• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Agent-Based Network Modeling Study of Immune Responses in Progression of Ulcerative Colitis

    2018-05-07 02:04:35DaorongWuHaishanYuJielouLiao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Dao-rong WuHai-shan YuJie-lou Liao

    Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    I.INTRODUCTION

    Inflammatory bowel disease(IBD)includes two principal types:ulcerative colitis(UC)and Crohn’s disease(CD)[1].Different from CD that can happen anywhere in the gastrointestinal tract,UC is a chronic disorder,which occurs in the colon and rectum with the primary symptoms of abdominal pain and diarrhea mixed with blood[2].The etiology of IBD is unknown,current understanding of the pathogenesis suggests that a dysregulated immune response to intra-luminal antigens,which are of microbial origin(e.g.bacteria),leads to IBD including UC in a genetically susceptible host[1–3].UC is characterized by chronic inflammation and epithelial injury but limited to the mucosa and submucosa with cryptitis and crypt abscesses[4,5].As the incidence of UC is generally increasing globally,there is significant morbidity and mortality associated with UC,which poses a major public health challenge worldwide particularly in developed countries[6].Despite significant advances in understanding of the pathogenesis in recent years,therapeutic treatment,which is far from optimal,has made UC as well as CD a notorious area of unmet medical need[7].Therefore,it is of great importance to understand the cellular and molecular mechanisms of immune responses in the progression of UC for development of effective therapies.

    In the last few decades most studies of IBD immunopathogenesis have been concentrated on adaptive immunity[1,8].While CD has been designated to be a proin flammatory T helper(Th)1-and/or Th17-type disease,UC has been characterized as a typical Th2 condition in which anti-in flammatory/regulatory cytokines,interleukin(IL)-13 and IL-5 rather than IL-4 predominate in the UC cytokine network[1].However,recent clinical data have shown that proin flammatory immune cells such as Th17 and Th1,respectively,with their secreted cytokines IL-17 and interferon-γ(IFN-γ)were also increased to signi ficant levels(but lower than those in CD patients),playing an important role in UC progression[1].But it remains elusive how this seemly controversial immune pro file in UC patients is achieved.Recent advances have demonstrated that innate immunity has also an important role in UC[1,8].Indeed,an immune response in UC progression involves both innate and adaptive immunity regulated by an intrica-te network that consists of multiple immune cell types,molecular mediators,and gut tissues.These elements are treated as the nodes of a network model in the discussion below.There exists a large body of literature regarding these individual network elements.However,little is known about combined interactions between these elements or the associated pathways[9].In particular,UC progression is a dynamic and multistage process,studies on the temporal sequence of the immune response are lacking.Therefore,in spite of extensive research efforts,the underlying cellular and molecular mechanisms are not completely understood.

    In this work,a network model based on our previous study[10]is expanded to describe the dynamics of immune response in the progression of UC.We aim to elucidate the detailed cellular and molecular mechanism of the disease development and address the issues mentioned above.

    II.METHODS

    A.Network Model

    The UC-associated immune system is highly complex,providing a challenge to quantify the dynamics of immune response in UC progression.To reduce the complexity,a multi-scale network model is developed in this work by treating important cytokines,immune cells,and gut tissues as network nodes in a way similar to that in our previous study[10].In this network model,two types of inputs are initiated from a node:a positive or an up-regulation input(denoted by “→”)represents that an increasing of the concentration of the tail node will result in an increasing of that of the head node or an up-regulation of the process when the input arrow ends at an edge between two nodes,and vice versa for a negative or a down-regulation(inhibition)input(denoted by “?”).

    Although the exact pathogenesis of IBD(including UC)is not fully understood,it is generally accepted that genetic and environmental factors induce impaired epithelial barrier function(i.e.,epithelial cell damage)that allows the translocation of commensal bacteria and microbial antigens from the gut lumen into the lamina propia,leading to immune cell activation and cytokine production[1,9].The innate immune cells such as macrophages and dentritic cells provide the first line of defense against any invading pathogens.Macrophages(M0)and dentritic cells(DC0)are located mostly in the intestinal lamina propia in close proximity to the epithelial monolayer.While resident macrophages and dentritic cells in the healthy intestine display an anergic and tolerogenic phenotype mediating tolerance to commensal bacteria(Bc)[11,12],pro-inflammatory macrophages(M1)and dentritic cells(De)are activated in response to pathogenic bacteria(Bp)in IBD progression[1].M1 and De cells produce molecular mediators including IL-1,IL6,IL-12,IL-23,and tumor necrosis factor-α(TNF-α),which can activate M1 and Th1 cells through binding TNF receptor 2[13,14],as well as reactive oxygen/nitrogen(ROS/RNS)to initiate in flammatory responses[13,15].While M1 macrophages elicit a protective immune response,they also can cause tissue damage(TD),for example,by releasing ROS/RNS leading to oxidative stress,proteases such as metalloproteases(MMPs)to ingest pathogens and apoptotic cells,and chemokines to recruit neutrophils into intestinal mucosa.The damaged tissue can also recruit monocytes(precursors of macrophages,M0)into the intestinal mucosa[10].These M0 cells are further differentiated into M1.Therefore,a positive loop,M1→TD→M1(loop 1)is formed.In particular,TNF-αis a major cytokine that drives the death of intestinal epithelial cells and paneth cells,resulting in TD through further impairment of the barrier function[1,14].Furthermore,TD also contributes to the TNF-αproduction[1].Therefore,another positive feedback loop,TNF-α→TD→TNF-α(loop 2),is created.

    TD is also an important early source of IL-4 production[9]that leads to alternatively activated macrophages(M2)and Th4,respectively[16].M2 can release IL-10 and transforming growth factor,TGF-β,to down-regulate the in flammatory process.Moreover,damaged epithelial cells in TD can activate type II natural killer T cells(NKT)cells to secrete IL-13,which activates M2[16]and also induces tissue damage further[17],resulting in a positive feedback loop,IL-13→TD→NKT→IL-13(loop 3).

    Dendritic cells (DCs) are specialized antigenpresenting cells that orchestrate innate and adaptive immune responses.DCs(DC0)can be activated to incite a proin flammatory response(De)or to induce immune tolerance(Dt)in different local environments[12].Mature DCs migrate to mesenteric lymph nodes and present antigens to Na?ve lymphocytes[12].Na?ve,quiescent T cells(Th0)cannot enter the gut mucosa.Once activated by matured DC,they can move into the lamina propia and differentiate into effector T cells(predominantly Th1,Th2 and Th17 cells)and regulatory T cells T-regulatory(Treg)cells in their corresponding cytokine environments. For example,in the presence of IL-12 secreted by M1(as well as De),Na?ve CD4+T cells(Th0)differentiate into T helper 1(Th1)cells[18].As Th1 cells secrete IFN-γto activate M1[8,18],a multi-node positive feedback loop,M1→IL12→Th1→IFN-γ→M1(loop 4),is thus created.In contrast to Th1,Th2 is polarized from Th0 in the presence of IL-4.Th2 produces IL-13,IL-5 and IL-4,release of which further enhances the production of IL-10 and transforming growth factor-β(TGF-β)by M2.In the presence of TGF-β,Th0 cells differentiate into Treg,which secrete IL-10[12].TGF-βand IL-6 together induce Th17 differentiation,leading to the production of IL-17(IL-17A)[19–21],which acts primarily on non-hematopoietic cells such as epithelial cells[22].As Th17-type cytokines represented by IL-17 were found to mediate proin flammatory responses,they also can induce TD in which the activated epithelial cells secrete IL-6.Therefore a positive feedback loop,IL-6→Th17→IL-17→TD→IL-6(loop 5),is formed[23].However,IL-17 signaling in intestinal epithelial cells was also found to promote expression of genes involved in tight junction formation[22].Moreover,studies showed that IL-23 produced by M1 activates Th17 to secrete IL-17,which causes TD in intestinal mucosa[23].As such,one more positive feedback loop,M1→IL-23→Th17→IL-17→TD→M1(loop 6),is constituted.In addition,while IFN-γcan suppress the differentiation of Th17 cells[19],IL-6 can down-regulate the activation of Treg that secretes IL-10 to inhibit Th17[24].Consequently,a positive feedback loop,IL-6?Treg→IL-10?Th17→IL-17→TD→IL-6(loop 7),is constructed.

    FIG.1 Schematic depiction of interactions between various nodes that represent immune cells,cytokines and intestinal tract tissues.

    The cytokines,immune cells,and TD discussed above are treated as the network nodes,whose interactions are then integrated into the network model shown in FIG.1.In this network model,M1,De,Th1,and Th17 with their associated cytokines,TNF-α,IL-6,IL-12,IFN-γ,and IL-17 form multiple proin flammatory pathways,whereas M2,Th2,Treg and type II NKT with their related cytokines,IL-4,TGF-β,IL-10,and IL-13,form anti-in flammatory/regulatory pathways. These two types of pathways are interlinked with each other through several nodes representing molecular mediators such as IL-6,TGF-β,IL-10,and IL-13(FIG.1).These pathways eventually converge at the TD node that represents the tissue damage.Here,we focus on the immunologic aspect of UC and the TD node is highly coarse-grained,involving neutrophil-induced tissue damage,epithelial cell injury and extracellular matrix degradationetc.As TD is a major feature of UC,the dynamics of TD is used to measure UC progression in this work

    B.Agent rules and model dynamics

    In this work,an agent-based network modeling(ABNM)method is used to study dynamics of the network discussed above.In this agent-based method(ABM)[25–27],TD and cytokines are treated as patch variables whereas the immune cells are treated as agents[27].The TD patches have a local parameter denoted as tissue life associated with tissue damage.This parameter is set between 0 and 100 in which 0 represents a completely destroyed patch where the value of TD=100%,and 100 means full health(TD=0%).Agents represent individual entities that can move from patch to patch[27].The agents in the present model represent multiple types of cells,(FIG.1).In the following discussion,11 agent variables are used for Bc and Bp,and the different immune cell types.Netlogo5.3(Center for Connected Learning and Computer Based Modeling,Northwestern University)is applied to perform the ABNM simulations.

    FIG.2 Population dynamics of M1,M2,and DC over a time period of(a)5000 days and(b)300 days(the dashed square region in(a))in UC progression.

    FIG.3 Population dynamics of TNF-α,IL-6,IL-23,IL-12,IFN-γ,and IL-17 over a time period of(a)5000 days and(b)300 days(the dashed square region in(a))in UC progression.

    Model dynamics starts with an entry of Bc and Bp bacteria into intestinal lamina propria by overcoming epithelial barrier,triggering a cascade of immune responses.The ABNM simulations are initiated by randomly placing a certain number of Bc and Bp in lamina propria.Here,5 units of Bc and 25 units of Bp are used for the first time.The same amount of Bc and Bp can be placed at every later time point for continual simulations of the immune response.ABNM dynamics is governed by a set of rules that describe the interactions between the network nodes(agents and patches)shown in FIG.1.The associated rules are given in Table S1 in supplementary materials.The model environment comprises 2500 patches on a square arranged in a grid(50 patches×50 patches).The model is initiated with 10 units of M1,M2,De,and Dt cells,13 units of Th1 and Th17,and 40 units of Th2,NKT and Treg cells which are randomly distributed in this environment.

    III.RESULTS AND DISCUSSION

    A.ABNM dynamic simulations

    The time courses of the changes in the immune cells,cytokines in response to Bc and Bp are presented in FIG.2?5,respectively.Seen in FIG.2,the population of M1 along with M1-produced TNF-α,IL-6 and IL-12(FIG.3(b))ascends relatively quickly then goes down until the 180th day as M2,which secretes IL-10(FIG.4(b))to down-regulate M1,goes up,showing an acute phase of in flammatory response in UC progression.During this phase,type II NKT(FIG.5)is activated by Bp,leading to a large increase of IL-13(FIG.4(b)).As these network components work together,TD(FIG.6)thus rises up but rather slowly.After 180 days of exposure to invading pathogens,the M2 population is raised quickly,and then gradually goes to a steady state with a level much higher than that of M1,leading to high levels of IL-10 and TGF-β.Although M2 predominates over M1 in the later immune response,M1 still remains at a certain level,so do M1-produced TNF-α,IL-6,IL-12 and IL-23(see FIG.3).As such,Th1 and Th17(FIG.5)along with IFN-γand IL-17 also remain at certain levels.Consequently,M1 along with IL-13,IL-17,and IFN-γtogether drives TD to a steady state(FIG.6).Our results in qualitative agreements with experiments demonstrates that M2 dominates M1 in UC progression.However,M1 macrophages and the M1-secreted proin flammatory cytokines,TNF-α,IL-12,IL-23,IL-6 still remain at certain levels mainly due to the persistent invasions of bacterial antigens(Bp)into the luminal propia.As such,Th1 and Th17 are persistently activated to produce proin flammatory cytokines,e.g.,IL-17 and IFN-γ.Consequently,these proin flammatory components along with type II NKT-producing IL-13 consistently cause TD,which is counteracted by a wound-healing mechanism,leading to a steady UC state.

    FIG.4 Population dynamics of IL-13,IL-10,IL-4,and TGF-β over a time period of(a)5000 days and(b)300 days(the dashed square region in(a))in UC progression.

    FIG.5 Population dynamics of type II NKT,Th1,Th2,Th17,and Treg cells over time period of(a)5000 days and(b)300 days(the dashed square region in(a))in UC progression.

    FIG.6 Dynamics of TD in UC progression.

    B.Knockout simulations

    In recent years,targeting cytokines for UC therapies have become an important therapeutic strategy for UC treatment[6].To identify important cytokines in UC progression,in silicoknockout simulations for TNF-α,IL-23,IL-12,IL-13,IL-17,and IFN-γwere performed in this study.Knockout calculations are executed via deletions of these molecular mediators,respectively,and the associated interactions with the other nodes of the network(FIG.1)in the following discussion and the results are represented in FIG.7.

    FIG.7 Dynamics of in silico knockouts of TNF-α(blue line),IL-23(pink),IL-17(brown),IFN-γ(red)and IL-13(cyan).Wild-type is shown in the black line.

    As seen in FIG.7,TNF-αknockout simulations show that there is signi ficant reduction in TD.This result is consistent with clinical data in which anti-TNF-αdrugs have signi ficantly improved treatment of UC[28,29].Interestingly,while IL-12 deletion has no obvious effect on TD production,IL-23 knockout signi ficantly reduces TD from~50%to~20%,qualitatively consistent with mice experiments in which IL-23 rather than IL-12 is required for IL-10?/?(IL-10 knockout)enterocolitis and T-cell transfer-induced UC[22].Our modeling study in this work also provides a rationale for anti-IL-23/12 monoclonal antibodies such as Ustekinumab for effective UC treatment.Our simulations demonstrate that IFN-γknockout has little effect on TD reduction,which is in line with that anti-IFN-γagents(e.g.,Fontolizumab)failed to show efficacy in clinic[30].From ourin silicosimulations,deletion of IL-17 has a significant effect on TD dynamics similar to that of IL-23,showing that IL-23-driven IL-17 can be a promising target for the immunosuppressive treatment of UC.Intriguingly,IL-13 knockout also results in a significant TD reduction,in line with clinical and mice experiments[31–33].However,two recent clinical trials failed,crushing the enthusiasm for anti-IL-13 treatment in UC[34].As mice experiments showed that the UC outcome is determined by IL-13-utilized signaling pathway,a direct blockage of IL-13 may be still a potential therapeutic strategy for a subset of UC patients who have elevated IL-13 production in tissue[33].

    IV.CONCLUSION

    As discussed above,UC is chronic in flammatory disease caused by an abnormal immune response against persistent invasions of commensal bacteria in genetically susceptible subjects. Despite signi ficant advances in understanding of UC immuno-pathogenesis,the immunological pro file in UC patients still remains controversial.UC has been classically characterized as an atypical Th-2 type disease in which antiin flammatory/regulatory cytokines such as IL-13 and IL-5 are predominantly enhanced at high levels,but with low expression of IL-4[1,31,32].However,experiments showed that pro-in flammatory immune cells,M1,Th17 and Th1 with the associated cytokines TNF-α,IL-23,IL-17 and IFN-γwere also enhanced to certain levels(but lower than those in CD patients),playing an important role in UC progression.Indeed,the crucial roles of these proin flammatory components have been supported by the efficacies of In fliximab and Ustekinumab,an anti-TNF-αand IL-23 monoclonal human antibody in the treatments of UC patients[22,29].However,how this seemly controversial immune pro file in UC patients is achieved remains largely illusive.In other words,the precise mechanism of the UC immunopathogenesis is not completely clear.

    To address the above issue,a network model is developed in this work based on our previous study but in different context[10]. An agent-based network modeling method(ABNM)is then applied for computer simulations of the dynamics of immune response in UC progression.Our modeling study demonstrates that the immune response in UC progression is mainly anti-in flammatory/regulatory,but proin flammatory cells and their associated molecular mediators still remain at certain levels(generally lower than those with CD).Speci fically,from our simulations anti-in flammatory/regulatory cells,M2 and type II NKT,dominate proin flammatory M1 cells.However,M1 and the M1-producing cytokines,TNF-α,IL-12,IL-23,and IL-6 are increased and remain at levels high enough to activate Th1 and TH17 cells to secret IL-23-driven IL-17 and IFN-γat signi ficant levels,respectively.Similar to those demonstrated in our previous study[10],the knockout simulations via deletions of key components in the positive feedback loops show that TNF-α→TD→TNF-α(loop 2),M1→IL-23→Th17→IL-17→TD→M1(loop 6)are particularly of great importance for the enhanced pro-in flammatory signals at certain levels in UC progression.Long-term exposure to these pro-in flammatory components causes persistently the damage of mucosal tissues,leading to UC.Our calculations are in good agreement with clinical and laboratory experiments(see Table S2 in supplementary materials),providing novel insight into the cellular and molecular mechanisms of UC progression.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.21273209).

    Supplementary materials:Table S1 lists agentbased rules.

    [1]H.S.P.De Souza,and C.Fiocchi,Nat.Rev.Gastroenterol.Hepatol.13,13(2016).

    [2]I.Ordás,L.Eckmann,M.Talamini,D.C.Baumgart,and W.J.Sandborn,Lancet380,1606(2012).

    [3]P.Hindryckx,V.Jairath,and G.D’Haens,Nat.Rev.Gastroenterol.Hepatol.13,654(2016).

    [4]B.Khor,A.Gardet,and R.J.Xavier,Nature474,307(2011).

    [5]M.F?hlinger,P.Palamides,U.Mansmann,F.Beigel,M.Siebeck,and R.Gropp,J.Transl.Med.14,310(2016).

    [6]M.Coskun,S.Vermeire,and O.H.Nielsen,Trends Pharmacol.Sci.38,127(2017).

    [7]N.R.West,A.N.Hegazy,B.M.J.Owens,S.J.Bullers,B.Linggi,S.Buonocore,M.Coccia,D.G?rtz,S.This,K.Stockenhuber,J.Pott,M.Friedrich,G.Ryzhakov,F.Baribaud,C.Brodmerkel,C.Cieluch,N.Rahman,G.Müller-Newen,R.J.Owens,A.A.Khl,K.J.Maloy,S.E.Plevy,Oxford IBD Cohort Investigators,S.Keshav,S.P.L.Travis,and F.Powrie,Nat.Med.23,579(2017).

    [8]A.Geremia,P.Biancheri,P.Allan,G.R.Corazza,and A.Di Sabatino,Autoimmun.Rev.13,3(2014).

    [9]K.Jovanovic,M.Siebeck,and R.Gropp,Clin.Exp.Immunol.178,201(2014).

    [10]Z.C.Pan,H.S.Yu,and J.L.Liao,PLoS One11,e0163192(2016).

    [11]C.C.Bain and A.M.Mowat,Immunol.Rev.260,102(2014).

    [12]E.C.Steinbach and S.E.Plevy,In flamm.Bowel Dis.20,166(2014).

    [13]P.D.Smith,L.E.Smythies,R.Shen,T.Greenwell-Wild,M.Gliozzi,and S.M.Wahl,Mucosal Immunol.4,31(2011).

    [14]C.Gnther,E.Martini,N.Wittkopf,K.Amann,B.Weigmann,H.Neumann,M.J.Waldner,S.M.Hedrick,S.Tenzer,M.F.Neurath,and C.Becker,Nature477,335(2011).

    [15]M.H.Holtmann,E.Douni,M.Schütz,G.Zeller,J.Mudter,H.A.Lehr,J.Gerspach,P.Scheurich,P.R.Galle,G.Kollias,and M.F.Neurath,Eur.J.Immunol.32,3142(2002).

    [16]S.Y.Salim and J.D.S?derholm,In flamm.Bowel Dis.17,362(2011).

    [17]F.Heller,P.Florian,C.Bojarski,J.Richter,M.Christ,B.Hillenbrand,J.Mankertz,A.Gitter,N.Burgel,and M.Fromm,Gastroenterology129,550(2005).

    [18]W.Strober and I.J.Fuss,Gastroenterology140,1756(2011).

    [19]E.Bettelli,Y.Carrier,W.D.Gao,T.Korn,T.B.Strom,M.Oukka,H.L.Weiner,and V.K.Kuchroo,Nature441,235(2006).

    [20]A.Kimura,T.Naka,and T.Kishimoto,Proc.Natl.Acad.Sci.USA104,12099(2007).

    [21]P.R.Mangan,L.E.Harrington,D.B.O’Quinn,W.S.Helms,D.C.Bullard,C.O.Elson,R.D.Hatton,S.M.Wahl,T.R.Schoeb,and C.T.Weaver,Nature441,231(2006).

    [22]M.L.Chen and M.S.Sundrud,In flamm.Bowel Dis.22,1157(2016).

    [23]H.Ogura,M.Murakami,Y.Okuyama,M.Tsuruoka,C.Kitabayashi,M.Kanamoto,M.Nishihara,Y.Iwakura,and T.Hirano,Immunity29,628(2008).

    [24]Y.Lee,A.Awasthi,N.Yosef,F.J.Quintana,S.Xiao,A.Peters,C.Wu,M.Kleinewietfeld,S.Kunder,D.A.Ha fler,R.A.Sobel,A.Regev,and V.K.Kuchroo,Nat.Immunol.13,991(2012).

    [25](a)G.C.An,Crit.Care Med.32,2050(2004).(b)V.A.Folcik,G.C.An,and C.G.Orosz,Theor.Biol.Med.Model.4,39(2007).

    [26]J.J.Pothen,M.E.Poynter,and J.H.T.Bates,J.Immunol.190,3510(2013).

    [27]B.N.Brown,I.M.Price,F.R.Toapanta,D.R.DeAlmeida,C.A.Wiley,T.M.Ross,T.D.Oury,and Y.Vodovotz,Math.Biosci.231,186(2011).

    [28]D.Pugliese,C.Felice,A.Papa,A.Gasbarrini,G.L.Rapaccini,L.Guidi,and A.Armuzzi,Exp.Rev.Clin.Immunol.13,223(2017).

    [29]M.F.Neurath,Nat.Rev.Gastroenterol.Hepatol.13,13(2017).

    [30]W.Reinisch,D.W.Hommes,G.Van Assche,J.F.Colombel,J.P.Gendre,B.Oldenburg,A.Teml,K.Geboes,H.Ding,L.Zhang,M.Tang,M.Cheng,S.J.H.van Deventer,P.Rutgeerts,and T.Pearce,Gut55,1138(2006).

    [31]I.J.Fuss,F.Heller,M.Boirivant,F.Leon,M.Yoshida,S.Fichtner-Feigl,Z.Q.Yang,M.Exley,A.Kitani,R.S.Blumberg,P.Mannon,and W.Strober,J.Clin.Invest.113,1490(2004).

    [32]I.J.Fuss,B.Joshi,Z.Q.Yang,H.Degheidy,S.Fichtner-Feigl,H.de Souza,F.Rieder,F.Scaldaferri,A.Schirbel,M.Scarpa,G.West,C.L.Yi,L.L.Xu,P.Leland,M.Yao,P.Mannon,R.K.Puri,C.Fiocchi,and W.Strober,Gut63,1728(2014).

    [33]J.C.Hoving,A.J.Cutler,M.Leeto,W.G.C.Horsnell,B.G.Dewals,N.E.Nieuwenhuizen,and F.Brombacher,Gut66,2037(2017).

    [34]H.Tilg and A.Kaser,Gut64,857(2015).

    [35]Z.G.Dong,L.T.Du,X.F.Xu,Y.M.Yang,H.Y.Wang,A.L.Qu,X.Qu,and C.X.Wang,Int.J.Mol.Med.31,989(2013).

    国产亚洲av高清不卡| 日本a在线网址| 中文字幕人妻丝袜制服| 亚洲av男天堂| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| 亚洲av片天天在线观看| 51午夜福利影视在线观看| xxxhd国产人妻xxx| 精品一区二区三区四区五区乱码 | 免费看av在线观看网站| 久久影院123| 日韩精品免费视频一区二区三区| 日本91视频免费播放| 精品人妻在线不人妻| 99久久人妻综合| 日本五十路高清| 婷婷色综合www| 好男人视频免费观看在线| 久久影院123| 中文字幕人妻熟女乱码| 99精国产麻豆久久婷婷| 日韩熟女老妇一区二区性免费视频| 亚洲精品在线美女| 国产成人av教育| 亚洲激情五月婷婷啪啪| 亚洲男人天堂网一区| 曰老女人黄片| 伊人亚洲综合成人网| 99国产精品免费福利视频| 精品人妻一区二区三区麻豆| 久久久久精品国产欧美久久久 | 免费看日本二区| 国产av又大| 国产精品一区二区精品视频观看| 国产精品永久免费网站| 18禁裸乳无遮挡免费网站照片 | 一区福利在线观看| 国产精品自产拍在线观看55亚洲| 曰老女人黄片| 免费看日本二区| 国产精品精品国产色婷婷| 一级黄色大片毛片| 黄片大片在线免费观看| 色综合婷婷激情| 久久精品夜夜夜夜夜久久蜜豆 | 国内精品久久久久精免费| 国产午夜福利久久久久久| 国产精品久久久久久精品电影 | 久久午夜综合久久蜜桃| 久久久久久九九精品二区国产 | 免费看十八禁软件| 欧美精品亚洲一区二区| 伦理电影免费视频| 亚洲人成伊人成综合网2020| videosex国产| 国产精品综合久久久久久久免费| 超碰成人久久| 欧美乱妇无乱码| 久久99热这里只有精品18| 一区二区三区精品91| 久久久久久九九精品二区国产 | 欧美三级亚洲精品| 亚洲第一欧美日韩一区二区三区| av在线天堂中文字幕| 天天躁夜夜躁狠狠躁躁| 中文字幕久久专区| 午夜老司机福利片| 18禁美女被吸乳视频| 巨乳人妻的诱惑在线观看| 级片在线观看| 十分钟在线观看高清视频www| 满18在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产综合久久久| 少妇裸体淫交视频免费看高清 | 午夜福利在线观看吧| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲,欧美精品.| 波多野结衣av一区二区av| 每晚都被弄得嗷嗷叫到高潮| 男女那种视频在线观看| 色综合站精品国产| 999精品在线视频| 中文字幕精品免费在线观看视频| 午夜久久久在线观看| 俺也久久电影网| 国产av不卡久久| 一进一出抽搐gif免费好疼| 黄色毛片三级朝国网站| 日韩一卡2卡3卡4卡2021年| www.www免费av| 老熟妇乱子伦视频在线观看| 美女 人体艺术 gogo| 国产精品,欧美在线| 97碰自拍视频| 国产精品自产拍在线观看55亚洲| av天堂在线播放| 国内精品久久久久久久电影| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 波多野结衣高清作品| 欧美日韩黄片免| 国产成人精品久久二区二区91| 99re在线观看精品视频| 亚洲国产欧洲综合997久久, | 欧美精品啪啪一区二区三区| 欧美黑人巨大hd| 亚洲成人国产一区在线观看| 欧美精品亚洲一区二区| 久久 成人 亚洲| 欧美日韩瑟瑟在线播放| 久9热在线精品视频| 亚洲国产看品久久| 精品一区二区三区视频在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲真实| av在线播放免费不卡| 欧美三级亚洲精品| 国产乱人伦免费视频| 亚洲天堂国产精品一区在线| 99在线视频只有这里精品首页| 精品欧美国产一区二区三| 国产麻豆成人av免费视频| 制服人妻中文乱码| 在线国产一区二区在线| 精品国产国语对白av| av片东京热男人的天堂| 久久久久九九精品影院| a级毛片a级免费在线| 亚洲国产毛片av蜜桃av| 精品一区二区三区视频在线观看免费| 国产激情久久老熟女| 亚洲九九香蕉| 女生性感内裤真人,穿戴方法视频| 欧美激情久久久久久爽电影| 少妇 在线观看| 女性被躁到高潮视频| 校园春色视频在线观看| 俺也久久电影网| 免费观看人在逋| 男女做爰动态图高潮gif福利片| 亚洲精品中文字幕在线视频| 人人妻人人看人人澡| 免费人成视频x8x8入口观看| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 99riav亚洲国产免费| 黄色丝袜av网址大全| 18禁黄网站禁片免费观看直播| 精品少妇一区二区三区视频日本电影| 亚洲免费av在线视频| 日本 欧美在线| 免费av毛片视频| 国产精品精品国产色婷婷| 一本综合久久免费| 99re在线观看精品视频| 精品久久久久久久久久久久久 | 久久天堂一区二区三区四区| 亚洲欧美精品综合一区二区三区| 亚洲欧洲精品一区二区精品久久久| 中文字幕人成人乱码亚洲影| 黄网站色视频无遮挡免费观看| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 国产黄片美女视频| av有码第一页| 国产精品99久久99久久久不卡| 女人被狂操c到高潮| 不卡av一区二区三区| 99久久无色码亚洲精品果冻| 国产欧美日韩精品亚洲av| 巨乳人妻的诱惑在线观看| 精华霜和精华液先用哪个| av福利片在线| 黄片小视频在线播放| 人人妻人人看人人澡| 黄色视频不卡| 最近最新中文字幕大全电影3 | 午夜影院日韩av| 香蕉国产在线看| 国产色视频综合| 精品久久久久久久毛片微露脸| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 91麻豆av在线| 国产精品九九99| 欧美激情极品国产一区二区三区| 亚洲av成人一区二区三| 黄色视频不卡| 99国产综合亚洲精品| av在线天堂中文字幕| 1024视频免费在线观看| 国产亚洲精品久久久久5区| 欧美黑人欧美精品刺激| 午夜福利一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品粉嫩美女一区| 久久久久久久久久黄片| 2021天堂中文幕一二区在线观 | av中文乱码字幕在线| 成人国产综合亚洲| 免费在线观看成人毛片| 麻豆国产av国片精品| 亚洲成av人片免费观看| 亚洲人成网站在线播放欧美日韩| 久热爱精品视频在线9| 精品熟女少妇八av免费久了| 亚洲熟女毛片儿| 很黄的视频免费| 国产成人精品久久二区二区91| 日本免费a在线| 村上凉子中文字幕在线| 国产一区二区三区视频了| 亚洲av中文字字幕乱码综合 | 最近最新免费中文字幕在线| 亚洲精品在线观看二区| 淫妇啪啪啪对白视频| 91老司机精品| 别揉我奶头~嗯~啊~动态视频| 色综合站精品国产| av片东京热男人的天堂| 日韩一卡2卡3卡4卡2021年| 国产成人av激情在线播放| 免费在线观看亚洲国产| www国产在线视频色| 色尼玛亚洲综合影院| 国产av在哪里看| xxxwww97欧美| 999久久久国产精品视频| 亚洲成a人片在线一区二区| 精品不卡国产一区二区三区| 在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产午夜福利久久久久久| 两个人看的免费小视频| 亚洲国产欧美网| ponron亚洲| or卡值多少钱| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 午夜福利一区二区在线看| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 久热爱精品视频在线9| 久久亚洲真实| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 国内精品久久久久久久电影| a级毛片在线看网站| 久久精品人妻少妇| 成人三级做爰电影| 日韩欧美在线二视频| 在线观看66精品国产| 少妇被粗大的猛进出69影院| 此物有八面人人有两片| 日本 av在线| 12—13女人毛片做爰片一| 丰满的人妻完整版| 在线十欧美十亚洲十日本专区| 国产av不卡久久| 亚洲九九香蕉| 亚洲五月婷婷丁香| 国内久久婷婷六月综合欲色啪| 婷婷亚洲欧美| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 亚洲精品国产区一区二| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 制服人妻中文乱码| 国产成人精品无人区| 999久久久精品免费观看国产| 中出人妻视频一区二区| 18禁国产床啪视频网站| 亚洲狠狠婷婷综合久久图片| www.精华液| 我的亚洲天堂| 亚洲av美国av| 亚洲精品粉嫩美女一区| 国产一区二区激情短视频| 一夜夜www| 免费在线观看黄色视频的| 国产99久久九九免费精品| 成人三级黄色视频| 最新在线观看一区二区三区| 男女那种视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 免费在线观看亚洲国产| 九色国产91popny在线| 国产一卡二卡三卡精品| av片东京热男人的天堂| 制服诱惑二区| 亚洲全国av大片| 亚洲男人的天堂狠狠| 精品国产一区二区三区四区第35| 丁香六月欧美| 国产午夜福利久久久久久| 在线看三级毛片| 人人妻人人看人人澡| 视频在线观看一区二区三区| 免费在线观看日本一区| 久久中文看片网| 国产99白浆流出| 亚洲国产精品久久男人天堂| 亚洲欧美一区二区三区黑人| 亚洲成av片中文字幕在线观看| 日韩国内少妇激情av| xxxwww97欧美| 高清毛片免费观看视频网站| 色综合站精品国产| 免费电影在线观看免费观看| 一进一出抽搐gif免费好疼| 777久久人妻少妇嫩草av网站| 女人爽到高潮嗷嗷叫在线视频| 久久热在线av| 精品欧美一区二区三区在线| aaaaa片日本免费| 久久香蕉激情| 一本久久中文字幕| 搡老妇女老女人老熟妇| 欧美午夜高清在线| 99re在线观看精品视频| 黄色 视频免费看| 亚洲人成网站在线播放欧美日韩| 韩国av一区二区三区四区| 国产亚洲av高清不卡| 岛国在线观看网站| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 国产精华一区二区三区| 国产国语露脸激情在线看| 两个人视频免费观看高清| 国产乱人伦免费视频| 欧美一区二区精品小视频在线| 免费一级毛片在线播放高清视频| 国产成人欧美| 男人舔女人的私密视频| 深夜精品福利| 日韩欧美免费精品| 精品久久久久久久末码| 久99久视频精品免费| 校园春色视频在线观看| 亚洲五月婷婷丁香| 一进一出抽搐动态| 黄色a级毛片大全视频| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线| 亚洲男人天堂网一区| 欧美日韩中文字幕国产精品一区二区三区| 黄色视频,在线免费观看| 国内揄拍国产精品人妻在线 | av超薄肉色丝袜交足视频| 色综合站精品国产| 亚洲精品在线观看二区| 欧美性猛交黑人性爽| 美女午夜性视频免费| 免费电影在线观看免费观看| 88av欧美| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一小说| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久5区| 国产精品1区2区在线观看.| 精品国产亚洲在线| 色老头精品视频在线观看| 国产亚洲欧美精品永久| 日本一区二区免费在线视频| 久久人妻av系列| 老汉色∧v一级毛片| 国产蜜桃级精品一区二区三区| 成人手机av| 亚洲精品中文字幕一二三四区| bbb黄色大片| 免费一级毛片在线播放高清视频| 男人舔女人的私密视频| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 女生性感内裤真人,穿戴方法视频| 在线观看免费日韩欧美大片| av片东京热男人的天堂| 很黄的视频免费| 在线观看舔阴道视频| 此物有八面人人有两片| 久久精品亚洲精品国产色婷小说| 亚洲国产精品999在线| 国产99白浆流出| 在线观看免费视频日本深夜| 亚洲欧美精品综合一区二区三区| 女同久久另类99精品国产91| 91老司机精品| 日本一区二区免费在线视频| av福利片在线| 欧美久久黑人一区二区| 日本三级黄在线观看| 国产激情欧美一区二区| 99久久99久久久精品蜜桃| 国产精品98久久久久久宅男小说| 日韩欧美 国产精品| 99re在线观看精品视频| 天堂动漫精品| 国产精品av久久久久免费| 老鸭窝网址在线观看| 午夜免费成人在线视频| 欧美午夜高清在线| 女人高潮潮喷娇喘18禁视频| 日本免费一区二区三区高清不卡| 此物有八面人人有两片| 丝袜在线中文字幕| 国产免费av片在线观看野外av| 黄色视频不卡| 久久久久久久午夜电影| 怎么达到女性高潮| 国产精品一区二区免费欧美| 好看av亚洲va欧美ⅴa在| 黑人巨大精品欧美一区二区mp4| 久久精品国产清高在天天线| 丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 久久久久九九精品影院| 欧美午夜高清在线| 嫩草影院精品99| 亚洲精品久久国产高清桃花| 免费av毛片视频| 亚洲成av片中文字幕在线观看| 久久欧美精品欧美久久欧美| 日韩国内少妇激情av| 亚洲成人久久爱视频| 1024视频免费在线观看| 女警被强在线播放| 日韩欧美国产在线观看| 在线观看舔阴道视频| www日本在线高清视频| 丁香六月欧美| 午夜激情av网站| 成人特级黄色片久久久久久久| 亚洲国产高清在线一区二区三 | 人妻久久中文字幕网| 俄罗斯特黄特色一大片| 大香蕉久久成人网| 日日干狠狠操夜夜爽| 免费av毛片视频| 一进一出好大好爽视频| 国产成人精品久久二区二区免费| 欧美国产精品va在线观看不卡| 久久久久国产精品人妻aⅴ院| 国产一区在线观看成人免费| 嫩草影院精品99| 欧美一级毛片孕妇| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 欧美日韩乱码在线| 校园春色视频在线观看| 91九色精品人成在线观看| 久久久久久免费高清国产稀缺| 香蕉av资源在线| 在线天堂中文资源库| 一级片免费观看大全| 日日夜夜操网爽| 男女下面进入的视频免费午夜 | 日韩av在线大香蕉| 久久久久九九精品影院| 成人亚洲精品av一区二区| 亚洲自偷自拍图片 自拍| 国产爱豆传媒在线观看 | 中文在线观看免费www的网站 | 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 成人欧美大片| 精品福利观看| 男人舔奶头视频| 国产成人欧美| 欧美黑人欧美精品刺激| or卡值多少钱| 国内精品久久久久久久电影| 真人做人爱边吃奶动态| 操出白浆在线播放| 久9热在线精品视频| 精品午夜福利视频在线观看一区| 精品久久久久久久久久免费视频| 免费高清在线观看日韩| 欧美日韩乱码在线| 黄色a级毛片大全视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 午夜影院日韩av| 男女之事视频高清在线观看| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 真人做人爱边吃奶动态| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 亚洲精品色激情综合| 国产又爽黄色视频| 免费电影在线观看免费观看| a级毛片在线看网站| 亚洲欧美精品综合久久99| 两个人看的免费小视频| www日本在线高清视频| av天堂在线播放| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 草草在线视频免费看| 国产伦人伦偷精品视频| 亚洲成国产人片在线观看| 国产亚洲精品av在线| 一a级毛片在线观看| 久久精品91无色码中文字幕| 特大巨黑吊av在线直播 | 啦啦啦韩国在线观看视频| 亚洲精品国产区一区二| 一二三四社区在线视频社区8| 高清毛片免费观看视频网站| 色av中文字幕| 国产伦在线观看视频一区| 国产精品影院久久| 极品教师在线免费播放| 少妇的丰满在线观看| 国产亚洲精品av在线| 91成人精品电影| 一夜夜www| www国产在线视频色| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| av有码第一页| 在线观看日韩欧美| 国产区一区二久久| 天天一区二区日本电影三级| 亚洲国产毛片av蜜桃av| 亚洲中文av在线| av福利片在线| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 宅男免费午夜| 高清毛片免费观看视频网站| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 午夜福利免费观看在线| 日韩一卡2卡3卡4卡2021年| 香蕉久久夜色| 亚洲片人在线观看| 久久香蕉激情| 日韩国内少妇激情av| 黄色视频不卡| 欧美另类亚洲清纯唯美| 久久婷婷成人综合色麻豆| 亚洲七黄色美女视频| 精品国产乱子伦一区二区三区| 免费看a级黄色片| www.www免费av| 非洲黑人性xxxx精品又粗又长| 国产伦在线观看视频一区| 久久精品aⅴ一区二区三区四区| 18美女黄网站色大片免费观看| 十分钟在线观看高清视频www| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 成熟少妇高潮喷水视频| 黄色 视频免费看| 一个人观看的视频www高清免费观看 | 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片 | 97超级碰碰碰精品色视频在线观看| 岛国在线观看网站| 天堂√8在线中文| 国产视频内射| 99久久久亚洲精品蜜臀av| 中文字幕精品亚洲无线码一区 | 国产伦一二天堂av在线观看| av在线播放免费不卡| 免费在线观看黄色视频的| 曰老女人黄片| 听说在线观看完整版免费高清| 国产激情欧美一区二区| www日本黄色视频网| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频 | 亚洲成av人片免费观看| 两个人免费观看高清视频| 亚洲精品中文字幕一二三四区| 人妻丰满熟妇av一区二区三区| 丁香欧美五月| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 色综合站精品国产| 欧美大码av| 午夜福利18| av福利片在线| 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 两个人看的免费小视频| 老司机在亚洲福利影院| 99国产综合亚洲精品| 伦理电影免费视频| av在线播放免费不卡| 午夜激情福利司机影院| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 国产片内射在线| 久久人人精品亚洲av| 久久午夜亚洲精品久久| 美国免费a级毛片|