溫利文 王慶志
【摘 要】促紅細(xì)胞生成素(Erythropoietin ,EPO)是一種分子量為30.4kDa的腎源生長(zhǎng)因子,其作用在于控制細(xì)胞增殖、免疫調(diào)控、代謝平衡、血管功能以及細(xì)胞保護(hù)。EPO被用于研究多種疾病的治療,其中對(duì)于代謝疾病尤其是肥胖治療的研究是近年來研究的熱點(diǎn)。肥胖發(fā)病率的高發(fā)是目前世界性的流行病,其發(fā)病可導(dǎo)致殘疾甚至死亡的產(chǎn)生。除了治療貧血,EPO能夠改善肥胖病人的心血管功能并減少疲勞、改善認(rèn)知功能,同時(shí)也能調(diào)控細(xì)胞能量代謝、組織修復(fù)再生、凋亡、自噬等。
【關(guān)鍵詞】促紅細(xì)胞生成素;肥胖
中圖分類號(hào): R589.2 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 2095-2457(2018)06-0084-002
【Abstract】Erythropoietin (EPO) is a 30.4 kDa kidney-derived growth factor . Its role is to control cell proliferation, immune regulation, metabolic balance, vascular function, and cell protection. In recent yearsEPO is used to the treatment of various diseases, and be researched as treatment of metabolic diseases, especially obesity treatment. The high incidence of obesity is currently a worldwide epidemic, and its onset can lead to disability or even death. In addition to the treatment of anemia, EPO can improve cardiovascular function in obese patients and reduce fatigue, improve cognitive function, but also can regulate cell energy metabolism, tissue repair regeneration, apoptosis, autophagy.
【Key words】Erythropoietin;Obesity
1 EPO的結(jié)構(gòu)及生物學(xué)功能
EPO位于7號(hào)染色體,是基因組DNA5.4 kb的單拷貝。EPO基因編碼的多肽鏈由193個(gè)氨基酸鏈構(gòu)成。EPO蛋白中氨基末端的一個(gè)27個(gè)氨基酸大小的疏腦、子宮、肝臟同樣能夠合成并分泌EPO[9,10]。EPO的表達(dá)受氧分壓變化的調(diào)控,而紅細(xì)胞濃度的多少并不影響其表達(dá)[9,11]。缺氧誘導(dǎo)因子1(Hypoxia-induced factor 1,HIF1)能夠通過調(diào)控EPO及EPO受體(EPO receptor,EPOR)以增加EPO的表達(dá)[1,12,13]。HIF1的活化致使EPO和EPOR基因轉(zhuǎn)錄的發(fā)生,這一轉(zhuǎn)錄過程受綁定于HIF-1的EPO基因轉(zhuǎn)錄增強(qiáng)子區(qū)域所調(diào)控[8]。同時(shí),HIF-1能夠通過此通路對(duì)損傷后的細(xì)胞起到保護(hù)作用[14,15]。值得注意的是,非直接引起的缺氧
水前導(dǎo)鏈?zhǔn)沟闷淞呀鉃橐粋€(gè)166氨基酸的多肽鏈[1]。在成人體內(nèi)以及重組EPO蛋白中,EPO的合成過程增加了轉(zhuǎn)錄后修飾去除羧基末端精氨酸166,并合成由165個(gè)氨基酸組成的30.4kDa蛋白的步驟[2-5]。
EPO含有四條糖基化寡糖側(cè)鏈,其中三條為N-鏈接,一條O-鏈接 [13]。由N-鏈接的糖基化位點(diǎn)位于天冬氨酸24、天冬氨酸38和天冬氨酸83,O-鏈接的糖基化位點(diǎn)位于絲氨酸126[14]。使用谷氨酸鹽替代天冬氨酸38、天冬氨酸83或者使用甘氨酸替代絲氨酸126能夠損傷EPO的合成及分泌[15]。
多種因素決定了EPO的生物學(xué)活性[16]。EPO蛋白中半胱氨酸7和半胱氨酸160之間的二硫鍵、半胱氨酸29和半胱氨酸33之間的二硫鍵決定了EPO的功能[17]。二硫鍵的減少以及巰基的烷化作用能夠使得EPO喪失其生物學(xué)活性。經(jīng)胍類物質(zhì)處理后,EPO近85%的作用在于恢復(fù)其氧化功能[3996312]18。同時(shí),EPO的糖基化鏈能夠維持其生物學(xué)活性[18],而碳水化合物鏈則維持其結(jié)構(gòu)的穩(wěn)定[19]。EPO對(duì)自由基的降解作用同時(shí)受到糖基鏈以及寡糖鏈的限制[20]。
最近的研究證明,EPO能夠改善由慢性腎衰竭、化學(xué)藥物治療、人類免疫缺陷病毒等導(dǎo)致的貧血,同時(shí)在治療的過程中,輸血次數(shù)的限制并不影響治療的效果[6,7]。機(jī)體內(nèi)合成與分泌的EPO主要來源于腎小管周間質(zhì)細(xì)胞[8]。其它器官如也能夠?qū)е翬PO的產(chǎn)生。腦發(fā)育的過程中有可能遇到多種毒性因素,這些因素能夠?qū)е卵狤PO水平的升高并導(dǎo)致殘疾的發(fā)生[16]。有研究發(fā)現(xiàn),升高的血清EPO濃度伴隨著疝氣的發(fā)生[17]。腦中小膠質(zhì)細(xì)胞炎癥的減緩導(dǎo)致EPO的釋放、瘧疾的發(fā)生導(dǎo)致血清中EPO水平的顯著增加[18]。在一些諸如成人慢性高血糖癥的進(jìn)程中,EPO的表達(dá)水平受到了抑制。然而,EPO的生物學(xué)功能提示我們圍產(chǎn)期的糖尿病人羊水中的EPO含量可以作為判斷圍產(chǎn)期并發(fā)癥的指標(biāo)之一。此外,在星形細(xì)胞中,諸如胰島素等營(yíng)養(yǎng)因素同樣能夠刺激EPO的合成。
2 脂肪組織概述
2.1 脂肪組織是有一系列復(fù)雜性脂肪細(xì)胞組成的器官
傳統(tǒng)意義上,脂肪組織按照功能差異分為兩類:白色脂肪組織(white adipose tissue,WAT)以及棕色脂肪組織(brown adipose tissue,BAT)。BAT特異地進(jìn)行非戰(zhàn)栗性產(chǎn)熱,其作用通過線粒體中特異存在的解偶聯(lián)蛋白-1(uncoupling protein-1)逆濃度梯度向線粒體外傳遞質(zhì)子來實(shí)現(xiàn)[19,21]。BAT的產(chǎn)熱作用主要用于基礎(chǔ)代謝以及冬眠狀態(tài)下維持體溫。同時(shí),BAT的產(chǎn)熱能夠在維持能量代謝平衡、體重的機(jī)制中防止能量的過度消耗[19,20,22]。WAT的作用在于特異地儲(chǔ)存能夠氧化供能的燃料,為諸如禁食或者高能量需求狀態(tài)提供脂肪酸作為底物供應(yīng)能量。經(jīng)典的理論認(rèn)為,脂質(zhì)分別儲(chǔ)存在白色脂肪細(xì)胞的單房油滴中以及棕色脂肪細(xì)胞的多房油滴中。
長(zhǎng)久以來,對(duì)于棕色脂肪組織和白色脂肪組織是否是兩種獨(dú)立的“脂肪器官”一直存在爭(zhēng)議。白色脂肪與棕色脂肪之間的轉(zhuǎn)化-分化被認(rèn)為是這一爭(zhēng)議存在的證據(jù)。然而近年來有證據(jù)證明,與白色脂肪細(xì)胞不同,棕色脂肪細(xì)胞來源于肌源性前體細(xì)胞。于此同時(shí),又有研究發(fā)現(xiàn),有白色脂肪細(xì)胞與棕色脂肪細(xì)胞同時(shí)存在于同一脂肪部位,這一部位的脂肪被定義成米色脂肪細(xì)胞(brite adipocyte),也稱作第三類脂肪細(xì)胞形式。米色脂肪細(xì)胞能夠表達(dá)UCP-1,但卻沒有完整的棕色脂肪細(xì)胞所具有的分子特征。重組UCP-1以及homeobox9(Hoxc9)做作為辨認(rèn)米色脂肪富集區(qū)域的標(biāo)志,小腦鋅指蛋白1(zinc finger protein in the cerebellum 1,Zic1)而非UCP-1是經(jīng)典棕色脂肪的特異標(biāo)志[50]。轉(zhuǎn)錄因子21(transcription factor 21)的存在,同時(shí)UCP1、Zic1、T-box蛋白15(T-box protein 15,Tbx15)和short stature homeobox 2(Shox2)的缺失可以用來區(qū)別棕色脂肪與米色脂肪。通過這些分子標(biāo)志物,脂肪組織被分為不同的種類:例如嚙齒類動(dòng)物的肩胛間脂肪就是其棕色脂肪組織,而附睪脂肪就是白色脂肪組織。
3 EPO應(yīng)用于肥胖的研究
有研究發(fā)現(xiàn),低劑量的EPO腹腔注射至高脂誘導(dǎo)的肥胖小鼠后,在注射的第一周就顯著降低肥胖小鼠的體重、降低肥胖小鼠的血糖。同時(shí),EPO的注射能夠激活肥胖小鼠棕色脂肪的分化、并導(dǎo)致肥胖小鼠的體溫增加、能耗增強(qiáng);改善肥胖小鼠的胰島素敏感性以及糖奶量,然而其機(jī)制并不清楚。
4 結(jié)論
近年來,EPO對(duì)于肥胖的治療受到了廣泛的關(guān)注,研究EPO對(duì)肥胖的治療機(jī)制,可為臨床治療肥胖提供理論依據(jù),對(duì)肥胖的治療有重要的意義。
【參考文獻(xiàn)】
[1]Imai N, Kawamura A, Higuchi M, et al. Physicochemical and biological comparison of recombinant human erythropoietin with human urinary erythropoietin [J].J Biochem 1990; 107: 352-359.
[2]Castaneda-Arellano R, Beas-Zarate C, Feria-Velasco AI, et al. From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin [J]. Front Biosci (Landmark Ed) 2014; 19: 1445-1455.
[3]Maiese K, Chong ZZ, Shang YC. Raves and risks for erythropoietin [J]. Cytokine Growth Factor Rev 2008; 19: 145-155.
[4]Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system [J]. Int J Biol Sci 2014; 10: 921-939.
[5]Zhang Y, Wang L, Dey S, et al. Erythropoietin action in stress response, tissue maintenance and metabolism [J]. Int J Mol Sci 2014; 15: 10296-10333.
[6]Lin FK, Suggs S, Lin CH, et al. Cloning and expression of the human erythropoietin gene [J]. Proc Natl Acad Sci USA 1985; 82:7580-7584.
[7]Maiese K, Hou J, Chong ZZ, et al. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology [J]. ScientificWorldJournal 2009; 9: 1072-1104.
[8]Nishimura K, Tokida M, Katsuyama H, et al. The effect of hemin-induced oxidative stress on erythropoietin production in HepG2 cells [J]. Cell Biol Int 2014; 38: 1321-1329.
[9]Deng A, Arndt MA, Satriano J, et al. Renal protection in chronic kidney disease: hypoxiainducible factor activation vs. angiotensin II blockade [J]. Am J Physiol Renal Physiol 2010; 299: F1365-F1373.
[10]Singh N, Sharma G, Mishra V. Hypoxia inducible factor-1: its potential role in cerebral ischemia [J]. Cell Mol Neurobiol 2012; 32: 491-507
[11] Ali AA, Coulter JA, Ogle CH, et al. The contribution of N2O3 to the cytotoxicity of the nitric oxide donor DETA/NO: an emerging role for S-nitrosylation [J]. Biosci Rep 2013; 33
[12] Korzeniewski SJ, Allred E, Logan JW, et al. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates [J]. PLoS One 2015; 10: e0115083.
[13] Tsai CF, Kuo YH, Yeh WL, et al. Regulatory effects of caffeic acid phenethylester on neuroinflammation in microglial cells [J]. Int J Mol Sci 2015;16: 5572-5589.
[14]Díez-Padrisa N, Aguilar R, Machevo S, et al. Erythropoietin levels are not independently associated with malaria-attributable severe disease in Mozambican children [J].PLoS One 2011; 6: e24090
[15]Symeonidis A, Kouraklis-Symeonidis A, Psiroyiannis A, et al. Inappropriately low erythropoietin response for the degree of anemia in patients with noninsulin-dependent diabetes mellitus [J]. Ann Hematol 2006; 85: 79-85.
[16]Teramo K, Kari MA, Eronen M, et al. High amniotic fluid erythropoietin levels are associated with an increased frequency of fetal and neonatal morbidity in type 1 diabetic pregnancies [J]. Diabetologia 2004; 47: 1695-1703
[17]Masuda S, Chikuma M, Sasaki R. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes [J]. Brain Res 1997; 746: 63-70.
[18]Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance [J].Physiol Rev, 2004,84: 277–359.
[19]Himms-Hagen J. Brown adipose tissue metabolism and thermogenesis [J]. Ann Rev Nutr, 1985,5: 69–94.
[20]Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat [J]. Physiol Rev, 1984, 64: 1–64.
[21]Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for
body-weight control [J]. Proc Nutr Soc, 2009, 68: 401–407.
[22]Himms-Hagen J. Brown adipose tissue thermogenesis and obesity [J]. Prog Lipid Res, 1989, 28:67–115.