繆仲翠 黨建武 巨梅 韓天亮
摘 要:針對(duì)感應(yīng)電機(jī)無(wú)速度傳感器矢量控制中速度和磁鏈的觀測(cè)問題,設(shè)計(jì)了一種感應(yīng)電機(jī)速度和磁鏈的分?jǐn)?shù)階滑模觀測(cè)器,該觀測(cè)器綜合了分?jǐn)?shù)階積分和滑??刂频膬?yōu)點(diǎn)。觀測(cè)器以定子電流觀測(cè)誤差構(gòu)成滑模面,根據(jù)李雅普諾夫定理證明了觀測(cè)器的收斂性和穩(wěn)定性,并設(shè)計(jì)了分?jǐn)?shù)階滑??刂坡?。將該觀測(cè)器應(yīng)用到了感應(yīng)電機(jī)矢量控制系統(tǒng)中,實(shí)現(xiàn)了無(wú)速度傳感器矢量控制。仿真試驗(yàn)表明,分?jǐn)?shù)階滑模觀測(cè)器能有效減小滑模觀測(cè)中的抖振,對(duì)磁鏈和速度有較高的動(dòng)態(tài)辨識(shí)能力。而且,無(wú)速度傳感器矢量控制系統(tǒng)在全速范圍內(nèi)較好的動(dòng)態(tài)和穩(wěn)態(tài)性能。
關(guān)鍵詞:感應(yīng)電機(jī);矢量控制;分?jǐn)?shù)階滑模觀測(cè)器;無(wú)速度傳感器;磁鏈觀測(cè)
中圖分類號(hào):TM 272
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-449X(2018)05-0084-10
Abstract:A rotor flux and speed estimator based on fractionalorder slidingmode was proposed for speed sensorless vector controlled induction motor drives.Advantages of fractional integral and sliding mode control were synthesized by the observer. The error between the measured and estimated stator current was utilized to define the sliding surface,the convergence and stability of the observer were proved by the Lyapunov stability theory,and then the control law was designed. The sensorless vector control using fractionalorder slidingmode observer was achieved. The simulations results illustrate that the designed observer can efficiently eliminate the chattering phenomena which exist in traditional slidingmode observer and has higher dynamic recognition for flux and speed. Moreover,the sensorless vector control system has good dynamic and stable performance in the full speed range.
Keywords:induction machines; vector control; fractionalorder slidingmode observer; speed sensorless; flux observer
0 引 言
高性能的感應(yīng)電機(jī)矢量控制已在工業(yè)控制領(lǐng)域廣泛應(yīng)用。在矢量控制系統(tǒng)中,磁鏈和轉(zhuǎn)速是實(shí)現(xiàn)坐標(biāo)變換和閉環(huán)控制的必需信號(hào)。但速度傳感器的裝配、信號(hào)傳送、環(huán)境條件限制等問題影響控制系統(tǒng)性能,而磁鏈在實(shí)際應(yīng)用中很難用傳感器檢測(cè)到。隨著計(jì)算機(jī)、控制理論等技術(shù)的發(fā)展,“無(wú)傳感器”控制成為電機(jī)控制領(lǐng)域的研究熱點(diǎn)和發(fā)展趨勢(shì)。學(xué)者們?cè)谑噶靠刂葡到y(tǒng)中,將磁鏈和速度用同一個(gè)觀測(cè)器進(jìn)行觀測(cè)已有大量研究,如擴(kuò)展卡爾曼濾波(EKF)[1-3]、模型參考自適應(yīng)[4-5]、自適應(yīng)狀態(tài)觀測(cè)器[6-7]、滑模觀測(cè)器[8-10]、高頻信號(hào)注入法[11-12]、人工神經(jīng)網(wǎng)絡(luò)[13-14]等智能觀測(cè)器。
卡爾曼濾波器法用于電機(jī)轉(zhuǎn)速辨識(shí)能有效抑制系統(tǒng)噪聲與電機(jī)參數(shù)變化產(chǎn)生的不利影響;但計(jì)算量較大,對(duì)處理器要求高。模型參考自適應(yīng)法自適應(yīng)速度快,較容易實(shí)現(xiàn);但控制精度受參考模型的準(zhǔn)確性影響,而且在低速時(shí)磁鏈計(jì)算受定子電阻和積分偏移的影響較大,并且參數(shù)自適應(yīng)律的選取是存在的一個(gè)難題。高頻信號(hào)注入法雖然能獲得較好的速度估計(jì)性能,尤其是為電機(jī)在極低速下觀測(cè)提供了新思路;但會(huì)增加電流諧波、電損耗和轉(zhuǎn)矩振動(dòng)、電機(jī)通用型差等,而且在應(yīng)用中有些問題需解決,如高頻率電流信號(hào)的采樣、信號(hào)的濾波以及產(chǎn)生的時(shí)延等。人工神經(jīng)網(wǎng)絡(luò)觀測(cè)法有良好的自學(xué)習(xí)能力,對(duì)電機(jī)的數(shù)學(xué)模型依賴性強(qiáng),有較好的動(dòng)靜態(tài)性能;但算法實(shí)現(xiàn)和硬件實(shí)現(xiàn)較困難。自學(xué)者Utkin將滑模控制理論應(yīng)用于電機(jī)控制[15]以來(lái),基于滑??刂评碚摲椒▽?duì)電機(jī)參數(shù)變化不敏感,具有較強(qiáng)的魯棒性,計(jì)算量較少,容易實(shí)現(xiàn)等特點(diǎn),近年來(lái)成為國(guó)內(nèi)外研究的熱點(diǎn)[16]。在滑??刂浦谢C娴倪x取是關(guān)鍵,滑??刂埔蚯袚Q控制策略、系統(tǒng)慣性、開關(guān)時(shí)間空間滯后等多種原因,會(huì)在滑動(dòng)模態(tài)階段使系統(tǒng)存在強(qiáng)烈的抖振,過高的抖振會(huì)給系統(tǒng)增加能耗,激發(fā)未建模型的危害[17]?;?刂浦械亩墩駟栴}制約了其應(yīng)用。為克服滑??刂频亩墩駟栴},文獻(xiàn)[18]采用了二階滑模觀測(cè)器,文獻(xiàn)[19-20]采用了高階滑模,既保證了滑模的魯棒性,也有效抑制了抖振現(xiàn)象,但不管是二階還是高階滑模,其模型復(fù)雜,對(duì)參數(shù)的選取要求較高。
近幾年隨著對(duì)分?jǐn)?shù)階理論研究的深入,分?jǐn)?shù)階微積分與滑??刂葡嘟Y(jié)合,由于增加了分?jǐn)?shù)階微積運(yùn)算的兩個(gè)自由度的可變性,利用分?jǐn)?shù)階微積分的記憶和遺傳特性,能夠進(jìn)一步提高滑??刂频钠焚|(zhì)和綜合性能,對(duì)具有模型不確定性和存在外部擾動(dòng)的系統(tǒng)有更強(qiáng)的魯棒性,而且能夠有效減小滑動(dòng)模態(tài)的抖振[21-24]。分?jǐn)?shù)階滑??刂谱鳛橄到y(tǒng)控制器在不同的領(lǐng)域得到了廣泛的應(yīng)用。如文獻(xiàn)[25]將分?jǐn)?shù)階滑??刂撇呗詰?yīng)用于永磁同步電機(jī)控制中,利用分?jǐn)?shù)階微積分特性,緩慢地傳遞系統(tǒng)能量,有效地削減了抖振。文獻(xiàn)[26-27]針對(duì)撓性航天器姿態(tài)跟蹤控制問題和主動(dòng)震動(dòng)抑制問題,在滑模面與控制輸入中均引入分?jǐn)?shù)階微分算子,使得控制系統(tǒng)具有更好的快速性和強(qiáng)的魯棒性;文獻(xiàn)[28]提出一種遞歸分?jǐn)?shù)階全局快速滑??刂撇呗?,并利用分?jǐn)?shù)階微積分的隨時(shí)間緩慢衰減的特性削減抖振;文獻(xiàn)[29]針對(duì)被控對(duì)象參數(shù)時(shí)變和外部擾動(dòng)問題,提出了基于神經(jīng)網(wǎng)絡(luò)和自適應(yīng)控制的分?jǐn)?shù)階滑??刂?,保持了滑??刂破鲗?duì)擾動(dòng)和參數(shù)變化的魯棒性,同時(shí)也有效地抑制了抖振。與此同時(shí),將分?jǐn)?shù)階滑模理論用到系統(tǒng)的觀測(cè)器,也得到了一定的發(fā)展。如文獻(xiàn)[30]對(duì)分?jǐn)?shù)階滑模觀測(cè)器進(jìn)行了理論分析,并針對(duì)一類混沌系統(tǒng)的典型狀態(tài)方程進(jìn)行了仿真驗(yàn)證,但并沒有針對(duì)具體系統(tǒng)進(jìn)行驗(yàn)證。文獻(xiàn)[31]對(duì)鋰離子電池負(fù)荷狀態(tài)進(jìn)行了分?jǐn)?shù)階滑模觀測(cè),并將觀測(cè)值應(yīng)用到控制中提高了控制的魯棒性。文獻(xiàn)[32]對(duì)感應(yīng)電機(jī)的磁鏈進(jìn)行了分?jǐn)?shù)階滑模觀測(cè),但并沒有對(duì)速度觀測(cè)進(jìn)行研究。而文獻(xiàn)[33]用分?jǐn)?shù)階滑模觀測(cè)器對(duì)感應(yīng)電機(jī)的轉(zhuǎn)速和磁鏈進(jìn)行了觀測(cè),但只是在開環(huán)狀態(tài)下驗(yàn)證了其有效性,并沒有應(yīng)用到矢量控制系統(tǒng)中。
目前文獻(xiàn)對(duì)分?jǐn)?shù)階滑模觀測(cè)器研究較少,為了進(jìn)一步深入研究分?jǐn)?shù)階滑模觀測(cè)器,提高感應(yīng)電機(jī)無(wú)速度傳感器矢量控制性能,本文提出用分?jǐn)?shù)階滑模觀測(cè)器對(duì)感應(yīng)電機(jī)的磁鏈和速度進(jìn)行觀測(cè),并將所設(shè)計(jì)觀測(cè)器應(yīng)用到感應(yīng)電機(jī)矢量控制系統(tǒng)中,實(shí)現(xiàn)感應(yīng)電機(jī)的無(wú)速度傳感器矢量控制。通過仿真對(duì)比分析,所設(shè)計(jì)的分?jǐn)?shù)階滑模觀測(cè)器對(duì)磁鏈和速度觀測(cè)準(zhǔn)確、快速,并有效的抑制了抖振現(xiàn)象。將觀測(cè)器應(yīng)用到感應(yīng)電機(jī)的矢量控制系統(tǒng)中運(yùn)行穩(wěn)定,特別是在零速、低速、中速和高速狀態(tài)下都明顯的提高了系統(tǒng)控制的精確性、魯棒性。由于分?jǐn)?shù)階滑模觀測(cè)器結(jié)構(gòu)簡(jiǎn)單,同時(shí)也提高了無(wú)速度傳感器控制系統(tǒng)的實(shí)用性。
1 分?jǐn)?shù)階基礎(chǔ)理論
4 仿真試驗(yàn)研究
為驗(yàn)證所設(shè)計(jì)的觀測(cè)器應(yīng)用到高性能矢量控制系統(tǒng)中的有效性,以Matlab/SIMULINK為仿真平臺(tái),根據(jù)圖1搭建了系統(tǒng)仿真模型。仿真試驗(yàn)采用的感應(yīng)電機(jī)和分?jǐn)?shù)階滑模觀測(cè)器的相關(guān)參數(shù)如表1所示。矢量控制系統(tǒng)中采用了SVPWM調(diào)制方式。
4.1 整數(shù)階與分?jǐn)?shù)階觀測(cè)器性能比較
為了比較分?jǐn)?shù)階階次對(duì)觀測(cè)器特性的影響,經(jīng)過大量的仿真試驗(yàn)對(duì)比,選取階次分別為α=0.1、α=0.5的分?jǐn)?shù)階觀測(cè)器和α=1時(shí)的整數(shù)階觀測(cè)器進(jìn)行仿真比較。圖2、圖3為取不同階次時(shí)的磁鏈及轉(zhuǎn)速觀測(cè)曲線和觀測(cè)誤差曲線。
由圖2所示,分?jǐn)?shù)階階次為α=0.1和α=0.5時(shí)的磁鏈觀測(cè)跟蹤性能優(yōu)于整數(shù)階α=1的觀測(cè)性能,整數(shù)階磁鏈觀測(cè)值出現(xiàn)了較大的抖振現(xiàn)象,磁鏈誤差最大值達(dá)到了0.02 Wb,分?jǐn)?shù)階的觀測(cè)誤差較小,而α=0.1比α=0.5的觀測(cè)誤差更小。圖3中,整數(shù)階速度滑模觀測(cè)值在0.2~0.3 s時(shí)出現(xiàn)了較大的誤差,并且在運(yùn)行過程中抖振幅度較大,對(duì)系統(tǒng)的穩(wěn)定性有較大的影響。與之相比,分?jǐn)?shù)階觀測(cè)器對(duì)轉(zhuǎn)速具有較高的觀測(cè)精度,當(dāng)α=0.1時(shí)的跟蹤性能最好。說(shuō)明分?jǐn)?shù)階積分項(xiàng)能及時(shí)產(chǎn)生較大的有效控制,抑制轉(zhuǎn)速偏差增大,隨著偏差減小,分?jǐn)?shù)階積分控制輸出也會(huì)減弱,能有效削減抖振,從而加強(qiáng)了控制系統(tǒng)的穩(wěn)定性。
4.2 系統(tǒng)控制性能
將所設(shè)計(jì)分?jǐn)?shù)階滑模速度、磁鏈觀測(cè)器應(yīng)用到矢量控制系統(tǒng)中,實(shí)現(xiàn)無(wú)速度傳感器的矢量控制。模擬實(shí)際運(yùn)行工況,通過對(duì)控制系統(tǒng)進(jìn)行仿真,驗(yàn)證分?jǐn)?shù)階滑模觀測(cè)器的有效性并無(wú)速度傳感器矢量控制系統(tǒng)的性能。
4.2.1 空載起動(dòng)并運(yùn)行
空載起動(dòng)和空載運(yùn)行是調(diào)速系統(tǒng)最常見的工況。當(dāng)給定轉(zhuǎn)速n=1 200 r/min、給定轉(zhuǎn)子磁鏈值ψr=0.7 Wb時(shí)電機(jī)空載起動(dòng)并運(yùn)行,仿真結(jié)果如圖4~圖6所示。圖4為定子α軸電流觀測(cè)曲線,可見定子電流估計(jì)值i^sα可以迅速跟蹤實(shí)際電流值isα,其觀測(cè)誤差很快收斂到零附近。圖5為α軸轉(zhuǎn)子磁鏈觀測(cè)曲線,結(jié)果表明估計(jì)值ψ^rα迅速跟蹤實(shí)際磁鏈值ψrα,由觀測(cè)誤差曲線可知誤差數(shù)量級(jí)在10-5以內(nèi),幾乎接近于零,且無(wú)明顯抖振現(xiàn)象。定子電流和磁鏈的精確觀測(cè)有助于電機(jī)轉(zhuǎn)速的精確估計(jì)和調(diào)速的穩(wěn)定運(yùn)行。圖6為感應(yīng)電機(jī)空載運(yùn)行時(shí)的速度觀測(cè)曲線,可見分?jǐn)?shù)階滑模觀測(cè)器的低速區(qū)能較快跟隨實(shí)際值,抖動(dòng)較小。由圖6(b)可知,在起動(dòng)瞬間有一定的觀測(cè)誤差,很快誤差減小,速度誤差在±0.2 r/min范圍內(nèi)。在實(shí)際運(yùn)行中,由于電機(jī)轉(zhuǎn)速的慣性作用,對(duì)較小誤差可以起到濾波的作用,此時(shí)速度誤差可忽略。
4.2.2 速度跟隨性能
跟隨性能是評(píng)價(jià)系統(tǒng)動(dòng)態(tài)性能指標(biāo)之一,為驗(yàn)證系統(tǒng)的跟隨性,速度給定信號(hào)為斜坡信號(hào),斜率為電機(jī)的加速度。磁鏈及轉(zhuǎn)速仿真曲線如圖7、圖8所示。由圖7可知,在速度變化過程中磁鏈觀測(cè)值完全能跟蹤上實(shí)際值,其觀測(cè)誤差數(shù)量級(jí)在10-5以內(nèi)。如圖8所示,在矢量控制系統(tǒng)中,速度觀測(cè)值能實(shí)時(shí)的跟隨上實(shí)際轉(zhuǎn)速的變化,速度從0變化到1 200 r/min的過程中,速度觀測(cè)誤差都保持在±0.2 r/min以內(nèi)。
4.2.3 抗負(fù)載擾動(dòng)性能
負(fù)載擾動(dòng)是調(diào)速系統(tǒng)實(shí)際運(yùn)行時(shí)的常見和主要的擾動(dòng),直接影響系統(tǒng)運(yùn)行的穩(wěn)定性。為驗(yàn)證系統(tǒng)系統(tǒng)抗負(fù)載擾動(dòng),電機(jī)空載起動(dòng),0.4 s時(shí)突加負(fù)載轉(zhuǎn)矩60 N·m,保持帶負(fù)載運(yùn)行。0.7 s時(shí)將負(fù)載轉(zhuǎn)矩減小到30 N·m。相應(yīng)的磁鏈及轉(zhuǎn)速仿真曲線如圖9、圖10所示。負(fù)載突變過程中,轉(zhuǎn)子α軸磁鏈過度平滑,負(fù)載突變時(shí)磁鏈觀測(cè)誤差保持不變,誤差數(shù)量級(jí)為10-5。當(dāng)外部負(fù)載變化時(shí)速度觀測(cè)器依舊能準(zhǔn)確觀測(cè)速度,即使在0.4 s和0.7 s負(fù)載突變時(shí)刻,速度觀測(cè)誤差仍然保持在±0.2 r/min范圍內(nèi)不變。說(shuō)明所設(shè)計(jì)的速度觀測(cè)器有較好的抗負(fù)載擾動(dòng)能力,相應(yīng)的無(wú)速度傳感器矢量系統(tǒng)在負(fù)載突變時(shí)能穩(wěn)定運(yùn)行,對(duì)負(fù)載擾動(dòng)具有較強(qiáng)的魯棒性。
4.2.4 變速運(yùn)行特性
實(shí)際工程中,變速運(yùn)行是調(diào)速系統(tǒng)的常見工況。為了驗(yàn)證速度觀測(cè)器在零速、高速、中速的觀察性能,速度給定在0~0.05 s時(shí)為0,0.05 s時(shí)變?yōu)? 200 r/min,0.5 s時(shí)由1 200 r/min降速為800 r/min。變速時(shí)的磁鏈及轉(zhuǎn)速曲線如圖11、圖12所示。
圖11為變速時(shí)的磁鏈觀測(cè)曲線和其誤差曲線,在轉(zhuǎn)速突變時(shí),轉(zhuǎn)子α軸磁鏈能夠穩(wěn)定快速地跟蹤到實(shí)際值的變化,觀測(cè)誤差小。由圖12可知,電機(jī)在起動(dòng)瞬間觀測(cè)誤差在4 r/min以內(nèi),其他轉(zhuǎn)速范圍的觀測(cè)誤差都保持在±0.2 r/min以內(nèi)。說(shuō)明所設(shè)計(jì)速度觀測(cè)器在0速、低速、高速時(shí)都能準(zhǔn)確的觀測(cè),無(wú)速度傳感器矢量控制系統(tǒng)全速范圍能穩(wěn)定運(yùn)行。
5 結(jié) 論
本文在兩相靜止坐標(biāo)系下設(shè)計(jì)了感應(yīng)電機(jī)磁鏈與轉(zhuǎn)速分?jǐn)?shù)階滑模觀測(cè)器,通過李雅普諾夫穩(wěn)定性理論分析,推導(dǎo)出了分?jǐn)?shù)階滑模觀測(cè)器的控制律,并證明了所設(shè)計(jì)觀測(cè)器的穩(wěn)定性。在理論分析基礎(chǔ)上建立了分?jǐn)?shù)階滑模觀測(cè)器,并應(yīng)用到了感應(yīng)電機(jī)的矢量控制系統(tǒng)中,實(shí)現(xiàn)了無(wú)速度傳感器的矢量控制。通過模擬實(shí)際工程運(yùn)行,對(duì)控制系統(tǒng)在不同工況的運(yùn)行特性進(jìn)行了Matlab/SIMULINK仿真試驗(yàn)。試驗(yàn)表明該觀測(cè)器有效的抑制了滑模抖振,在無(wú)速度傳感器矢量控制系統(tǒng)中能穩(wěn)定運(yùn)行,在零速、低速、中速和高速的觀測(cè)精度較高,速度觀測(cè)誤差保持在±0.2 r/min范圍內(nèi)。驗(yàn)證了系統(tǒng)有較好的速度跟隨性和較強(qiáng)的抗負(fù)載干擾性能。該觀測(cè)器結(jié)構(gòu)簡(jiǎn)單,易于實(shí)現(xiàn),提高了實(shí)用性。
參 考 文 獻(xiàn):
[1] ANDRIAMALALA R N,RAZIK H,RAZAFINJAKA J N,et al. Independent and direct rotorflux oriented control of seriesconnected induction machines using decoupled kalmanfilters[C]//IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. IEEE,2011: 3488- 3494.
[2] 尹忠剛,肖鷺,孫向東,等.基于粒子群優(yōu)化的感應(yīng)電機(jī)模糊擴(kuò)展卡爾曼濾波器轉(zhuǎn)速估計(jì)方法[J] .電工技術(shù)學(xué)報(bào),2016,31(6):55.
YIN Zhonggang,XIAO Lu,SUN Xiangdong,et al. A speed estimation method of fuzzy extended Kalman filter for induction motors based on particle swarm optimization[J]. Transactions of China Electrotechnical Society,2016,31(6): 55.
[3] 李旭春,張鵬,趙非.改進(jìn) EKF 的異步電機(jī)無(wú)速度傳感器矢量控制[J].電機(jī)與控制學(xué)報(bào),2013,17(9): 24.
LI Xuchun,ZHANG Pen,ZHAO Fei. Improving extended Kalman filter for speed sensorless vector control of induction motor[J]. Electric Machines and Control,2013,17(9): 24.
[4] 王慶龍,張崇巍,張興.交流電機(jī)無(wú)速度傳感器矢量控制系統(tǒng)變結(jié)構(gòu)模型參考自適應(yīng)轉(zhuǎn)速辨識(shí)[J].中國(guó)電機(jī)工程學(xué)報(bào),2007,27(15):70.
WANG Qinglong,ZHANG Chongwei,ZHANG Xing. Variablestructure MRAS speed identification for speed sensorless vector control of induction motor[J].Proceedings of the CSEE,2007,27(15):70.
[5] T O KOWALSKA,M DYBKOWSKI.Statorcurrentbased MRAS estimator for a wide range speedsensorless induction motor drive[J]. IEEE Transactions Industrial Electron,2010,57(4): 1296.
[6] M S Zaky. Stability Analysis of speed and stator resistance estimators for sensorless induction motor drives[J]. IEEE Transactions Industrial Electron,2012,59(2): 858.
[7] YINZ,ZHANG Y,DU C,et al. Research on antierror performance of speed and flux estimation for induction motors based on robust adaptive state observer[J]. IEEE Transactions on Industrial Electronics,2016,63(6): 3499.
[8] 路強(qiáng),沈傳文,季曉隆,等.一種用于感應(yīng)電機(jī)控制的新型滑模速度觀測(cè)器研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2006,26(18): 164.
LU Qiang,SHEN Chuanwen,JI Xiaolong,et al. A novel slidingmode observer for speedsensorless induction motors[J]. Proceedings of the CSEE,2006,26(18): 164.
[9] 孔武斌,黃進(jìn),曲榮海,等.帶轉(zhuǎn)子參數(shù)辯識(shí)的五相感應(yīng)電動(dòng)機(jī)無(wú)速度傳感器控制策略研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2016,36(2):532.
KONG Wubin,HUANG Jin,QU Ronghai,et al. Research on speed sensorless control strategeis for fivephase induction motors with rotor parameter identification[J]. Proceedings of the CSEE,2016,36(2): 532.
[10] 楊淑英,丁大尉,李曦,等. 基于反電動(dòng)勢(shì)滑模觀測(cè)器的異步電機(jī)矢量控制[J]. 電機(jī)與控制學(xué)報(bào),2016,20(10): 23.
YANG Shuying,DING Dawei,LI Xi,et al. BackEMF based sliding mode observer for vector control of induction machine[J]. Electric Machines and Control,2016,20(10): 23.
[11] XUAN X,CHEN X.Sensorless estimation and simulation of PMSM based on highfrequency signal injection[J]. Proc.10th World Congr. Intell. Control Autom.,2012,3438–3442.
[12] 劉海東,周波,郭鴻浩,等.脈振高頻信號(hào)注入法誤差分析[J].電工技術(shù)學(xué)報(bào),2015,30(6): 38.
LIU Haidong,ZHOU Bo,GUO Honghao,et al. Error analysis of high frequency pulsating signal injection method[J]. Transactions of China Electrotechnical Society,2015,30(6): 38.
[13] SUNX,CHEN L,YANG Z,et al. Speedsensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer[J]. IEEE/ASME Transactions on Mechatronics,2013,18(4): 1357.
[14] MERABET A,TANVIR A,BEDDEK K.Speed control of sensorless induction generator by artificial neural network in wind energy conversion system[J].IET Renewable Power Generation,2016.
[15] UTKIN V I.Sliding mode control design principles and applications to electric drives[J]. IEEE Transactions on Industrial Electronics,1993,40(1):23.
[16] 劉彥呈,任俊杰,王寧,等. 永磁同步電機(jī)旋轉(zhuǎn)坐標(biāo)系滑模觀測(cè)器設(shè)計(jì)研究[J].電機(jī)與控制學(xué)報(bào),2015,19(7): 36.
LIU Yancheng,REN Junjie,WANG Ning,et al. Research of sliding mode observer for permanent magnet synchronous motor based on the synchronous rotating frame [J]. Electric Machines and Control,2015,19(7): 36.
[17] 王豐堯.滑模變結(jié)構(gòu)控制[M].北京:機(jī)械工業(yè)出版社,1995.
[18] 黃進(jìn),趙力航,劉赫.基于二階滑模與定子電阻自適應(yīng)的轉(zhuǎn)子磁鏈觀測(cè)器及其無(wú)速度傳感器應(yīng)用[J].電工技術(shù)學(xué)報(bào),2013,28(11):54.
HUANG Jin,ZHAO Lihang,LIU He.Sensorless control with resistance variation approach based on parallel MRAS and secondorder sliding mode observer[J].Transactions of China Electrotechnical Society,2013,28(11):54.
[19] 史宏宇,馮勇.感應(yīng)電機(jī)高階終端滑模磁鏈觀測(cè)器的研究[J]. 自動(dòng)化學(xué)報(bào),2012,38(2): 288.
SHI Hongyu,F(xiàn)ENG Yong. Highorder terminal sliding mode flux observer for induction motors[J].Acta Automatica Sinica,2012,38(2): 288.
[20] 吳忠強(qiáng),謝建平.帶擾動(dòng)觀測(cè)器的網(wǎng)側(cè)逆變器高階終端滑??刂芠J] .電機(jī)與控制學(xué)報(bào),2014,18(2): 96.
WU Zhongqiang,XIE Jianping. Highorder terminal sliding mode control or gridconnected inverter with disturbance observer[J]. Electric Machines and Control,2014,18(2): 96.
[21] CHANG Y H,WU C I,LIN H W,et al.Fractional order integral slidingmode flux observer for direct field oriented induction machines[J].International Journal of Innovative Computing,Information and Control,2012,8(7A):4851.
[22] HUANG J C,LI H S,TENG F L,et al. Fractionalorder sliding mode controller for the speed control of a permanent magnet synchronous motor[C]// Preceedings of 24th Chinese Control and Decision Conference. Taiyuan,China: IEEE Computer Society,2012:1203-1208.
[23] DADRAS S,MOMENI H R. Fractionalterminal sliding mode control design for a class of dynamical systems with uncertainty[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(1):367.
[24] MONJE C A,CHEN Y Q,VINAGRE B M,et al. Fractionalorder systems and controls: Fundamentals and Applications[M].NewYork:Springer,2010.
[25] 張碧陶,皮佑國(guó).基于分?jǐn)?shù)階滑??刂萍夹g(shù)的永磁同步電機(jī)控制[J].控制理論與應(yīng)用,2012,29(9):1193.
ZHANG Bitao,PI Youguo. Fractional order sliding mode control for permanent magnet synchronous motor[J]. Control Theory & Applications,2012,29(9): 1193.
[26] 鄧立為,宋申民.基于分?jǐn)?shù)階滑模的撓性航天器姿態(tài)魯棒跟蹤控制[J].航空學(xué)報(bào),2013,34(8):1915.
DENG Liwei,SONG Shenmin. Flexible spacecraft attitude robust tracking control based on fractional order sliding mode[J]. Acta Aeronautica et Astronautica Sinica,2013,34(8):1915.
[27] 鄧立為,宋申民,陳興林. 基于分?jǐn)?shù)階滑??刂频膿闲院教炱髯藨B(tài)跟蹤及主動(dòng)振動(dòng)抑制研究[J].振動(dòng)工程學(xué)報(bào),2015,28(1): 9.
DENG Liwei,SONG Shenmin,CHEN Xinglin. Study on attitude tracking and active vibration suppression of a flexible spacecraft based on fractional order sliding mode control.[J].Journal of Vibration Engineering,2015,28(1): 9.
[28] 劉舒其,陳志梅,趙志誠(chéng).永磁同步電機(jī)的分?jǐn)?shù)階全局快速滑模控制[J].太原科技大學(xué)學(xué)報(bào),2014,35(3): 190.
LIU Shuqi,CHEN Zhimei,ZHAO Zhicheng. Fractional order global fast sliding mode control for permanent magnet synchronous [J].Journal of Taiyuan University of Science and Technology,2014,35(3):190.
[29] 張碧陶,高福榮,姚科.集成神經(jīng)網(wǎng)絡(luò)與自適應(yīng)算法的分?jǐn)?shù)階滑??刂芠J].控制理論與應(yīng)用,2016,33(10): 1373.
ZHANG Bitao,GAO Furong,YAO Ke. Neural network and adaptive algorithmbased fractional order sliding mode Ccontroller[J].Control Theory & Applications,2016,33(10): 1373.
[30] DADRAS S,MOMENI H R. Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems[C]//Decision and control and european control conference (CDCECC),2011 50th IEEE conference on. IEEE,2011:6925-6930.
[31] YIN C,ZHONG Q S,CHEN Y Q,et al. Estimating thestate of charge of lithium batteries based on fractionalorder slidingmode observer[C]//Fractional Differentiation and Its Applications (ICFDA),2014 International Conference on. IEEE,2014: 1-6.
[32] CHANG Y H,WU C I,CHEN H C,et al. Fractionalorderintegral slidingmode flux observer for sensorless vectorcontrolled induction motors[C]//American Control Conference (ACC),2011. IEEE,2011: 190-195.
[33] 繆仲翠,巨梅,黨建武,等.基于分?jǐn)?shù)階滑模觀測(cè)器的感應(yīng)電機(jī)速度估計(jì)[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2016(6): 1256.
MIAO Zhongcui,JU Mei,DANG Jianwu,et al. Speed estimation of induction motor based on fractionalorder sliding mode observer[J]. Journal of China University of Mining &Technology,2016(6): 1256.
[34] 王瑞萍.基于分?jǐn)?shù)階控制器的永磁同步電動(dòng)機(jī)速度控制研究[D].廣州:華南理工大學(xué),2012:13-18.
[35] 鄧立為.分?jǐn)?shù)階滑模控制理論及其應(yīng)用研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014:13-19.
[36] PODLUBNY I.Fractionaldifferential equations: an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M]. Academic press,1998.
[37] MONJE C A,CHEN Y Q,VINAGRE B M,et al. Fractionalordersystems and controls: fundamentals and applications[M]. Springer Science & Business Media,2010.
[38] 阮毅,陳伯時(shí).電力拖動(dòng)自動(dòng)控制系統(tǒng)——運(yùn)動(dòng)控制系統(tǒng)(第4版)[M].北京:機(jī)械工業(yè)出版社,2009: 170-173.
[39] 黃家才,張玎橙,施昕昕.基于復(fù)合積分滑模的永磁同步電機(jī)硬件在環(huán)位置控制[J].電機(jī)與控制學(xué)報(bào),2014,18 (12): 108.
HUANG Jiacai,ZHANG Dingcheng,SHI Xinxin. PMSM position control with hardwareinloop based on composite integral sliding mode[J].Electric Machines and Control,2014,18(12):108.
(編輯:張 楠)