時(shí)間的變化情況也是吸附劑吸附動(dòng)力學(xué)的一個(gè)重要特征。在實(shí)際應(yīng)用中,吸附時(shí)間的長(zhǎng)短及處理周期會(huì)影響經(jīng)濟(jì)效益,氧化石墨烯及其復(fù)合材料非常大的比表面積及表面豐富的官能團(tuán)將有利于提高其吸附鈾離子的速率,從而能較快地達(dá)到吸附平衡狀態(tài)。Shao等[44]研究發(fā)現(xiàn)HO-CB[6]/GO對(duì)鈾的吸附非常迅速,僅在5min內(nèi)就能完成90%鈾的吸附,并能夠在20min內(nèi)達(dá)到吸附平衡,HO-CB[6]/GO對(duì)鈾的快速吸附有利于其實(shí)際應(yīng)用于去除大體積溶液中的鈾。Li等[35]利用Hummers方法制備得到的單層氧化石墨烯(GO)對(duì)鈾的吸附過程迅速,1h內(nèi)能達(dá)到吸附平衡狀態(tài)。Gu等[38]研究發(fā)現(xiàn)氧化石墨烯-碳納米管(GO-CNTs)在開始2h對(duì)U(VI)的吸附量增加較快,然后在9h內(nèi)逐漸達(dá)到平衡。Liu等[41]研究了接觸時(shí)間對(duì)GO和GO-NH2吸附U(VI)的影響,結(jié)果發(fā)現(xiàn)在接觸開始吸附速率迅速增加,這歸因在這一階段吸附劑上有大量的空置吸附位點(diǎn)可用。隨著時(shí)間的推移,空置的吸附位點(diǎn)逐漸被鈾酰離子填充,吸附變慢;對(duì)于GO-NH2,吸附量緩慢增加的時(shí)間段為80~240min之間,這是因?yàn)樵撾A段為內(nèi)擴(kuò)散階段,動(dòng)力學(xué)吸附時(shí)間更依賴于內(nèi)擴(kuò)散速度,可能需要較長(zhǎng)的時(shí)間來達(dá)到平衡。GO和GO-NH2對(duì)U(VI)的吸附平衡時(shí)間分別為60min和240min[41]。通常,吸附動(dòng)力學(xué)包括兩個(gè)階段:初始階段,該階段吸附迅速,對(duì)吸附平衡貢獻(xiàn)很重要,它為瞬時(shí)吸附或外表面吸附階段,此階段吸附劑上有大量可用的吸附位點(diǎn)數(shù);第二階段,吸附過程較慢,為逐漸吸附階段,吸附速率受顆粒內(nèi)擴(kuò)散控制,一直到吸附達(dá)到平衡[41,69 ]。為了研究動(dòng)力學(xué)吸附機(jī)理,準(zhǔn)一級(jí)動(dòng)力學(xué)模型和準(zhǔn)二級(jí)動(dòng)力學(xué)模型常用于研究氧化石墨烯材料對(duì)鈾(VI)的吸附動(dòng)力學(xué)。大量文獻(xiàn)[34,36,38,41-43,45,48]報(bào)道的石墨烯基材料對(duì)鈾(VI)的吸附符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,說明這些材料對(duì)鈾(VI)的吸附過程主要受化學(xué)作用的控制。
吸附劑用量也是影響吸附的重要參數(shù),在實(shí)際應(yīng)用中是一個(gè)重要的考察指標(biāo)。吸附劑投加量直接影響氧化石墨烯材料與U(Ⅵ)的結(jié)合位點(diǎn)數(shù)目,進(jìn)而直接影響 U(Ⅵ)的吸附效率[70]。張偉強(qiáng)等[71]在鈾離子濃度為50mg/L,pH值為5.0的酸性條件下,考察了氨基三亞甲基膦酸改性石墨烯海綿材料(ATMP-GS)用量與鈾離子吸附的關(guān)系,結(jié)果表明當(dāng)吸附劑 ATMP-GS用量為7mg時(shí),其對(duì)鈾離子的吸附量最大為96mg/g,隨后隨著ATMP-GS用量的增大吸附量出現(xiàn)下降,并在15mg以后不再變化。孫兆勇等[72]研究發(fā)現(xiàn)吸附劑用量在0.01~0.03g范圍內(nèi),吸附率隨著吸附劑用量的增加而增加,當(dāng)吸附劑用量由0.01g增加到0.04g時(shí),吸附率增加較明顯,達(dá)到35.14%,再增加吸附劑用量時(shí),吸附率增加變得緩慢,僅為0.39%;而吸附量隨吸附劑用量的增加不斷降低。武里鵬等[73]通過實(shí)驗(yàn)研究了在吸附劑用量為0.01~0.03g范圍內(nèi),磁性石墨烯對(duì)鈾的吸附容量及去除率隨吸附劑用量的變化,結(jié)果表明去除率隨吸附劑用量的增加而增大,在吸附劑用量為0.03g時(shí)去除率達(dá)到了90%以上;而吸附容量與吸附劑用量的關(guān)系與前者恰好相反。Song等[40]發(fā)現(xiàn)吸附劑用量的增加會(huì)提高CD/GO對(duì)U(VI)的吸附效率,因?yàn)殡S著吸附劑用量增加,參與U(VI)吸附的功能位點(diǎn)也隨之增加。本課題組[60]研究發(fā)現(xiàn)隨著GOS投加量的增加,U(Ⅵ)吸附率逐漸上升,吸附容量逐漸降低,這是由于隨著GOS用量的增加,GOS與U(Ⅵ)結(jié)合位點(diǎn)數(shù)目增多,從而使U(Ⅵ)的吸附率上升;但另一方面GOS投加量的增加導(dǎo)致GOS片層之間相互團(tuán)聚的概率增大,降低了有效結(jié)合位點(diǎn)數(shù)目,比表面積也隨之減少,導(dǎo)致單位質(zhì)量吸附劑吸附U(Ⅵ)的結(jié)合位點(diǎn)數(shù)目減少,所以吸附容量隨之降低。
氧化石墨烯材料吸附鈾的效果受吸附劑用量的影響,通常表現(xiàn)為高吸附劑用量使吸附效率提高,因?yàn)閁(Ⅵ)結(jié)合位點(diǎn)數(shù)目增多,而低吸附劑用量使吸附量更大,因其結(jié)合位點(diǎn)和表面積能夠得到有效利用[32,59]。因此,在實(shí)際應(yīng)用中,為保證吸附效果且使吸附劑能被充分利用,建議采用適當(dāng)?shù)奈絼┯昧俊?/p>
目前已有大量關(guān)于鈾與GO基材料相互作用的研究,這些研究通過批量實(shí)驗(yàn)研究了不同因素對(duì)吸附作用的影響,進(jìn)行了吸附動(dòng)力學(xué)和吸附熱力學(xué)分析,并且采用表面絡(luò)合模型、光譜分析和理論計(jì)算等手段和方法,從實(shí)驗(yàn)數(shù)據(jù)和理論模擬、宏觀和微觀等角度闡述了GO基材料對(duì)鈾的吸附機(jī)制[28,50-58]。一些批量吸附實(shí)驗(yàn)的數(shù)據(jù)結(jié)果可以解釋鈾與GO基材料相互作用的機(jī)理,比如由吸附過程對(duì)離子強(qiáng)度敏感而對(duì)pH不敏感可以推導(dǎo)出吸附作用主要是通過外表面絡(luò)合或離子交換,而吸附過程對(duì)pH敏感而對(duì)離子強(qiáng)度不敏感主要是由于內(nèi)表面絡(luò)合作用[28,35,36]。表面絡(luò)合模型可以展示材料表面上鈾絡(luò)合物的構(gòu)成情況,從而可根據(jù)鈾絡(luò)合物的種類闡述吸附作用機(jī)理[54,66]。而通過擴(kuò)展X射線吸收精細(xì)結(jié)構(gòu)光譜(Extended X-ray Absorptionfine Structure Spectroscopy, EXAFS),X射線光電子能譜(X-ray Photoelectric Spectroscopy, XPS),X射線衍射(X-ray Diffraction, XRD),拉曼光譜(Raman Spectroscopy, RS),熒光時(shí)間衰減光譜(Time Resolved Laser Fluorescence Spectroscopy, TRLFS),傅里葉變換紅外光譜法(Fourier Transformed Infrared Spectroscopy, FTIR)等光譜手段可以分析材料表面官能團(tuán)與鈾結(jié)合的微觀情況以及從分子水平揭示鈾的形態(tài)和微觀結(jié)構(gòu)[27-29]。理論計(jì)算如密度泛函理論是評(píng)價(jià)核素與固體材料之間物理化學(xué)作用的一種非常有用的手段[29,74-77],例如,通過理論計(jì)算鈾與不同官能團(tuán)之間的結(jié)合能,可以確定物理吸附或化學(xué)吸附等的吸附性能,從而得到鈾與材料間的相互作用機(jī)理。不同實(shí)驗(yàn)條件下的研究結(jié)果表明石墨烯基材料對(duì)鈾有很強(qiáng)的吸附能力,主要是由于其表面或邊緣部位充斥著大量的含氧官能團(tuán)[47,57,77]。
圖3 鈾在NZVI/rGO上的吸附與還原[79]Fig.3 Simultaneous adsorption and reduction of U(VI) onNZVI/rGO[79]
圖4 NZVI 、NZVI/GO、U(VI)作用后的NZVI 和NZVI/GO以及參考樣品的XANES光譜(a)和 EXAFS光譜(b)(T=(25±1)℃,I=0.01mol/L NaClO4,pH 5.0)[79]Fig.4 XANES spectra (a) and Fourier transform (FT) of EXAFSspectra (b) for reference samples and U(VI)-reacted NZVI andNZVI/GO(T=(25±1)℃, I=0.01mol/L NaClO4, pH 5.0)[79]
計(jì)算化學(xué)研究能從分子水平獲得GO與放射性核素之間所形成配合物的電子結(jié)構(gòu)、形態(tài)分布、配位性質(zhì)和熱力學(xué)性質(zhì)等數(shù)據(jù),對(duì)闡明放射性核素與GO之間的固液界面作用機(jī)理起著重要作用[81-82]。利用理論計(jì)算研究得到的放射性核素與GO相互作用數(shù)據(jù)與實(shí)驗(yàn)結(jié)果進(jìn)行比較和相互驗(yàn)證,可以使實(shí)驗(yàn)研究更具說服力和可靠性。而對(duì)于一些比較難開展的實(shí)驗(yàn),如所有的錒系元素,特別是具有放射性和毒性的超鈾元素,阻礙了實(shí)驗(yàn)研究開展,理論計(jì)算可以提供一條有效的途徑來補(bǔ)充有關(guān)錒系元素配合物的電子結(jié)構(gòu)及性質(zhì)等[76,81]。密度泛函理論(Density Functional Theory,DFT)是理論計(jì)算的重要工具之一,它能以有效的方式計(jì)算相關(guān)能量和形態(tài)等基礎(chǔ)數(shù)據(jù)而在計(jì)算化學(xué)研究領(lǐng)域得到非常好的應(yīng)用[83-84]。DFT常用于闡述局部相互作用表面分子的吸收,結(jié)合TRLFS,EXAFS,XPS等光譜分析結(jié)果能在分子水平上更好地闡明GO等材料與放射性核素的相互作用機(jī)制,為評(píng)價(jià)放射性核素在環(huán)境中的物理化學(xué)行為提供重要的參考價(jià)值。
近年來,一些研究者通過理論計(jì)算研究了鈾在石墨烯基材料表面的吸附行為。Wu等[76]利用DFT結(jié)合相對(duì)論小芯贗勢(shì)優(yōu)化了鈾酰離子和GO之間的22種配合物,研究的含氧官能團(tuán)有羥基、羧基、氨基和二甲基甲酰胺等,研究結(jié)果表明鈾原子和GO上氧原子之間的距離(U-OG)在陰離子GO配合物(鈾酰/GO-/2-)中要短于在中性GO配合物(鈾酰/GO)中,鈾酰/GO-/2-配合物中氫鍵的形成可以提高帶負(fù)電的GO對(duì)鈾酰離子的結(jié)合能力,此外,熱力學(xué)計(jì)算表明,鈾酰離子更容易與羥基和羧基功能化的陰離子GO配合物發(fā)生絡(luò)合反應(yīng),同時(shí)幾何結(jié)構(gòu)和熱力學(xué)能量都表明,由羥基和羧基改性的GO對(duì)鈾酰離子的結(jié)合能力比氨基和二甲基甲酰胺基改性的GO要強(qiáng)得多。偕胺肟基和羧基經(jīng)常用于修飾石墨烯材料,Wang等[77]采用量子化學(xué)計(jì)算模擬了鈾與一系列通過烷基鏈嫁接偕胺肟基和羧基等基團(tuán)的吸附劑之間的相互作用,并研究了不同官能團(tuán)及其組合對(duì)配位結(jié)構(gòu)與萃取穩(wěn)定性等產(chǎn)生的影響。
圖5 rGOs-鈾酰配合物和GOs-鈾酰配合物的DFT優(yōu)化幾何結(jié)構(gòu)[66]Fig.5 DFT-optimized geometries of the rGOs-uranyl complexes and GOs-uranyl complexes[66]
氧化石墨烯復(fù)合材料由于其巨大的表面積及豐富的表面功能基團(tuán)對(duì)鈾能實(shí)現(xiàn)高效的吸附。從目前國(guó)內(nèi)外的研究現(xiàn)狀來看,石墨烯基復(fù)合材料對(duì)鈾的吸附機(jī)理的研究主要通過采用批量吸附實(shí)驗(yàn)研究不同因素對(duì)其吸附能力的影響,吸附動(dòng)力學(xué)以及吸附熱力學(xué)研究,以及利用表面絡(luò)合模型、光譜分析技術(shù)與理論計(jì)算等方法來實(shí)現(xiàn)。然而,由于氧化石墨烯含氧官能團(tuán)的多樣性(如羥基、羧基、羰基、環(huán)氧基等),以及表面功能化修飾引入一些新的官能團(tuán),而且鈾在環(huán)境中的化學(xué)形態(tài)變化復(fù)雜,因此盡管已有不少有關(guān)石墨烯基材料吸附鈾的研究工作,還需深入地開展石墨烯基材料對(duì)鈾的吸附行為及其開發(fā)應(yīng)用的研究,可在下述幾個(gè)方面進(jìn)行研究工作:
(1)將實(shí)驗(yàn)、模型模擬及理論計(jì)算,宏觀的批量實(shí)驗(yàn)與微觀的光譜技術(shù)結(jié)合起來運(yùn)用于研究石墨烯基材料對(duì)鈾的吸附行為,將實(shí)驗(yàn)與理論,宏觀與微觀的研究結(jié)論互相補(bǔ)充互相驗(yàn)證,以便更準(zhǔn)確深入地揭示石墨烯基材料與鈾的作用機(jī)理。
(2)目前研究發(fā)現(xiàn)GO基材料對(duì)鈾的高效吸附主要?dú)w因于其表面或邊緣的功能官能團(tuán),但由于GO基材料表面或邊緣存在不同種類的官能團(tuán),不同官能團(tuán)對(duì)吸附鈾的發(fā)揮作用大小卻缺乏深層次的理論和實(shí)驗(yàn)研究。
(3)關(guān)于氧化石墨烯材料脫附鈾的研究報(bào)道不多,應(yīng)研究溫度、脫附劑種類、離子強(qiáng)度和初始鈾濃度等對(duì)脫附效果的影響并探討相關(guān)脫附機(jī)理,為氧化石墨烯材料在鈾污染處理方面的重復(fù)利用提供理論基礎(chǔ)。
(4)隨著氧化石墨烯材料在多學(xué)科領(lǐng)域的大量應(yīng)用,部分GO基材料不可避免會(huì)被釋放到自然環(huán)境中而成為環(huán)境污染物。GO基材料在水中具有高分散性、高吸附性以及高化學(xué)活性,其有可能對(duì)水環(huán)境生態(tài)和水生生物造成不利影響[85-88],因此,為保證GO基材料更安全和環(huán)保的應(yīng)用,未來的研究需要進(jìn)一步明確GO基材料的生態(tài)效應(yīng)及其環(huán)境行為,正確評(píng)估其環(huán)境風(fēng)險(xiǎn)。
參考文獻(xiàn)
[1] 王勁松,鄒曉亮,賈亮,等. α-酮戊二酸改性殼聚糖對(duì)低濃度U(Ⅵ)的吸附性能[J].原子能科學(xué)技術(shù),2015, 49 (2): 255-262.
WANG J S,ZOU X L, JIA L, et al. Adsorption performance of low-strength U (Ⅵ) on α-ketoglutaric acid modified chitosan[J]. Atomic Energy Science and Technology, 2015, 49 (2): 255-262.
[2] 史冬峰, 唐振平, 黃華勇,等. 磁性氧化石墨烯/β-環(huán)糊精復(fù)合材料對(duì)U(Ⅵ)的吸附性能及機(jī)理[J].原子能科學(xué)技術(shù), 2016, 50 (9): 1556-1564.
SHI D F, TANG Z P, HUANG H Y, et al. Adsorption characteristic and mechanism of Uranium(Ⅵ) on magnetism graphene oxide/β-cyclodextrin composite[J]. Atomic Energy Science and Technology, 2016, 50 (9): 1556-1564.
[3] 商照榮.貧化鈾的環(huán)境污染影響及其對(duì)人體健康的危害[J].輻射防護(hù), 2005(1): 56-61.
SHANG Z R. Impact of depleted uranium on environmental and human health[J].Radiation Protection, 2005(1): 56-61.
[4] 周書葵,婁濤,龐朝暉. 放射性廢水處理技術(shù)[M].北京: 化學(xué)工業(yè)出版社, 2012: 7.
ZHOU S K, LOU T, PANG C H. Radioactive waste water treatment technology[M]. Beijing: Chemical Industry Press,2012:7.
[5] WANG J S, BAO Z L, CHEN S G, et al. Removal of uranium from aqueous solution by chitosan and ferrous ions[J]. International Conference on Nuclear Engineering, 2010, 133 (8): 735-740.
[6] MELISA S, GUSTAVO A, ROSA M. Uranium uptake by montmorillonite-biomass complexes[J]. Industrial & Engineering Chemistry Research, 2013, 52(6) : 2273-2279.
[7] YUAN L Y, LIU Y L, SHI W Q, et al. High performance of phosphonate-functionalized mesoporous silica for U(VI) adsorption from aqueous solution[J]. Dalton Trans, 2011, 40: 7446-7453.
[8] ZHANG X F, JIAO C S, WANG J, et al. Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation[J]. Chemical Engineering Journal, 2012, 198: 412-419.
[9] LI X Y, ZHANG M, LIU Y B, et al. Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI)[J]. Exposure and Health, 2013, 5(1): 31-40.
[10] ZHAO D L, WANG X B, YANG S T, et al. Impact of water quality parameters on the sorption of U(VI) onto hematite[J]. Journal of Environmental Radioactivity,2012,103 (1): 20-29.
[11] BELLONI F, KUTAHYALI C, RONDINELLA V V, et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environment Science & Technology, 2009, 43: 1250-1255.
[12] LIU H J, XIE S B, XIA L S, et al. Study on adsorptive property of bentonite for cesium[J]. Environment Earth Science, 2016, 75(2): 148.
[13] SCHINDLER M, LEGRAND C A, JR M F H. Alteration, adsorption and nucleation processes on clay-water interfaces: mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica Et Cosmochimica Acta, 2015, 153: 15-36.
[14] VILLA-ALFAGEME M, HURTADO S, MRABET S E, et al. Uranium immobilization by FEBEX bentonite and steel barriers in hydrothermal conditions[J]. Chemical Engineering Journal, 2015, 269: 279-287.
[15] GUNATHILAKE C, GORKA J, DAI S, et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11650-11659.
[16] LIU H J, JING P F, LIU, et al. Synthesis of β-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI)[J]. Journal of Radioanalytical & Nuclear Chemistry, 2016, 310(1): 1-8.
[17] ZHOU L, ZOU H, WANG Y, et al. Adsorption of uranium(VI) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres[J]. Journal of Radioanalytical & Nuclear Chemistry, 2016, 310(3): 1-9.
[18] HUMELNICU D, BLEGESCU C, GANJU D. Removal of uranium(VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies[J]. Journal of Radioanalytical & Nuclear Chemistry, 2014, 299 (3): 1183-1190.
[19] BARKAT M, NIBOU D, AMOKRANE S, et al. Uranium (VI) adsorption on synthesized 4A and P1 zeolites: equilibrium, kinetic, and thermodynamic studies[J]. Comptes Rendus Chimie, 2015, 18(3): 261-269.
[20] SHARIFIPOUR F, HOJATI S, LANDI A, et al. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite[J]. International Journal of Environmental Research, 2015, 9(3): 1001-1010.
[21] SHAKUR H R, SARAEE K R E, ABDI M R, et al. Selective removal of uranium ions from contaminated waters using modified-X nanozeolite[J]. Applied Radiation & Isotopes, 2016, 118: 43-55.
[22] BAKATULA E N, MOLAUDZI R, NEKHUNGUNI P, et al. The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite[J]. Water Air & Soil Pollution, 2017, 228(1):5.
[23] VAN N R. Moving towards a graphene world[J]. Nature, 2006, 442(7100): 228-229.
[24] SZABO T, BERKESI O, FORGO P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18 (11): 2740-2749.
[25] ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2321-2327.
[26] 王云, 顧澤興, 王正上, 等. 氧化石墨烯納米帶的可控制備及其對(duì)鈾的吸附研究[C]∥第十三屆全國(guó)核化學(xué)與放射化學(xué)學(xué)術(shù)研討會(huì). 大理: 中國(guó)化學(xué)會(huì), 中國(guó)核學(xué)會(huì), 2014: 38.
WANG Y, GU Z X, WANG Z S, et al. Controllable preparation of graphene oxide nanoribbons and their adsorption to uranium[C]//The Thirteenth National Conference on nuclear chemistry and radiation chemistry.Dali: Chinese Chemical Society, Chinese Nuclear Society, 2014: 38.
[27] JIN Z X, WANG X X, WANG X K, et al. Sequestration of 4-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies[J]. Environment Science & Technology, 2015, 49: 9168-9175.
[28] WANG X X, YU S J, JIN J, et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions [J]. Science Bulletin, 2016, 61(20): 1583-1593.
[29] WANG X X, YANG S B, WANG X K, et al. Different interaction mechanisms of Eu(III) and243Am(III) with carbon nanotubes studied by batch,spectroscopy technique and theoretical calculation[J]. Environment Science & Technology, 2015, 49: 11721-11728.
[30] CHEN Y T, ZHANG W, WANG X K, et al. Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies[J]. Science China Chemistry, 2016, 59: 412-419.
[31] YU S J, WANG X X, WANG X K, et al. Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review[J]. Inorganic Chemistry Frontiers, 2015, 46 (32): 593-612.
[32] 曹明莉,張會(huì)霞,張聰,等. 石墨烯及其復(fù)合材料在重金屬離子吸附方面的應(yīng)用[J]. 功能材料, 2016, 47 (8): 08001-08007.
CAO M L, ZHANG H X, ZHANG C, et al. Graphene-containing composite materials for heavy metal ions adsorption[J]. Journal of Functional Materials, 2016, 47 (8): 08001-08007.
[33] 呂生華,朱琳琳,李瑩,等. 氧化石墨烯復(fù)合材料的研究現(xiàn)狀及進(jìn)展[J]. 材料工程, 2016, 44 (12): 107-117.
LYU S H, ZHU L L, LI Y, et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44 (12): 107-117.
[34] WANG C L, LI Y, LIU C L. Sorption of uranium from aqueous solutions with graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1017-1025.
[35] LI Z J, CHEN F, YUAN L Y, et al. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 539-546.
[36] ZHAO Y G, LI J X, ZHANG S W, et al. Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites[J]. RSC Advances, 2013, 3: 18952-18959.
[37] CHENG H X, ZENG K F, YU J T. Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1): 599-603.
[38] GU Z X, WANG Y, TANG J, et al. The removal of uranium(VI) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3):1835-1842.
[39] SHAO D D, LI J X, WANG X K. Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater[J]. Science China Chemistry, 2014, 57(11): 1449-1458.
[40] SONG W C, SHAO D D, LU S S, et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57(9): 1291-1299.
[41] LIU S J, LI S, ZhANG H X, et al. Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309(2): 607-614.
[42] WANG Z S, WANG Y, LIAO J L, et al. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308 (3): 1095-1102.
[43] LIU S J, MA J G, ZHANG W Q, et al. Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(2): 507-514.
[44] SHAO L, ZHONG J R, REN Y M, et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium(VI) removal [J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311 (1):627-635.
[45] ZHANG Z B, QIU Y F, DAI Y, et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions [J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 547-557.
[46] WANG Y, WANG Z S, GU Z X, et al. Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304(3): 1329-1337.
[47] WANG X X, CHEN Z S, WANG X K. Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions [J]. Science China Chemistry, 2015, 58(11): 1766-1773.
[48] ZHAO D L, CHEN L L, SUN M, et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(VI) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(1): 221-229.
[49] TAO X Q, YAO X B, LU S S, et al. Efficient removal of radionuclide U(VI) from aqueous solutions by using graphene oxide nanosheets [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (1): 245-253.
[50] LIU X, WANG X X, LI J X, et al. Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions [J]. Science China Chemistry, 2016, 59 (7): 869-877.
[51] ZHAO G X,WEN T,YANG X, et al. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions [J]. Dalton Transactions, 2012, 41 (20): 6182-6188.
[52] ZONG P F, WANG S F, ZHAO Y L, et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 220: 45-52.
[53] CHEN S P, HONG J X, YANG H X, et al. Adsorption of uranium(VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite [J]. Journal of Environmental Radioactivity, 2013, 126(4): 253-258.
[54] DING C C, CHENG W C, SUN Y B, et al. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43: 3888-3896.
[55] SHAO L, WANG X F, REN Y M, et al. Facile fabrication of magnetic cucurbit[6] uril/graphene oxide composite and application for uranium removal [J]. Chemical Engineering Journal, 2016, 286: 311-319.
[56] SHAO D D, HOU G S, LI J X, et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI) [J]. Chemical Engineering Journal, 2014, 255: 604-612.
[57] SONG W C, WANG X X , WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides [J]. Physical Chemistry Chemical Physics, 2015, 17: 398-406.
[58] TAN L C, LIU Q, SONG D L, et al. Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite: kinetics and thermodynamics studies [J]. New Journal of Chemistry, 2015, 39: 2832-2838.
[59] TAN L C, WANG J, LIU Q, et al. The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(VI) removal[J]. New Journal of Chemistry, 2015, 39(2): 868-876.
[60] 王亮,謝水波,楊金輝,等. 氧化石墨烯/二氧化硅復(fù)合材料對(duì)鈾(Ⅵ)的吸附性能[J]. 中國(guó)有色金屬學(xué)報(bào), 2016, 26 (6): 1264-1271.
WANG L, XIE S B, YANG J H, et al. Adsorption properties of graphene oxide/silica composite materials for uranium(VI)[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (6): 1264-1271.
[61] SCHIERZ A, ZNKER H. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption [J]. Environmental Pollution, 2009, 157(4): 1088-1094.
[62] SONG J, KONG H, JANG J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles [J]. Journal of Colloid & Interface Science, 2011, 359(2): 505-511.
[63] TAHIR S S, RAUF N. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution [J]. Journal of Chemical Thermodynamics, 2003, 35: 2003-2009.
[64] HU R, SHAO D D, WANG X K. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions [J]. Polymer Chemistry, 2014, 5(21): 6207-6215.
[65] YANG S T, ZONG P F, REN X M, et al. Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4@humic acid magnetic nanoparticles [J]. Acs Applied Materials & Interfaces, 2012, 4 (12): 6891-6900.
[66] SUN Y B, YANG S B, CHEN Y, et al. Adsorption and desorption of U (VI) on functionalized graphene oxides: a combined experimental and theoretical study [J]. Environ Science Technology, 2015, 49: 4255-4262.
[67] SHENG G D, ALSAEDI A, SHAMMAKH W, et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation [J]. Carbon, 2016, 99: 123-130.
[68] SHENG G D, HU J, LI H, et al. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study [J]. Chemosphere, 2016, 148: 227-232.
[69] HAN R P, ZOU W H, WANG Y, et al. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect [J]. Journal of Environment Radioactivity, 2007, 93:127-143.
[70] WANG H, YUAN X Z, WU Y, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution[J]. Applied Surface Science, 2013, 279: 432-440.
[71] 張偉強(qiáng),馬建國(guó),劉淑娟,等. 改性石墨烯海綿材料對(duì)鈾的吸附研究[J]. 東華理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 37(2): 230-235.
ZHANG W Q, MA J G, LIU S J, et al. Uranium adsorption on functionalized graphene sponge[J]. Journal of East China Institute of Technology ( Natural Science), 2014, 37(2): 230-235.
[72] 孫兆勇.石墨烯與復(fù)合物的制備以及鈾吸附性能研究[D]. 哈爾濱:哈爾濱工程大學(xué), 2013.
SUN Z Y. Synthesis and uranium adsorption characterization of graphene and graphene-based materials[D].Harbin: Harbin Engineering University, 2013.
[73] 武里鵬,毛燕妮,劉淑娟,等. 磁性石墨烯對(duì)鈾的吸附性能研究[J]. 江西化工, 2015(2): 99-103.
WU L P, MAO Y N, LIU S J, et al. Study on adsorption of uranium of magnetic graphene[J]. Jiang Xi Hua Gong, 2015(2): 99-103.
[74] XIAO C L, WU Q Y, SHI W Q, et al. Quantum chemistry study of U(VI), Np(V) and Pu(IV, VI) complexes with preorganized tetradentate phenanthrolineamide ligands [J]. Inorganic Chemistry, 2014, 53: 10846-10853.
[75] LAN J H, SHI W Q, CHAI Z F, et al. Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process [J]. Coordination Chemistry Reviews, 2012, 256: 1406-1417.
[76] WU Q Y, LAN J H, SHI W Q, et al. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study [J]. Journal of Physical Chemistry A , 2014, 118: 2149-2158.
[77] WANG C Z, LAN J H, SHI W Q, et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups [J]. Inorganic Chemistry, 2014, 53: 9466-9476.
[78] YANG S T, ZONG P F, SHENG G D, et al. New insight into Eu(Ⅲ)sorption mechanism at alumina/water interface by batch technique and EXAFS analysis[J]. Radiochimica Acta, 2014, 102(1/2): 143-153.
[79] SUN Y B, DING C C,WANG X K, et al. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2014, 280: 399-408.
[80] SUN Y B, SHAO D D, CHEN C L, et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline [J]. Environmental Science & Technology, 2013, 47: 9904-9910.
[81] WU Q Y, LAN J H, WANG C Z, et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide:Scalar-relativistic DFT investigations[J]. The Journal of Physical Chemistry A, 2014, 118 (44):10273-10280.
[82] 王祥學(xué),李潔,于淑君,等. 放射性核素在天然黏土和人工納米材料上的吸附機(jī)理研究[J]. 核化學(xué)與放射化學(xué), 2015, 37 (5): 329-340.
WANG X X, LI J, YU S J, et al. Sorption mechanism of radionuclides on clay minerals and manmade nanomaterials[J]. Journal of Nuclear & Radiochemistry, 2015, 37 (5): 329-340.
[83] 杜毅,王建,王宏青,等. 人工納米材料吸附放射性核素的機(jī)理研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35 (10): 1837-1847.
DU Y, WANG J, WANG H Q, et al. Research on sorption mechanism of radionuclides by manufactured nanomaterials[J]. Journal of Agro-Environment Science, 2016, 35 (10): 1837-1847.
[84] WU Q Y, WANG C Z, LAN J H, et al. Theoretical investigation on multiple bonds in terminal actinide nitride complexes[J]. Inorganic Chemistry, 2014, 53 (18): 9607-9614.
[85] LIU S, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5 (9): 6971-6980.
[86] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4 (10): 5731-5736.
[87] DUCH M C, BUDINGER G R S, LIANG Y T, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung [J]. Nano Letters, 2011, 11 (12): 5201-5207.
[88] 呂小慧,陳白楊,朱小山. 氧化石墨烯的水環(huán)境行為及其生物毒性[J]. 中國(guó)環(huán)境科學(xué), 2016, 36 (11): 3348-3359.
Lü X H, CHEN B Y, ZHU X S. Fate and toxicity of graphene oxide in aquatic environment [J]. China Environmental Science, 2016, 36 (11): 3348-3359.