• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on Preparation and Anti-icing Performance of Superhydrophobic Surface on Aluminum Conductor

    2018-05-07 02:04:30HaiyunJinShichaoNieZhiweiLiChengTongKejingWang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Hai-yun JinShi-chao NieZhi-wei LiCheng TongKe-jing Wang

    State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an,710049,China

    I.INTRODUCTION

    Icing is a natural phenomenon occurring on the surfaces of objects in the extreme weather of low temperature and freezing rain.Undesired ice accumulation leads to severe economic issues and,in some cases,loss of lives[1].Icing on the road results in slippery surfaces and often leads to traffic accidents,besides,icing on the wings and surfaces of aircrafts may cause crash accidents[2,3].Ice disaster is also a great threat for power system[4?8],and the frequency of ice disaster has increased in recent years due to abnormal weather.

    The icing problem has attracted much attention,and a series of anti-icing/de-icing methods have been put forward[9?14].But some conventional methods,such as electrothermal method,chemical method and mechanical deicing method were not effective enough.Therefore,surface materials,a potential anti-icing method,become one of the hottest spots[15?26].It is fortunate that heavy ice accretion problems have been mitigated by using polymeric coatings. Guanet al.[18,19]prepared a semiconducting RTV anti-icing coating for insulator by adding conducting particles(carbon fibers or graphite),and the coating showed good anti-icing performance.Inspired by ice skating,a series of aqueous lubricating layers on the original anti-icing coatings ware fabricated,which will reduce the adhesion between ice and solid substrates,and ice formed atop of a solid surface slides away under its gravity or an action of natural wind[24?26].Super-hydrophobic surface(SHS),with a contact angle(CA)lager than 150°and sliding angle(SA)less than 10°[27],is also a potential surface for anti-icing.There are lots of methods to fabricate SHS[28?31].For example,Jinet al.[30]used a hot-pressing template method and Liet al.[31]used a vapor deposition method to fabricate SHS,respectively.Aluminum is the main material of transmission lines,so the fabrication of effective SHS on aluminum is crucial for power system.Bouchamaet al.produced the anodic alumina by two types of anodization process,namely single-step and two-step anodizing[32].Rezayiet al.proposed a simple immersion method accompanied with ultrasound to fabricate desirable roughness on Al through ZnO particle deposition,and subsequently modified the surface with STA[33].Penget al.prepared anti-corrosive and mechanically durable superomniphobic aluminium surfaces by a three-step approach involving acid bath(microstructure formation),boiling water bath(nanostructures)and finally immersion in a fluorosilane containing bath[34,35].However,most of these methods involve limiting conditions,such as low efficiency,expensive devices,and complex control[32?39].Saleemaet al.[40]developed a simple method by immersing the aluminum alloy substrates in a solution containing NaOH and FAS17 molecules,but the coatings only have low surface energy without micro-nanostructure,therefore,it was very difficult to obtain the super-hydrophobic effect.Yinet al.[41]prepared a super-hydrophobic coating with excellent corrosion resistance property and good stability,but the anti-icing behavior of this coating is unknown.

    FIG.1 The sketch map of icing experiment platform.

    In this study,the preferential etching principle of crystal defects was used to fabricate micro-nanoscale aluminum surface and stearic acid was used to construct a low surface energy coating.The SHS was prepared on actual aluminum conductor.The anti-icing mechanism of SHS on aluminum conductor was mainly focused on.A self-made icing experiment platform was developed to study the icing progress,and the self-propelled jumping phenomenon of coalesced water droplets was analyzed.In addition,at different environment temperature,the anti-icing performance of SHS on aluminum conductor was also investigated.The results could provide a theoretical basis for the practical application of the SHS on aluminum conductor for transmission line.

    II.EXPERIMENTS

    A.Icing experiment platform

    The icing experiment platform mainly consists of three parts:the temperature control system,the spray system and the Plexiglas box(as shown in FIG.1).

    The principle of compressor refrigerating was applied for the temperature control system.Firstly,the refrigerate compressor(GVY66AA,Zanussi,Tianjin)inhaled refrigerant from evaporator,and compressed it from low temperature and low pressure to high temperature and high pressure.Then the refrigerant would be lique fied to low temperature and high pressure by condenser.Then after being subjected to the resistance in the capillary it will become low-temperature and lowpressure liquid.Lastly the refrigerant absorbed heat from surrounding medium in the evaporator.Then lowtemperature environment for the icing experiment could be obtained.As for temperature control,temperature sensor was used to collect real-time data about temperature in the icing platform.The start and stop of the refrigerate compressor were controlled by the temperature controller(SF-203,Shang fang,china)according to the temperature data.

    The spray system consisted of the switch timer,the micro water pump(maximum pumping amount is 3 L/min),the sprayer and so on.Pumped from the tank by micro pump,water passed water pipes and spurted out from the sprayer,which could be adjusted to get spray containing drops of very small diameter.Splash method was applied to analyze these drops,to satisfy the requirement of the sleet diameter for glaze-icing.The switch timer was programmed to control the micro pump and to achieve intelligent controlling on the condition of spraying.Because of outstanding heat insulation performance and higher transparency,Plexiglas was used as the main body of the icing platform.In order to satisfy the circumstance temperature at which dynamic icing experiment required,the temperature of the whole icing platform was controlled within range of?40°C to 15°C,and the range of fluctuation was between±0.5°C.

    B.Sample preparation

    Firstly,the aluminum conductor should be pretreated.1000 mesh sandpaper was used to remove the compact oxidation layers on surface,and 10 min ultrasonic cleaning processes were used in water and abso-lute alcohol respectively to remove the filth and oil on surface.Put the pre-treated aluminum conductor into 20 wt% hydrochloride for 1 min to etch.Add stearic acid reagent to the alcohol solution and mix well to form 1 wt%stearic alcohol solution,then put the dried aluminum wire into it for 15 min,and after drying it in 90°C oven,the aluminum sample with SHS could be obtained at last.

    C.Experiment method

    The wettability of SHS on aluminum conductor was measured by contact angle measurement(OCA20,DATAPHYSICS,Germany),and the size of measured droplet was 10μL.The surface microstructure was observed by scanning electron microscope(VE-9800S,KEYENCE,Japan).The icing process for SHS on aluminum conductor in the icing experiment platform was observed by a high-speed camera,the anti-icing performance and the rolling down mechanism of the water droplet were also investigated.

    III.RESULTS AND DISCUSSION

    A.Microstructure

    FIG.2 is the SEM images of the aluminum conductor surface etched by hydrochloride for 1 min.In FIG.2(b)and(c),many micron-sized pits can be seen on the aluminum surface.FIG.2(b)presents pits of different size and different depth.Some isolated “island-like” humps,which are circled in red in FIG.2(b),are also distributed on the aluminum surface.FIG.2(d)is a further enlargement of FIG.2(b).A higher magni fication SEM image of red frame in FIG.2(d)is shown in FIG.2(e).It can be seen that there are micro-nanostructures on surface.This special complex micro-nanostructure etched by hydrochloride can absorb more air and provide the necessary geometric condition for the formation of superhydrophobicity.A higher magnification SEM image of blue circle in FIG.2(d)is shown in FIG.2(f).“Steplike”pits,a fundamental structure in etching process of aluminum,can be observed.The corrosion of aluminum usually originates from pitting corrosion such as dislocations,grain boundaries and mechanical scratches.These crystal defects,due to possessing relatively higher energy,are prone to destroy,and thus when attacked by chemical etchants,they would be dissolved first[42?45].Then the pits appeared on the surface of crystal.The chemical reaction between aluminum and hydrochloric acid will occur as follows(1):

    FIG.2 SEM images of aluminum surface at 500×(a),different size of pits and humps at 1000×(b),micron pit at 2000× (c),magni fication of(b)at 5000× (d),nanoscale pits at 20000× (e),“step like” pit at 30000× (f).

    “Unit pits” preferentially formed in the crystal defects.And with the extension of time,the “unit pit” continuously formed in the crystal,and the “unit step” expanded along the direction of the crystal surface,which worked together to form macroscopic pits.The relative rates of these two processes determine the shape of the etch pits,and further determine the surface microstructure.The greater ratio of the formation rate of the “unit pit” and expansion rate of the “unit step”along the crystal surface,the deeper the pits will be formed.After etched by hydrochloride,a great quantity of hydroxyl exists in surface of aluminum conductor.And this hydroxyl reacted with carboxyl in stearic acid,thus forming a compact,thinner coating with low free energy.

    B.Wettability

    As shown in FIG.3,the wettability of 10μL water droplet on the SHS of aluminum conductor is measured by CA measurement at ambient temperature(18±1)°C. FIG.3(a)shows the contact state of SHS taken by CA measurement and the CA is 159°±0.5°.When the contact form is surface-dropletair,it can be got from the transformation of Cassie-Baxter equation[46]:

    FIG.3 Wettability of 10μL droplets on super-hydrophobic aluminum conductor surface.

    wheref1is the fraction between droplet bottom and coating surface,f2is the fraction between droplet bottom and air in the composite surface,θis the actual CA of droplet on SHS of aluminum,θ1is the intrinsic CA of droplet on coating surface,the sum off1andf2is equal to 1.The static contact angle of aluminum conductor modified only by stearic acid is 109°.Givenθ1andθequal to 109°and 159°,respectively,f2is calculated to be 0.901.The very largef2indicates that the super-hydrophobicity of the obtained surface is mainly achieved by the air trapped in the micro-and nanoscale pits and humps.

    Meanwhile,super-hydrophobic aluminum surface has smaller SA,FIG.3(a)shows the sliding moment of droplet,its SA is 6°.The contact state is simulated in FIG.3(b),the water droplet and the SHS of aluminum is contacted only at some micro-nanoscale humps.Due to the cooperation of micro-nanostructure surface and low free energy coating,the SHS on aluminum conductor has larger CA and smaller SA.

    C.Dynamic anti-icing performance

    FIG.4(a)shows the contact state of cooled water on the SHS of aluminum conductor,at the temperature of?5°.When the experiment time of icing extends to 50 min,there are no icing and water droplets on the surface of conductor except for local adhered water.In addition,adhered water droplets exist as dispersed and isolated small water ball,which indicates that the water droplet can maintain a large CA on its surface at low temperature.The phenomenon above proves that SHS on aluminum conductor still maintains excellent hydrophobic properties in the low temperature and high humidity environment.The sliding progress of water droplets from SHS is recorded by a high-speed camera.FIG.4(b)shows the direct sliding progress of droplets with large volume from both sides of cylindrical conductor under the impact of its gravity and wind.FIG.4(c)shows the coalescence progress of two very close droplets and then the coalesced droplet slipped from the conductor.Therefore the formation of icing is delayed as a result of super-hydrophobicity.

    FIG.4 Static and dynamic process of water droplet on super-hydrophobic aluminum conductor at?5°C.

    The research shows that when the two or more condensed water droplets are close to each other,in order to decrease interface free energy(IFE),they will coalesce and have an opportunity to jump[47?53].The coalesced droplet initially is usually in an unstable state with its IFE greater than the corresponding equilibrium value because of the existence of excess IFE.The excess IFE will turn to kinetic energy if it is large enough to overcome the resistance on three-phase contact line(TPCL)and potential energy change in the progress of deformation of coalesced droplet.Then the droplet jumps and rolls down from conductor as shown in FIG.4(c).FIG.5 is a sketch diagram of the coalescence process of two condensed droplets,and the coalescence process is divided into two stages.In the first stage(FIG.5(a?d)),the center line of droplets close to each other,mutual contact area is bigger and bigger,droplet exists in an unstable state.In the second stage(FIG.5(d?f)),unstable droplet tends to transform itself toward its equilibrium state under the influence of excess IFE.One of the resistances of deformation is the adhesion of TPCL during the base area reduction.The gravity of the drop is another resistance because the drop gravity center will rise up during the transformation process.The unstable droplet will jump if the sum of adhesion energy,gravity potential energy and other energy is less than excess IFE.

    Assuming that the IFE of a single droplet system isEsurf,then:

    WhereγsgandAsgare the interface tension and contact area between solid and gas,respectively,γslandAslare the interface tension and contact area between solid and liquid,respectively,γlgandAlgare the interface tension and contact area between liquid and gas,respectively.

    The IFE of two separated water droplets is:

    The IFE of the condensed water droplets is:

    whereandare the contact area after coalescence.The excess IFE is:

    From FIG.5(d,e),the change of the potential energy of the system is:

    whereρis the density of water droplets,vis the volume of droplets,gis the gravity acceleration,Δhis the height variation of gravity center.The energy loss of overcoming adhesion is[50,51]:

    wherefis the contact fraction between solid and liquid.If we regard water droplet(FIG.5(d))as a spherical segment,then the contact area between spherical segment and super-hydrophobic conductor is:

    whereRis the radius of spherical segment.The volume of spherical segment is:

    Bring(9)to(8):

    Bring(10)to(7):

    FIG.5 Sketch diagram of the merging process of water droplets on super-hydrophobic aluminum surface.

    There is some other energy loss(Eloss)in the progress of droplet deformation.According to the law of conservation of energy,if ΔE>Eg+W+Eloss,water droplets may obtain kinetic energy and jump,otherwise the droplet gets equilibrium state.The super-hydrophobic aluminum conductor,with micro-nano structure and low free energy,has small radius and large inclination angle on both sides.The self-propelled jumping of coalesced droplets and the gravity of coalesced droplets make it easy to roll down from the both sides of conductor,which contributes to delay the formation of icing.

    In order to observe the dynamic icing progress directly and test the anti-icing performance of SHS,common aluminum conductor with the diameter of 3.3 mm is pre-treated.One half is fabricated with SHS and the other half is only polished.Put this special aluminum conductor into the icing experiment platform and observe the icing progress with a high-speed camera.FIG.6 is a comparison of the icing process of the common polished aluminum conductor and the aluminum conductor with SHS at the same ice time when the temperature is?5°C and the relative humidity is 85%.It can be seen from the figure that the polished aluminum is quickly covered with water film.When the icing test time extends to 5 min,ice appears on the surface of polished aluminum conductor,since then the amount of ice has increased rapidly over time.But for aluminum conductor with SHS,there is no ice but some isolated small water balls on the surface.These small water balls are not immediately frozen into ice and then rolls down from the surface.When the icing test time extends to 60 min,the surface of the polished aluminum conductor is covered with ice layer,and the length of the ice cone also increases rapidly,while the aluminum conductor with SHS is still not covered with ice.When the icing test time extends to 110 min,there is only a little ice on the SHS,which indicates that the SHS delays the formation of icing.When the icing test time extends to 180 min,polished conductor is covered with a thick layer of ice and a large number of long ice cones.There is only partial ice on the SHS and the ice length is also limited,most of the areas are not covered by ice.The results show that aluminum with SHS had an obvious effect on resisting the formation of ice.

    FIG.6 The icing process of aluminum conductor surface(the left part is the polished surface and the right part is the SHS).

    FIG.7 shows the statistics of average ice cone length of the polished aluminum conductor and aluminum conductor with SHS,indicating the anti-icing capacity of surfaces at various temperatures and icing time.At the environment temperature of?5°C,for polished aluminum conductor,the average ice cone length are 4,35.2,42.2,and 60.3 mm when the icing time are 5,110,120,and 150 min respectively.For aluminum conductor with SHS,110 min is a critical point.Before this point,there is no ice on the conductor’s surface.After this point,there is one ice cone,and the lengths of the cone are 5.8 and 10 mm at 110 and 120 min,respectively.And at 150 min,there are two ice cones and the average length of cones was 18.1 mm(the length of other small one is only 3 mm).The number and the average length of the ice cone on aluminum conductor with SHS are signi ficantly less than the polished aluminum conductor.The analysis shows that the cooperation of micro-nanostructure surface and low free energy coating on SHS increase the contact area between water droplet and air film,resulting in the low adhesion and easy slipping characteristics of water droplet.Simultaneously,the special self-propelled jumping phenomenon of coalesced droplet also delay the formation of icing.So the super-hydrophobic surface shows excellent anti-icing performance.At the environment temperature of?25°C and the relative humidity of 85%,the number of ice cone and the average length of the ice cone of aluminum conductor with SHS are still less than the polished aluminum conductor.However,the growth trend of ice cones for SHS at the temperature of?25°C is similar to the polished aluminum at the temperature of?5°C.At very low temperature,the energy exchange rate of water droplets and air is accelerated,which reduces the ability of SHS against the formation of ice and the ice forms rapidly.On the other hand,the excess IFE of the coalesced droplets is not large enough at such extremely low temperature,the water droplets are difficult to roll down before icing.According to the information implied in FIG.7,each curve has almost the same growth trend.It means that the SHS on materials can restrain the formation of ice coating at a certain temperature,and the effect of inhibition is closely related to temperature.However,the super-hydrophobicity cannot exert influence on the accumulation of icing because the icing coatings break the super-hydrophobicity of the material.

    FIG.7 Comparison of the length of ice cones between superhydrophobic and common aluminum conductor at different temperature and time.

    IV.CONCLUSION

    According to the preferential etching theory of crystal defects,an SHS on aluminum conductor,which had a CA of 159°and a SA of 6°,was fabricated.The free rolling processes of one water droplet and two coalesced droplet were recorded by a high-speed camera.When the excess IFE is bigger than the energy change(gravity potential energy,adhesion energy and other energy loss)in the process of water deformation,self-propelled jumping phenomenon of coalesced droplet will happen on the SHS of aluminum conductor and the formation of icing at the environment temperature of?5°C was delayed by this phenomenon.Dynamic icing experiment showed that the super-hydrophobic surface possesses excellent anti-icing performance at low temperature.The number of ice cone and the average length of the ice cone of aluminum conductor with SHS were less than the polished aluminum conductor at the temperature of?5°C.The growth trend of ice cones for two kinds of aluminum conductor at different temperature was similar at different temperature.The formation of ice coating could be restrained on aluminum conductor with SHS at a certain temperature,and the inhibitory effect was closely related to the temperature.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.51272208).

    [1]J.Y.Lv,Y.L.Song,L.Jiang,and J.J.Wang,ACS Nano8,3152(2014).

    [2]A.K.Andersson and L.Chapman,Acc.Anal.Prev.43,284(2011).

    [3]J.Marwitz,M.Politovich,B.Bernstein,F.Ralph,P.Neiman,R.Ashenden,and J.Bresch,Bull.Am.Meteor.Soc.78,41(1997).

    [4]S.A.Kulinich and M.Farzaneh,Appl.Surf.Sci.255,8153(2009).

    [5]R.Karmouch and G.G.Ross,Appl.Surf.Sci.257,665(2010).

    [6]Z.L.Jiang,J.Z.Lu,H.C.Lei,and F.Y.Huang,High Voltage Eng.34,2468(2008).

    [7]K.Kannus and K.Lahti,IEEE Trans.Dielectr.Electr.Insul.14,1357(2007).

    [8]J.Z.Lu,M.Zeng,X.J.Zeng,Z.Fang,and J.Yuan,IEEE T.Ind.Appl.51,3(2015)

    [9]M.Farzaneh,Atmospheric Icing of Power Networks,New York:Springer-Verlag,229(2008).

    [10]C.Horwill,C.C.Davidson,M.Granger,and A.Déry,IEEE PES Transmission and Distribution Conference and Exhibition,Dallas,TX,USA:IEEE,529(2006).

    [11]J.L.Laforte,M.A.Allaire,and J.La flamme,Atmos.Res.46,143(1998).

    [12]O.Parent and A.Ilinca,Cold Reg.Sci.Technol.65,88(2011).

    [13]A.Muthumani,L.Fay,M.Akin,S.W.Wang,J.Gong,and X.M.Shi,Cold Reg.Sci.Technol.97,21(2014).

    [14]H.Li,Q.Q.Zhang,and H.G.Xiao,Cold Reg.Sci.Technol.103,123(2014).

    [15]S.A.Kulinich,S.Farhadi,K.Nose,and X.W.Du,Langmuir27,25(2011).

    [16]X.L.Jiang,J.Ma,Z.J.Zhang,and J.L.Hu,IEEE Trans.Dielectr.Electr.Insul.17,351(2010).

    [17]S.A.Seyedmehdi,H.Zhang,and J.Zhu,Appl.Surf.Sci.258,2972(2012).

    [18]W.Y.Liao,Z.D.Jia,Z.C.Guan,L.M.Wang,J.Yang,J.B.Fan,Z.Y.Su,and J.Zhou,IEEE Trans.Dielectr.Electr.Insul.14,1446(2007).

    [19]Z.H.Xu,Z.D.Jia,Z.N.Li,X.X.Wei,Z.C.Guan,M.Macalpine,Y.M.Zhao,and Y.Li,IEEE Trans.Dielectr.Electr.Insul.18,760(2011).

    [20]F.Arianpour,M.Farzaneh,and S.A.Kulinich,Appl.Surf.Sci.265,546(2013).

    [21]J.L.Hu,K.Xu,Y.Wu,B.H.Lan,X.L.Jiang,and L.C.Shu,Appl.Surf.Sci.317,534(2014).

    [22]Y.Li,Y.Wei,Q.Wang,G.L.Wu,J.Fu,J.Li,Z.Y.Huang,and Y.L.Yan,IEEE Conference on Electrical Insulation and Dielectric Phenomena,Shenzhen,China:IEEE,438(2013).

    [23]J.Li,Y.S.Zhao,J.L.Hu,L.C.Shu,and X.M.Shi,J.Adh.Sci.Technol.26,665(2012).

    [24]J.Chen,R.M.Dou,D.P.Cui,Q.L.Zhang,Y.F.Zhang,F.J.Xu,X.Zhou,J.J.Wang,Y.L.Song,and L.Jiang,ACS Appl.Mater.Interfaces5,4026(2013).

    [25]J.Chen,Z.Q.Luo,Q.R.Fan,J.Y.Lv,and J.J.Wang,Small10,4693(2014).

    [26]Y.L.Wang,X.Yao,S.W.Wu,W.Y.Li,J.Y.Lv,J.J.Wang,and L.Jiang,Adv.Mater.29,1700865(2017).

    [27]M.Li,J.Zhai,H.Liu,Y.L.Song,L.Jiang,and D.B.Zhu,J.Phys.Chem.B107,9954(2003).

    [28]J.Li,Z.Y.Huang,F.P.Wang,X.Z.Yan,and Y.Wei,Appl.Phys.Lett.107,051603(2015).

    [29]N.J.Shirtcliffe,G.McHale,M.I.Newton,and C.C.Perry,Langmuir19,5626(2003).

    [30]H.Y.Jin,P.Jin,R.D.Niu,Y.F.Li,B,He,N.K.Gao,and H.Zhang,IEEE Trans.Dielectr.Electr.Insul.21,1718(2014).

    [31]S.H.Li,H.J.Li,X.B.Wang,Y.L.Song,Y.Q.Liu,L.Jiang,and D.B.Zhu,J.Phys.Chem.B106,9274(2002).

    [32]L.Bouchama,N.Azzouz,N.Boukmouche,J.P.Chopart,A.L.Daltin,and Y.Bouznit,Surf.Coat.Technol.235,676(2013).

    [33]T.Rezayi and M.H.Entezari,J.Colloid Interface Sci.463,37(2016).

    [34]A.Milionis,I.S.Bayer,and E.Loth,Int.Mater.Rev.61,101(2016).

    [35]P.Shan,X.J.Yang,T.Dong,and W.L.Deng,ACS Appl.Mater.Interfaces6,15188(2014).

    [36]S.Barthwal,Y.S.Kim,and S.H.Lim,Langmuir29,11966(2013).

    [37]J.F.Ou,W.H.Hu,M.S.Xue,F.J.Wang,and W.Li,ACS Appl.Mater.Interfaces5,3101(2013).

    [38]J.L.Song,W.J.Xu,X.Liu,Y.Lu,Z.F.Wei,and L.B.Wu,Chem.Eng.J.211/212,143(2012).

    [39]M.S.Tong,D.Sturgess,K.N.Tu,and J.M.Yang,Appl.Phys.Lett.92,144101(2008).

    [40]N.Saleema,D.K.Sarkar,R.W.Paynter,and X.G.Chen,Appl.Mater.Interfaces2,2500(2010).

    [41]B.Yin,L.Fang,A.Q.Tang,Q.L.Huang,J.Hu,J.H.Mao,G.Bai,and H.Bai,Appl.Surf.Sci.258,580(2011).

    [42]T.M.Nabi,H.Sambé,and D.E.Ramaker,J.Electroanal.Chem.501,33(2001).

    [43]B.T.Qian and Z.Q.Shen,Langmuir21,9007(2005).

    [44]J.J.Gilman,W.G.Johnston,and G.W.Sears,J.Appl.Phys.29,747(1958).

    [45]M.B.Ives and J.P.Hirth,J.Chem.Phys.33,517(1960).

    [46]A.B.D.Cassie and S.Baxter,Trans.Faraday Soc.40,546(1944).

    [47]T.Q.Liu,W.Sun,X.Y.Sun,and H.R.Ai,Colloids Surf.A Physicochem.Eng.Aspects414,366(2012).

    [48]T.M.Schutzius,S.Jung,T.Maitra,G.Graeber,M.K?hme,and D.Poulikakos,Nature527,82(2015).

    [49]J.B.Boreyko and C.H.Chen,Phys.Rev.Lett.103,184501(2009).

    [50]Y.H.Xiu,L.B.Zhu,D.W.Hess,and C.P.Wong,J.Phys.Chem.C112,11403(2008).

    [51]F.Wang,C.H.Liang,and X.S.Zhang,J.Southeast Univ.(Nat.Sci.Ed.)46,757(2016).

    [52]Q.L.Zhang,M.He,J.Chen,J.J.Wang,Y.L.Song,and L.Jiang,Chem.Commun.49,4516(2013).

    [53]J.Liu,H.Y.Guo,B.Zhang,S.S.Qiao,M.Z.Shao,X.R.Zhang,X.Q.Feng,Q.Y.Li,Y.L.Song,L.Jiang,and J.J.Wang,Angew.Chem.Int.Ed.Engl.55,4265(2016).

    久久九九热精品免费| 国产极品粉嫩免费观看在线| 视频区欧美日本亚洲| 女人久久www免费人成看片| 亚洲精品美女久久久久99蜜臀| 91精品三级在线观看| 黄片小视频在线播放| 亚洲中文av在线| 日韩熟女老妇一区二区性免费视频| 视频区欧美日本亚洲| 精品免费久久久久久久清纯 | 黄片大片在线免费观看| 视频在线观看一区二区三区| 69精品国产乱码久久久| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 日韩一卡2卡3卡4卡2021年| 女警被强在线播放| 国产单亲对白刺激| 久久影院123| av一本久久久久| 高潮久久久久久久久久久不卡| 亚洲午夜理论影院| 9191精品国产免费久久| 亚洲午夜精品一区,二区,三区| 精品一区二区三区视频在线观看免费 | 12—13女人毛片做爰片一| 久久精品国产a三级三级三级| 免费黄频网站在线观看国产| 另类亚洲欧美激情| 亚洲成人国产一区在线观看| 国产欧美亚洲国产| 一个人免费在线观看的高清视频| 人成视频在线观看免费观看| 一级,二级,三级黄色视频| 免费观看a级毛片全部| 欧美黄色淫秽网站| 国产片内射在线| 亚洲色图综合在线观看| 搡老熟女国产l中国老女人| 国产精品久久久久成人av| 99国产精品一区二区三区| 啦啦啦视频在线资源免费观看| 成人永久免费在线观看视频| 在线观看免费视频日本深夜| 国产精品综合久久久久久久免费 | 精品国产乱码久久久久久男人| 亚洲aⅴ乱码一区二区在线播放 | 大香蕉久久网| 久久精品国产亚洲av高清一级| 69精品国产乱码久久久| 大码成人一级视频| 欧美最黄视频在线播放免费 | 国产成人免费无遮挡视频| 美国免费a级毛片| 成年版毛片免费区| 国产亚洲精品久久久久久毛片 | 国产精品久久视频播放| 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 国产成人啪精品午夜网站| 欧美久久黑人一区二区| 国产精品一区二区免费欧美| 91在线观看av| 国产亚洲av高清不卡| 亚洲中文av在线| 国产成人系列免费观看| 国产不卡av网站在线观看| 国产精品九九99| 极品教师在线免费播放| 国产精品 国内视频| 欧美成狂野欧美在线观看| 国产精品秋霞免费鲁丝片| 色婷婷av一区二区三区视频| 免费久久久久久久精品成人欧美视频| 人妻丰满熟妇av一区二区三区 | 午夜免费成人在线视频| 国产成人系列免费观看| 国产欧美日韩一区二区三| 亚洲精品美女久久久久99蜜臀| 久久久水蜜桃国产精品网| 大型av网站在线播放| 欧美乱妇无乱码| 中文字幕色久视频| 久久人妻av系列| 欧美日韩国产mv在线观看视频| 亚洲国产精品合色在线| 亚洲国产欧美日韩在线播放| av天堂在线播放| 久热这里只有精品99| 99re6热这里在线精品视频| 久久中文字幕一级| 在线观看免费日韩欧美大片| 极品人妻少妇av视频| 色综合欧美亚洲国产小说| 人人澡人人妻人| 美国免费a级毛片| 亚洲中文字幕日韩| 老熟女久久久| 欧美精品高潮呻吟av久久| 午夜福利,免费看| 国产av精品麻豆| 国产黄色免费在线视频| 无人区码免费观看不卡| 高清av免费在线| 制服人妻中文乱码| 国产成人欧美在线观看 | 亚洲成人国产一区在线观看| 亚洲性夜色夜夜综合| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 久久精品国产99精品国产亚洲性色 | 亚洲欧美日韩高清在线视频| 丁香六月欧美| 亚洲色图av天堂| 亚洲少妇的诱惑av| 欧美黄色片欧美黄色片| 高清黄色对白视频在线免费看| 成人黄色视频免费在线看| av网站在线播放免费| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女 | 国产单亲对白刺激| 9色porny在线观看| 午夜福利影视在线免费观看| 一进一出抽搐gif免费好疼 | 久久国产乱子伦精品免费另类| 久久久精品免费免费高清| 亚洲久久久国产精品| 亚洲av欧美aⅴ国产| aaaaa片日本免费| 国产片内射在线| 好看av亚洲va欧美ⅴa在| 婷婷成人精品国产| 亚洲国产看品久久| 五月开心婷婷网| 久久久久国内视频| 国产精品亚洲av一区麻豆| 久久久久久久久免费视频了| 国产精品免费视频内射| 国产精品影院久久| 亚洲av成人不卡在线观看播放网| 国产xxxxx性猛交| 啦啦啦 在线观看视频| 中亚洲国语对白在线视频| 久久久精品国产亚洲av高清涩受| 免费av中文字幕在线| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区视频了| 免费在线观看完整版高清| 99国产精品一区二区蜜桃av | 嫩草影视91久久| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影| 国产黄色免费在线视频| 女人精品久久久久毛片| 人人妻人人添人人爽欧美一区卜| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 五月开心婷婷网| 久久精品亚洲av国产电影网| 亚洲综合色网址| 成人精品一区二区免费| 亚洲欧美日韩另类电影网站| 日韩欧美国产一区二区入口| 他把我摸到了高潮在线观看| 叶爱在线成人免费视频播放| 一区二区三区精品91| 在线av久久热| 国产成人精品久久二区二区免费| 超碰97精品在线观看| 精品人妻在线不人妻| 亚洲一区中文字幕在线| 天天躁夜夜躁狠狠躁躁| 久久精品国产a三级三级三级| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡免费网站照片 | 午夜久久久在线观看| netflix在线观看网站| 一进一出抽搐gif免费好疼 | 久久国产精品大桥未久av| 日韩有码中文字幕| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 精品人妻熟女毛片av久久网站| 国产av又大| 淫妇啪啪啪对白视频| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出 | 一区在线观看完整版| 欧美乱码精品一区二区三区| 在线观看免费视频网站a站| 国产av又大| 国产精品久久久久成人av| 黄片小视频在线播放| 99久久精品国产亚洲精品| 亚洲五月色婷婷综合| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 精品一区二区三卡| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 精品久久久久久久毛片微露脸| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 国产精品1区2区在线观看. | 少妇猛男粗大的猛烈进出视频| 精品视频人人做人人爽| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女 | 亚洲久久久国产精品| 久久精品国产99精品国产亚洲性色 | 这个男人来自地球电影免费观看| 亚洲国产欧美网| 国产蜜桃级精品一区二区三区 | 日韩精品免费视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 亚洲色图综合在线观看| 宅男免费午夜| 亚洲精品国产一区二区精华液| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 91在线观看av| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| 一级黄色大片毛片| 最近最新中文字幕大全免费视频| 精品国产国语对白av| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 大型黄色视频在线免费观看| 中文欧美无线码| 欧美精品啪啪一区二区三区| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 99热只有精品国产| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| 在线视频色国产色| 久久中文字幕人妻熟女| 免费在线观看亚洲国产| 日韩免费高清中文字幕av| 美女午夜性视频免费| 亚洲黑人精品在线| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| 在线天堂中文资源库| 久久这里只有精品19| 好看av亚洲va欧美ⅴa在| 精品国产一区二区三区四区第35| 免费观看人在逋| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 捣出白浆h1v1| 久99久视频精品免费| 又黄又粗又硬又大视频| 成年动漫av网址| 又大又爽又粗| 精品国内亚洲2022精品成人 | 性色av乱码一区二区三区2| 亚洲综合色网址| 在线观看免费视频日本深夜| 亚洲av熟女| 高潮久久久久久久久久久不卡| 国产在线观看jvid| 国产麻豆69| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 成人精品一区二区免费| 久久香蕉国产精品| 久久青草综合色| 热99久久久久精品小说推荐| 免费久久久久久久精品成人欧美视频| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 亚洲精品中文字幕在线视频| 成人手机av| 国产精品98久久久久久宅男小说| 人成视频在线观看免费观看| 国产免费男女视频| 精品国产乱码久久久久久男人| 我的亚洲天堂| 天天躁狠狠躁夜夜躁狠狠躁| 日韩视频一区二区在线观看| 午夜成年电影在线免费观看| 麻豆成人av在线观看| 日韩成人在线观看一区二区三区| 中文字幕人妻丝袜制服| av天堂久久9| 悠悠久久av| 美女高潮到喷水免费观看| 国产区一区二久久| 少妇 在线观看| 18禁观看日本| 午夜福利乱码中文字幕| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女 | 少妇 在线观看| 国产精品一区二区在线观看99| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 国产成人啪精品午夜网站| 免费久久久久久久精品成人欧美视频| 757午夜福利合集在线观看| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 精品福利观看| 两个人免费观看高清视频| 亚洲人成电影免费在线| 国产精品乱码一区二三区的特点 | 视频在线观看一区二区三区| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 黄频高清免费视频| 精品少妇久久久久久888优播| 成年动漫av网址| 国产精品偷伦视频观看了| 久久精品亚洲熟妇少妇任你| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 亚洲精品乱久久久久久| 美国免费a级毛片| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 黄色丝袜av网址大全| 午夜精品国产一区二区电影| 极品教师在线免费播放| 午夜久久久在线观看| 国产男靠女视频免费网站| 久久精品成人免费网站| 在线观看免费高清a一片| 啦啦啦免费观看视频1| 91国产中文字幕| 好看av亚洲va欧美ⅴa在| 久久精品熟女亚洲av麻豆精品| 香蕉国产在线看| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| 色在线成人网| 后天国语完整版免费观看| 麻豆成人av在线观看| 午夜福利在线观看吧| 水蜜桃什么品种好| 18在线观看网站| av免费在线观看网站| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 久久久久久久精品吃奶| 亚洲欧美精品综合一区二区三区| 免费看十八禁软件| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 妹子高潮喷水视频| 波多野结衣一区麻豆| 999久久久精品免费观看国产| 免费看十八禁软件| 热99国产精品久久久久久7| 亚洲精品粉嫩美女一区| 欧美国产精品一级二级三级| 女人高潮潮喷娇喘18禁视频| 18在线观看网站| av电影中文网址| 久久国产乱子伦精品免费另类| 亚洲精品中文字幕一二三四区| 久久人人爽av亚洲精品天堂| 极品少妇高潮喷水抽搐| 国产色视频综合| 757午夜福利合集在线观看| 啦啦啦 在线观看视频| 国产精品永久免费网站| 中文字幕制服av| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 亚洲片人在线观看| 国产国语露脸激情在线看| a级毛片黄视频| 91成年电影在线观看| 免费av中文字幕在线| 午夜影院日韩av| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 欧美最黄视频在线播放免费 | 欧美成人午夜精品| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 啦啦啦视频在线资源免费观看| avwww免费| 精品人妻在线不人妻| 高清av免费在线| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 亚洲少妇的诱惑av| 一区在线观看完整版| 日韩中文字幕欧美一区二区| 欧美精品人与动牲交sv欧美| 国产在视频线精品| 国产欧美亚洲国产| 国产在线精品亚洲第一网站| 久久精品国产亚洲av香蕉五月 | 精品电影一区二区在线| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| 欧美激情高清一区二区三区| 国产激情欧美一区二区| 人妻一区二区av| 国产人伦9x9x在线观看| 欧美在线黄色| 久久久国产成人精品二区 | 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 美女视频免费永久观看网站| 国产精品偷伦视频观看了| 一二三四在线观看免费中文在| 日韩欧美免费精品| xxxhd国产人妻xxx| 一区二区日韩欧美中文字幕| 亚洲免费av在线视频| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 精品国产亚洲在线| 高清视频免费观看一区二区| 黄片大片在线免费观看| 久久久久精品国产欧美久久久| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 丝瓜视频免费看黄片| 一区在线观看完整版| 国产99白浆流出| 国产精品偷伦视频观看了| 欧美成人午夜精品| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 成人免费观看视频高清| 国产99久久九九免费精品| 99精品欧美一区二区三区四区| 国产高清国产精品国产三级| 一进一出好大好爽视频| 国产精品免费大片| 午夜福利乱码中文字幕| 夫妻午夜视频| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| videos熟女内射| 国产精品亚洲av一区麻豆| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 午夜免费成人在线视频| 性少妇av在线| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 国产精品1区2区在线观看. | 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 久久国产精品影院| 午夜福利在线观看吧| 97人妻天天添夜夜摸| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲| 热99国产精品久久久久久7| 国产欧美亚洲国产| 脱女人内裤的视频| 十八禁网站免费在线| 我的亚洲天堂| www.999成人在线观看| 久久国产精品人妻蜜桃| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av | 亚洲九九香蕉| 王馨瑶露胸无遮挡在线观看| 视频区欧美日本亚洲| 看片在线看免费视频| 亚洲中文av在线| 免费一级毛片在线播放高清视频 | 一级黄色大片毛片| 亚洲五月天丁香| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 欧美在线一区亚洲| 九色亚洲精品在线播放| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 最新的欧美精品一区二区| 日本黄色视频三级网站网址 | 国产成人欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟妇仑乱视频hdxx| 视频区图区小说| 女人高潮潮喷娇喘18禁视频| 久久久国产成人精品二区 | 精品乱码久久久久久99久播| 久久人人爽av亚洲精品天堂| av有码第一页| 亚洲欧美一区二区三区久久| 国产伦人伦偷精品视频| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| 9热在线视频观看99| 夜夜爽天天搞| 国产乱人伦免费视频| 中国美女看黄片| 变态另类成人亚洲欧美熟女 | 久久久国产欧美日韩av| 国产单亲对白刺激| 一级a爱片免费观看的视频| e午夜精品久久久久久久| 亚洲成人免费av在线播放| 狂野欧美激情性xxxx| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 国产精品永久免费网站| 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 老汉色av国产亚洲站长工具| 丁香六月欧美| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 香蕉丝袜av| 老司机亚洲免费影院| 天天操日日干夜夜撸| 在线十欧美十亚洲十日本专区| 国产亚洲欧美在线一区二区| 91在线观看av| 亚洲av第一区精品v没综合| 岛国在线观看网站| 1024视频免费在线观看| 欧美日韩黄片免| 无人区码免费观看不卡| 精品亚洲成a人片在线观看| 91麻豆av在线| 日韩欧美一区二区三区在线观看 | 999精品在线视频| 午夜老司机福利片| 精品亚洲成a人片在线观看| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 韩国av一区二区三区四区| 久久精品亚洲av国产电影网| 天天影视国产精品| 日日摸夜夜添夜夜添小说| 中亚洲国语对白在线视频| 十八禁高潮呻吟视频| 久久国产精品人妻蜜桃| 18禁美女被吸乳视频| 久久久久久人人人人人| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品大桥未久av| 国产亚洲一区二区精品| 成年女人毛片免费观看观看9 | 最新美女视频免费是黄的| 中文字幕人妻丝袜制服| 少妇粗大呻吟视频| 国内久久婷婷六月综合欲色啪| 99精国产麻豆久久婷婷| 国产一区二区三区视频了| 熟女少妇亚洲综合色aaa.| 露出奶头的视频| 久久久精品区二区三区| 国产亚洲欧美精品永久| 国产成人精品在线电影| 丰满饥渴人妻一区二区三| 亚洲综合色网址| 色94色欧美一区二区| 少妇 在线观看| 国产亚洲欧美98| 久久亚洲精品不卡| 精品久久久精品久久久| 一区在线观看完整版| 久久久精品免费免费高清| 香蕉久久夜色| 一级作爱视频免费观看| 热99久久久久精品小说推荐| 国产免费男女视频| 日本一区二区免费在线视频| 丰满的人妻完整版| 精品久久久精品久久久| 69精品国产乱码久久久| 热99久久久久精品小说推荐| 欧美 亚洲 国产 日韩一| 一进一出抽搐动态| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看人在逋| 悠悠久久av| 国产人伦9x9x在线观看| 狠狠婷婷综合久久久久久88av| 精品电影一区二区在线| 国产日韩一区二区三区精品不卡| 香蕉丝袜av|