• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Solvent Effect on Mechanical Properties of Poly(ether ether ketone)Using Nano-indentation

    2018-05-07 02:04:29TnveerIqlSimYsinAhmdShkeelHmyounMhmoodFhdNzirPulLuckhm
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Tnveer IqlSim YsinAhmd ShkeelHmyoun MhmoodFhd NzirPul F.Luckhm

    a.Department of Chemical,Polymer&Composite Materials Engineering,University of Engineering&Technology,Lahore,KSK Campus,54890,Pakistan

    b.Department of Chemical Engineering&Technology,Imperial College London,South Kensington,SW7 2 AZ,UK

    I.INTRODUCTION

    Poly(ether ether ketone)(PEEK)is a semi-crystalline thermoplastic polymer.It is usually composed of molecular chains of aromatic backbone and the chains are interconnected through ketones group[1].It is an odorless semi-crystalline polymer and gray tan in color[2].The melting point(Tm)of PEEK is 334°C and glass transition temperature is 149°C.Due to the high melting point and glass transition temperatures,it can be used in high-temperature applications[3].PEEK has a lot of applications in different fields like orthopedic surgery,the metallic surgical implants are being replaced by the polymer due to its high mechanical strength[1,4].It has a very high strength-to-weight ratio as compared to any other thermoplastic,which permits the aerospace industry to replace heavy metallic units by plastic parts to ful fill arduous demands of industry[5].It is also used in insulation of high voltage wires to avoid heat dissipation of wires[1].PEEK has also been widely used as a polymer matrix material for high-performance composites due to excellent mechanical characteristics,chemical inactivity,higher wear resistance,and ease in industrial processing[6?8].

    Nano-indentation or depth sensing indentation is an interesting tool for analyzing nano-scale mechanical properties of different materials like metals,polymers,and biological tissues.This technique is very useful because several non-destructive measurements can be performed on the same sample without the requirement of optical imaging as used in conventional indentation experiments[9].Penetration depth and indentation load are two key parameters which can be measured using nano-indenter. Different mechanical properties,like hardness and Youngs modulus,can be extracted from the numerical analysis of the obtained load-displacement curve[10].The load is applied through an indenter for a speci fic period of time and the subsequent residual indentation size is measured based on a calibration measurements from silica.The contact compliance method has been recently adopted for hardness and modulus computation;this method is based on the imposed displacement/reaction force response[11?13].

    The exposure of solvent to the polymeric surface can have a strong effect which includes softening/swelling(volume increase)of polymeric network or dissolution in case of strong solvents[14].The presence of physical entanglements in polymer chains resists the dissolution process,to achieve complete dissolution,these entanglements must be removed either by breaking or by sliding along their length[15].Dissolution of PMMA has been studied under the influence of a number of solvents like tetrahydrofuran(THF),methyl acetate(MA)and methyl isobutyl ketone(MIBK).It was found that the diffusion rates and swelling power of MA and THF molecules were higher than that of MIBK[16].Some non-solvents,like water,methanol,and ethanol,were also reported to be used in a lower concentration to enhance the dissolution rate.It was also noticed that higher alcohols diminished the dissolution rates of polymer and also the high concentration of non-solvents led towards the swelling of the polymeric film to a greater extent[17].Shao and Vollrath[18]reported the effect of different solvents,such as water,urea solution,and different alcohols,on the contraction and mechanical properties of four different types of silk,which behave as a hard elastic polymer.Leachet al.[15]examined the modification of PMMA surface under the influence of different solvents like water,methanol,ethanol,and aqueous alcohol solutions using atomic force microscope.The results showed that the solvent exposure causes roughness and swelling of the polymeric surface.Brownet al.[19]also reported the fabrication of PMMA micro fluidic chips after modifying the PMMA surface by hydrolysis and aminolysis processes.Nanoindentation tests were also performed to analyze the changes occurring at the surface of PMMA as a result of solvent treatment.

    To date,the effect of solvents on the mechanical properties of PEEK has not been investigated in detail.Hence,in this work,a nano-indentation analysis was performed to study the effect of selected solvent on the mechanical properties(hardness and elastic modulus)of PEEK under different exposure time of solvent.

    II.EXPERIMENTS

    Commercially available 1.2 mm thick sheets of semicrystalline PEEK were purchased from Good fellows,UK for the experiments.The polymer sheets were used without any prior treatment.Analytical grade acetone(purity>99%)was utilized as a solvent for the plasticization study.PEEK samples were dipped into the selected solvent for different intervals of time(3 h,3 days,7 days,and 18 days).

    A NANO INDENTER?IIs machine(provided by Nano Instruments Ltd.,Tennessee,USA)was used for conducting the normal indentation experiments on the modified and un-modified PEEK samples.The machine uses a contact compliance indentation mode for analyzing surface mechanical properties of materials.Thus,the material hardness and the elastic modulus can be calculated without actually determining the area of indentation.In conventional indentation,the normal area of deformation is determined using optical methods(such as an optical microscopy or AFM method)after indentation.Whereas,in normal indentation,the area is determined using the geometry of the indenter tip and the depth of the indentation in contact compliance mode indentation.The depth of indentation could be determined by constantly monitoring the indenter position relative to the specimen surface.The standard tip area calibration indentations were performed against fused silica to determine the indenter tip geometry.A continuous stiffness mode indentation(CSM)was adopted for the present study.The indentation hardness and the elastic modulus are computed as a continuous function of the penetration displacement in the CSM indentation.A trigonal diamond pyramid tip,also known as a Berkovich Indenter,was mounted to the bottom of the indenter column.The Berkovich tip makes an angle of 65.3°with the normal to the base of indenter[20].The normal force on the indenter was generated with the help of a magnetic field containing an electromagnetic aluminum coil placed at the top of inner indenter tube.The nano-indentation experiments were performed with a constant loading rate(10 nm/s)to a maximum indentation displacement(1000 nm).A 30-second hold segment was included at the maximum load to account for any creep effects followed by an unloading segment to 80%unloading;at this point,a final hold segment of 100 seconds was applied to account for any thermal drifts during the indentation experiments.

    III.RESULTS AND DISCUSSION

    A.Effect of solvent on crystallinity of PEEK

    FIG.1 represents the loading and unloading cycle curves obtained from the nano-indentation analysis performed in five different regions(Indent 1?5)on the surface of virgin semi crystalline PEEK.The region in which the indentation load approaches to zero at very low indentation displacement during loading section is known as induction phase of indentation experiments[21].It may arise due to the surface determination error,unreliable calibration procedure or unexplainable physical imperfection of indenter tip.The surface determination errors usually resulted from the roughness of surface at nano-matric scale.It can be seen from the figure that a harder behavior was evident for Indents 1 and 2 which requires 5.11?5.23 mN load to impose a penetration depth of 1000 nm whereas a decreased value of load 4.69?4.80 mN was observed for Indents 3,4 and 5 which represents the softer region.This may be linked with the existence of crystalline and amorphous regions within the PEEK sample;in which the crystalline part shows a harder response than the amorphous one.

    FIG.1 Load-displacement curves from five different positions(Indent 1?5)of virgin PEEK sample.

    Similarly,FIG.2 represents the load-displacement curves of nano-indentation experiments performed in five different regions of PEEK sample immersed in acetone for 18 days.It can be easily seen from the figure that all the curves follow more or less the same pattern and require~1.7 mN load to produce a penetration depth of 1000 nm.This result may represent the existence of only the softer/amorphous regions of polymer and the elimination of crystalline part from PEEK sample after having contact with the acetone for 18 days.

    B.Effect of solvent on peak load

    FIG.3 represents the load-displacement curves of PEEK samples as a function of different exposure time in acetone environment.PEEK samples were dipped in acetone for the indicated times and it can be seen from the figure that the value of peak load is greatly affected by the exposure time in acetone.The value of peak load was maximum~5.2 mN for virgin PEEK while the minimum value of peak load~1.7 mN was observed for the exposure time of 18 days in acetone.Polymer segmental motion becomes enhanced due to the plasticizing/swelling effect of the solvent after entering into the polymer network and led to the further solvent intake[15].The observed low values of peak load may be due to this softening or swelling caused by the increased rate of solvent intake.

    FIG.3 Load-displacement curves of PEEK samples as a function of different exposure time in acetone.

    FIG.4 Hardness of PEEK samples as a function of indentation depth for different exposure time in acetone.

    C.Effect of solvent on hardness

    FIG.4 presents the hardness of semi crystalline PEEK as a function of indentation depth for different exposure time in acetone.Remarkable fluctuations were seen for hardness values at a very low penetration depth.These uncertainties were thought to be because of defects in the geometry of tip,errors in the determination of surface or effects of indentation size[20,22].At very low penetration depths(0?150 nm),a harder and more changing behavior was observed.This can be attributed to the con fined changes in the physical properties of the material under the influence of harsh environment sometimes before the experimentation or during the fabrication process of polymers.These modifications near to surface may have occurred due to the localized oxidation of polymeric surface or due to the segregation of modifiers or other impurities near to the surface.

    FIG.5 Hardness as a function of exposure time for indentation displacement of 800 nm.The solid line represents model fitting of Eq.(1).

    The response of hardness close to the surface is analogous to that observed by Briscoe and co-workers[20]in which they have studied a large number of vulnerabilities with respect to the hardness of polymer without applying continues stiffness mode.It can be seen that the highest value of hardness was observed for unmodified PEEK which remains more or less constant(~0.28 GPa)after the indentation depth of 300 nm.The values of hardness displayed a decreasing trend as a function of indentation depth for PEEK samples immersed in acetone environment,which becomes more pronounced for longer exposure times.This result can be linked with the softening/swelling of the polymer samples not only near the surface but further inside the sample as well due to the faster solvent intake.The hardness response to the corresponding indentation depth with different exposure times resembles the one investigated by Iqbal and co-workers for different polymers[9,23].

    D.Empirical model fitting

    An empirical model was proposed to predict the hardness of PEEK sample as a function of exposure time in acetone environment,given as follows:

    whereHandterepresent hardness and exposure time respectively,whileaandbare fitting parameters having values of?1.244 and?0.055,respectively.FIG.5 represents the fitting of experimental data with the proposed model and shows a good agreement(r2>0.99).

    Another empirical model was also proposed,similar to the Maxwell model given for the relaxation modulus as a function of time[25],as follows:

    FIG.6 Hardness as a function of exposure time for indentation displacement of 800 nm.The solid line represents model fitting of Eq.(2).

    FIG.7 Modulus of PEEK samples as a function of indentation depth for different exposure time in acetone.

    whereH(t)andterepresent hardness and exposure time respectively,whileαhas the units of hardness and its value(0.27 GPa)was more or less equal to the value of hardness of virgin PEEK,so this parameter can be represented asH0(hardness of pure polymer)as also represented in Maxwell model(E0).The value of parameterβwas 305 h and as this parameter has the dimensions of time,it may represent the value of exposure time in considered solvent after which the changes in mechanical properties of studied polymer will be very small.FIG.6 represents the fitting of experimental data with this proposed model and shows a quite good agreement(r2>0.90).

    E.Effect of solvent on modulus

    FIG.7 represents the modulus data as a function of indentation depth obtained for semi-crystalline PEEK after immersing it in acetone environment for indicated time.It can be easily seen from the figure that the highest modulus was observed for virgin PEEK sample(4.1±1)GPa,comparable to the literature value of 4 GPa[24].

    The modulus values of PEEK samples decreased with increasing indentation depths and this behavior be-comes more prominent for larger exposure time.At very small indentation depth,higher values of modulus were observed as already explained for hardness behavior.Another interesting thing about modulus behavior can also be seen from the graph that after 3 dayss of exposure to acetone,modulus response showed a remarkable change as a function of indentation depth.Thus,a decrease in elasticity of PEEK samples was observed after the solvent exposure and this may again be attributed to the softening of the polymer network.

    IV.CONCLUSION

    The effect of solvent on the mechanical properties of PEEK was studied by adopting a normal mode of nano-indentation.A constant loading rate of 10 nm/s and a maximum indentation displacement of 1000 nm were used to perform nano-indentation experiments.A 30 s hold segment was included at the maximum load to account for any creep effects followed by an unloading segment to 80%unloading.The experimental data revealed that the crystallinity,peak load,elastic modulus,and hardness of PEEK samples decreased as exposure time in solvent environment increased,due to the softening/swelling of polymeric network.Uncertainties were observed in the data of hardness and elastic modulus at a very low penetration depth near to the surface.This was linked with the change in the physical and mechanical properties of polymers during their manufacturing or aging.However,the most prominent reason for this effect was the imperfection presented in the calibration of indenter tip.Two empirical models were used to fit the experimental data of hardness as a function of exposure time,which showed good agreement with the experimental values.Furthermore,the applicability of these models on the results of nano-indentation of different polymeric systems can be further investigated to incorporate more parameters into the models related to the characteristics of considered systems.

    [1]S.Kurtz,PEEK Biomaterials Handbook,1st Edn.,Oxford:William Andrew,(2011).

    [2]J.H.Wu,M.S.Yen,C.W.Chen,M.C.Kuo,F.K.Tsai,J.S.Kuo,L.H.Yang,and J.C.Huang,J.Appl.Polym.Sci.125,494(2012).

    [3]G.Zhang,W.Y.Li,M.Cherigui,C.Zhang,H.Liao,J.M.Bordes,and C.Coddet,Prog.Org.Coat.60,39(2007).

    [4]S.M.Kurtz and J.N.Devine,Biomaterials28,4845(2007).

    [5]L.O.Dandy,G.Oliveux,J.Wood,M.J.Jenkins,and G.A.Leeke,Polym.Degrad.Stab.112,52(2015).

    [6]A.M.Díez-Pascual,M.Naffakh,J.M.González-Domínguez,A.Ansón,Y.Martínez-Rubi,M.T.Martínez,B.Simard,and M.A.Gomez,Carbon48,3485(2010).

    [7]X.LiuJie,J.P.Davim,and R.Cardoso,J.Mater.Process.Technol.189,374(2007).

    [8]V.S.Nisa,S.Rajesh,K.P.Murali,V.Priyadarsini,and S.N.Potty,R.Ratheesh,Compos.Sci.Technol.68,106(2008).

    [9]T.Iqbal,B.J.Briscoe,S.Yasin,and P.F.Luckman,Chin.J.Polym.Sci.31,1096(2013).

    [10]Y.C.Lin,Y.J.Weng,D.J.Pen,and H.C.Li,Mater.Des.30,1643(2009).

    [11]I.M.Hutchings,J.Mater.Res.24,581(2009).

    [12]T.Iqbal,B.J.Briscoe,S.Yasin,and P.F.Luckham,J.App.Polym.Sci.130,4401(2013).

    [13]T.Iqbal,B.J.Briscoe,and P.F.Luckham,Eur.Polym.J.47,2244(2011).

    [14]H.L.Frisch,J.App.Polym.Sci.6,1657(1970).

    [15]R.N.Leach,F.Stevens,C.Seiler,S.C.Langford,and J.T.Dickinson,Langmuir19,10225(2003).

    [16]A.C.Ouano and J.A.Carothers,Polym.Eng.Sci.20,160(1980).

    [17]W.J.Cooper,P.D.Krasicky,and F.Rodriguez,J.Appl.Polym.Sci.31,65(1986).

    [18]Z.Shao and F.Vollrath,Polymer40,1799(1999).

    [19]L.Brown,T.Koerner,and Horton,Lab on a Chip6,66(2006).

    [20]B.J.Briscoe,L.Fiori,and E.Pelillo,J.Phys.D:Appl.Phys.31,2395(1998).

    [21]H.Mohammad,Ph.D.Dissertation,UK:Imperial College London,(2004).

    [22]M.Bonne,B.J.Briscoe,C.J.Lawrence,S.Manimaaran,D.Parsonage,and A.Allan,Tribology Lett.18125(2005).

    [23]T.Iqbal,B.J.Briscoe,S.Yasin,and P.F.Luckham,J.Macromol.Sci.Phys.53,1522(2014).

    [24]K.Nakamae,T.Nishino,Y.Shimizu,and T.Matsumoto,Polym.J.19,451(1987).

    [25]S.P.C.Marques and G.J.Creus,Computational Viscoelasticity,1st Edn.,Berlin Heidelberg:Springer-Verlag,11(2012).

    国产不卡一卡二| av在线蜜桃| 无遮挡黄片免费观看| 天堂√8在线中文| 俺也久久电影网| 免费看日本二区| 国产精品人妻久久久久久| 国产老妇女一区| avwww免费| 欧美日韩乱码在线| 中出人妻视频一区二区| 少妇熟女aⅴ在线视频| 成人毛片a级毛片在线播放| 久久99热这里只有精品18| 两个人视频免费观看高清| 在线看三级毛片| 日日摸夜夜添夜夜添小说| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩东京热| 联通29元200g的流量卡| 免费一级毛片在线播放高清视频| 久久亚洲国产成人精品v| 熟妇人妻久久中文字幕3abv| 亚洲av五月六月丁香网| 我的老师免费观看完整版| 亚洲精品在线观看二区| eeuss影院久久| 我的女老师完整版在线观看| 亚洲熟妇中文字幕五十中出| 色综合站精品国产| 日本a在线网址| 99riav亚洲国产免费| 三级毛片av免费| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区四那| 色综合色国产| 国产成人91sexporn| 亚洲av第一区精品v没综合| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 不卡一级毛片| 一级毛片电影观看 | 国产av不卡久久| 午夜免费激情av| 国产乱人偷精品视频| 国产白丝娇喘喷水9色精品| 搡老岳熟女国产| 免费观看人在逋| 日本黄色片子视频| 黄色一级大片看看| 亚洲av.av天堂| videossex国产| 人妻久久中文字幕网| 亚洲欧美日韩东京热| av国产免费在线观看| 欧美一区二区国产精品久久精品| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 日本免费a在线| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 亚洲欧美精品综合久久99| 欧美+日韩+精品| 日本与韩国留学比较| 嫩草影院精品99| 免费在线观看成人毛片| 国产伦一二天堂av在线观看| 黄片wwwwww| 亚洲av熟女| 午夜福利成人在线免费观看| 国产精品亚洲一级av第二区| 美女黄网站色视频| 简卡轻食公司| 久久精品国产亚洲av涩爱 | 男女之事视频高清在线观看| 女的被弄到高潮叫床怎么办| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 亚洲国产精品成人综合色| 97超级碰碰碰精品色视频在线观看| 国产色爽女视频免费观看| 国产片特级美女逼逼视频| av视频在线观看入口| 乱系列少妇在线播放| 性欧美人与动物交配| 成人综合一区亚洲| 在线观看66精品国产| 日本色播在线视频| 99在线人妻在线中文字幕| 97热精品久久久久久| 非洲黑人性xxxx精品又粗又长| 干丝袜人妻中文字幕| 亚洲人成网站在线播| 成人综合一区亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美精品自产自拍| 黄片wwwwww| a级毛片a级免费在线| 性色avwww在线观看| 国产亚洲欧美98| 欧美一级a爱片免费观看看| 日本熟妇午夜| 亚洲人成网站在线播放欧美日韩| 日本与韩国留学比较| 国产成人福利小说| 午夜福利在线观看吧| 亚洲精品456在线播放app| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 狠狠狠狠99中文字幕| 成年av动漫网址| 日本成人三级电影网站| 日韩三级伦理在线观看| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 一级黄片播放器| av在线亚洲专区| 一a级毛片在线观看| 男女视频在线观看网站免费| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类| 99久久九九国产精品国产免费| 亚洲欧美成人综合另类久久久 | 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 亚洲国产精品sss在线观看| 少妇猛男粗大的猛烈进出视频 | 熟女电影av网| 国产一区二区在线观看日韩| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 国产 一区 欧美 日韩| 亚洲无线观看免费| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 久久久精品94久久精品| 国产亚洲av嫩草精品影院| 精品日产1卡2卡| 午夜日韩欧美国产| 成年女人看的毛片在线观看| 国产一区二区在线观看日韩| 露出奶头的视频| 亚洲最大成人手机在线| 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 日韩欧美精品v在线| 亚洲最大成人av| 一本一本综合久久| 欧美日本视频| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 精品福利观看| 淫秽高清视频在线观看| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 狠狠狠狠99中文字幕| 久久人妻av系列| 日韩av不卡免费在线播放| 免费观看人在逋| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人久久性| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 色尼玛亚洲综合影院| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 午夜福利在线在线| 日韩欧美免费精品| 亚洲国产精品成人久久小说 | 国产乱人偷精品视频| 国产高清不卡午夜福利| av天堂在线播放| 亚洲最大成人av| 久久精品夜色国产| 久久这里只有精品中国| 丰满的人妻完整版| 欧美成人a在线观看| 男人狂女人下面高潮的视频| 亚洲av中文字字幕乱码综合| 国产免费一级a男人的天堂| 99热网站在线观看| 在线观看午夜福利视频| 久久精品国产亚洲av天美| 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 99九九线精品视频在线观看视频| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| 身体一侧抽搐| 精品乱码久久久久久99久播| 春色校园在线视频观看| 国产又黄又爽又无遮挡在线| 免费av不卡在线播放| avwww免费| 欧美成人a在线观看| 欧美国产日韩亚洲一区| 人人妻人人澡人人爽人人夜夜 | 一本一本综合久久| 亚洲av二区三区四区| 久久久久久久午夜电影| av黄色大香蕉| 亚洲国产精品sss在线观看| 毛片女人毛片| 婷婷亚洲欧美| 免费大片18禁| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 午夜免费激情av| 成人永久免费在线观看视频| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 此物有八面人人有两片| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 免费人成在线观看视频色| www日本黄色视频网| 1024手机看黄色片| 人妻制服诱惑在线中文字幕| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 午夜福利18| 一本一本综合久久| 九九在线视频观看精品| 日韩av在线大香蕉| 成人综合一区亚洲| 在线免费观看的www视频| 国产69精品久久久久777片| 九九在线视频观看精品| 观看美女的网站| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 18禁在线无遮挡免费观看视频 | 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 97碰自拍视频| 春色校园在线视频观看| 一级黄色大片毛片| 亚洲七黄色美女视频| 天堂av国产一区二区熟女人妻| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 亚洲av熟女| 在线国产一区二区在线| 国产精品一区二区三区四区久久| 亚洲第一电影网av| 精品久久久久久久久亚洲| 老司机影院成人| 欧美激情久久久久久爽电影| 我要搜黄色片| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 日本 av在线| 美女高潮的动态| 亚洲中文字幕日韩| 舔av片在线| 久久久久性生活片| 天堂动漫精品| 嫩草影院入口| 国产 一区 欧美 日韩| 亚洲成人久久性| 偷拍熟女少妇极品色| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 亚洲国产欧美人成| 欧美3d第一页| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 国产精品一区www在线观看| 成人永久免费在线观看视频| 99久久精品热视频| 亚洲av免费高清在线观看| 久久久欧美国产精品| 国产 一区精品| 一级毛片我不卡| 亚洲av中文字字幕乱码综合| 久久精品国产自在天天线| 亚洲欧美日韩高清专用| 熟妇人妻久久中文字幕3abv| 亚洲自偷自拍三级| 国产91av在线免费观看| 国产熟女欧美一区二区| 久久久久久久久久黄片| 级片在线观看| 久久精品国产自在天天线| 色视频www国产| 又粗又爽又猛毛片免费看| 毛片女人毛片| 亚洲一区二区三区色噜噜| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 久久天躁狠狠躁夜夜2o2o| 伊人久久精品亚洲午夜| 嫩草影院新地址| 日韩在线高清观看一区二区三区| 久久久精品欧美日韩精品| 国产精品野战在线观看| 国产成人福利小说| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 一级毛片aaaaaa免费看小| 亚州av有码| 精品人妻一区二区三区麻豆 | 国产精品久久视频播放| 波野结衣二区三区在线| 一个人观看的视频www高清免费观看| 伦精品一区二区三区| 久久久久久久午夜电影| 在线国产一区二区在线| 97超视频在线观看视频| 久久精品国产99精品国产亚洲性色| 99久久久亚洲精品蜜臀av| 卡戴珊不雅视频在线播放| 久久人妻av系列| avwww免费| 精品日产1卡2卡| 中文字幕免费在线视频6| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 成人毛片a级毛片在线播放| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看 | 男女之事视频高清在线观看| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 免费看光身美女| 天美传媒精品一区二区| 大香蕉久久网| 亚洲高清免费不卡视频| 全区人妻精品视频| 亚洲av免费高清在线观看| 成年女人看的毛片在线观看| 国产片特级美女逼逼视频| 国产成人精品久久久久久| 最近手机中文字幕大全| 成年女人看的毛片在线观看| 亚洲国产色片| 亚洲精品日韩在线中文字幕 | 国产精品人妻久久久久久| 欧美性猛交黑人性爽| 国产精品野战在线观看| 色哟哟·www| 国产精品电影一区二区三区| 综合色av麻豆| 欧美人与善性xxx| 观看美女的网站| 国产探花极品一区二区| 夜夜爽天天搞| 国产精品亚洲一级av第二区| 一本一本综合久久| 日韩人妻高清精品专区| 国产精品一二三区在线看| av在线观看视频网站免费| 国产视频内射| 久久国产乱子免费精品| 高清毛片免费看| 日韩精品有码人妻一区| 国产精品永久免费网站| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 97在线视频观看| 午夜日韩欧美国产| 日韩成人av中文字幕在线观看 | 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 亚洲最大成人手机在线| 国产高潮美女av| 国产美女午夜福利| 久久人人精品亚洲av| 久久草成人影院| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 99久久中文字幕三级久久日本| 一本精品99久久精品77| 天堂动漫精品| 午夜日韩欧美国产| 日本爱情动作片www.在线观看 | 99在线视频只有这里精品首页| 我的老师免费观看完整版| 能在线免费观看的黄片| 国产精品福利在线免费观看| 极品教师在线视频| 少妇丰满av| 高清毛片免费看| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 俄罗斯特黄特色一大片| 伦理电影大哥的女人| 六月丁香七月| 国内精品美女久久久久久| 99在线视频只有这里精品首页| 在线观看av片永久免费下载| 啦啦啦啦在线视频资源| 美女大奶头视频| 老司机福利观看| 美女大奶头视频| 内地一区二区视频在线| 日韩欧美三级三区| 国产av麻豆久久久久久久| 色综合站精品国产| 日韩国内少妇激情av| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 国产中年淑女户外野战色| 国产精品无大码| 欧美另类亚洲清纯唯美| 99热只有精品国产| av专区在线播放| 欧美性感艳星| 精品福利观看| 好男人在线观看高清免费视频| 一进一出抽搐gif免费好疼| 麻豆乱淫一区二区| 日韩精品有码人妻一区| 精品久久久噜噜| 欧美性猛交黑人性爽| 国产精品亚洲美女久久久| а√天堂www在线а√下载| 欧美最新免费一区二区三区| 国产片特级美女逼逼视频| 日日啪夜夜撸| 免费黄网站久久成人精品| 丰满人妻一区二区三区视频av| 欧美潮喷喷水| 日韩成人av中文字幕在线观看 | 一进一出抽搐动态| 一级a爱片免费观看的视频| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 免费av观看视频| 欧美激情在线99| 欧美日韩一区二区视频在线观看视频在线 | 日本-黄色视频高清免费观看| 国产精品一区www在线观看| 国产三级在线视频| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 99久国产av精品国产电影| 亚洲经典国产精华液单| 日本 av在线| 少妇熟女欧美另类| 欧美又色又爽又黄视频| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| 男女下面进入的视频免费午夜| 最新在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产黄色视频一区二区在线观看 | 精品99又大又爽又粗少妇毛片| 99热只有精品国产| 欧美日本视频| av卡一久久| 身体一侧抽搐| 国产单亲对白刺激| 97超视频在线观看视频| 91在线观看av| 男女视频在线观看网站免费| 一进一出抽搐gif免费好疼| 女人被狂操c到高潮| 精品一区二区免费观看| 精品久久久久久久人妻蜜臀av| 日日干狠狠操夜夜爽| 夜夜看夜夜爽夜夜摸| 最近的中文字幕免费完整| 亚洲欧美日韩无卡精品| 男女那种视频在线观看| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 亚洲av免费高清在线观看| 最好的美女福利视频网| 午夜福利成人在线免费观看| 欧美bdsm另类| 日本三级黄在线观看| 一进一出抽搐gif免费好疼| 亚洲综合色惰| 欧美极品一区二区三区四区| 91午夜精品亚洲一区二区三区| 最近在线观看免费完整版| 成人亚洲欧美一区二区av| 亚洲欧美清纯卡通| 欧美区成人在线视频| 成人无遮挡网站| .国产精品久久| 卡戴珊不雅视频在线播放| 日韩中字成人| 成人二区视频| 色在线成人网| 久久精品国产99精品国产亚洲性色| 国产男靠女视频免费网站| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| 干丝袜人妻中文字幕| 美女免费视频网站| 晚上一个人看的免费电影| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 搡老岳熟女国产| 干丝袜人妻中文字幕| www日本黄色视频网| 中文字幕免费在线视频6| 九九久久精品国产亚洲av麻豆| 精品久久久久久久久久久久久| 久久中文看片网| 日本一本二区三区精品| 十八禁网站免费在线| 美女被艹到高潮喷水动态| 欧美性猛交黑人性爽| 亚洲无线观看免费| 搡老妇女老女人老熟妇| 日韩国内少妇激情av| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 最近视频中文字幕2019在线8| 亚洲中文日韩欧美视频| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验 | 国产精品免费一区二区三区在线| 老女人水多毛片| 美女大奶头视频| 舔av片在线| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 亚洲成人av在线免费| 丝袜美腿在线中文| 看黄色毛片网站| 少妇丰满av| 校园春色视频在线观看| 丝袜喷水一区| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| 国内揄拍国产精品人妻在线| 国产亚洲精品久久久com| av.在线天堂| 天堂动漫精品| 亚洲av不卡在线观看| 五月伊人婷婷丁香| 国产麻豆成人av免费视频| 国产成人精品久久久久久| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 联通29元200g的流量卡| 久久精品影院6| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 国内精品久久久久精免费| 99热只有精品国产| 亚洲av成人精品一区久久| 黑人高潮一二区| 久久久精品大字幕| 变态另类丝袜制服| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 一级a爱片免费观看的视频| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 在线播放国产精品三级| 久久精品久久久久久噜噜老黄 | 亚洲成人av在线免费| 日韩高清综合在线| 全区人妻精品视频| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 日韩欧美 国产精品| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 成人性生交大片免费视频hd| 中文字幕av成人在线电影| 麻豆乱淫一区二区| 亚洲精品成人久久久久久| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 特大巨黑吊av在线直播| 热99在线观看视频| 国产综合懂色| 免费高清视频大片| 国产在线男女| 亚洲性夜色夜夜综合| 精品少妇黑人巨大在线播放 | 搞女人的毛片|