• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps

    2018-05-07 02:04:28HaixiaoZhangYuetaoYangXiaojunLiu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Hai-xiao ZhangYue-tao YangXiao-jun Liu

    Key Laboratory of Modern Acoustics,Ministry of Education,Institute of Acoustics,Nanjing University,Nanjing 210093,China

    I.INTRODUCTION

    Since the beginning of the twentieth century,the band gap engineering of semiconductor nanomaterials has given rise to intriguing science[1?6].Generally,tuning the size of nanomaterials is one way of adjusting the band gap energy[2].Another means of tailoring the semiconductor band gap is by changing the constituent stoichiometries of nanomaterials[3?6].Zinc oxide nanomaterials are of great importance because of their excellent electronic,optical and luminescent properties[7,8].However,the construction of zinc oxide nanomaterials with composition-dependent band gap in the quantum confinement region remains a challenge for scientists.

    Cadmium-zinc oxide alloys have attracted increasing attention for using as light emitting sources,transparent solar cells,biomedical imaging materials,and water splitting reagents[9?12].The wurtzite phase of zinc oxide,however,is not compatible with the rock-salt phase of cadmium oxide[13].There have been a few reports on the synthesis of cadmium-doped zinc oxide nanomaterials via the sol-gel method,but the maximum concentration of cadmium is usually below 10 mol%[14,15].It thus suggests that preparation cadmiumdoped zinc oxide nanomaterials with a broad composition range should rely on the non-thermal equilibrium growth condition[16].

    The sonochemical method has become a powerful tool to prepare many kinds of nanomaterials[17].The extreme but transient local conditions caused by acoustic cavitation can establish a highly non-thermal equilibrium environment[17?19].Phuruangratet al.reported sonochemical synthesis of cadmium-doped zinc oxide nanocrystals with an average crystallite size of 45 nm[20],however,no quantum con finement effect can be found for these nanocrystals because of the large crystallite size.Recently,lanthanide and cadmium ions doped zinc oxide nanocrystals have been synthesized via the sonochemical method in our laboratory[21?23].It was found that cadmium content up to 40%can be achieved,but the crystallite sizes of the samples are too large to show the quantum con finement effect[23].To the best of our knowledge,cadmium-doped zinc oxide nanocrystals in the quantum con finement region have not been reported to date.Cadmium-alloyed zinc oxide nanocrystals possess additional properties that are composition-dependent aside from the properties that emerge due to quantum confinement effects.The study of these materials is not only of fundamental interest,because these materials are also important and useful to construct appropriate ZnO-related heterostructures or quantum well structures,which are the key elements in ZnO-based light emitters and detectors[24,25].In this work,cadmium-doped zinc oxide nanocrystals in the quantum confinement region have been synthesized via a sonochemical method for the first time.For the samples with cadmium to zinc molar ratio from 0 to 2.0,the homogenous structure is con firmed by the X-ray diffraction,transmission electron microscopy and infrared analysis.These nanocrystals exhibit size and composition-dependent band gaps.Moreover,a plausible formation mechanism has been proposed for the current sonochemical preparation.

    II.EXPERIMENTS

    A.Synthesis of cadmium-doped zinc oxide nanocrystals

    Zinc acetate dihydrate(0.002 mol)and lithium hydroxide monohydrate(0.003 mol)were dissolved by 40 mL triethylene glycol in a 100-mL glass vial.Cadmium acetate dihydrate was then added to the above solution according to the molar ratio of Cd to Zn(denoted asA).The value ofAwas 0,0.15,0.30,0.60,1.0 or 2.0,respectively.Each solution was sonicated continuously at room temperature in ambient air for 2 min,and the final temperature of the solution was(96±10)°C.The sonication was operated with a VCX-750 ultrasonic generator at an electronic power of 500 W and an ultrasonic frequency of 20 kHz.The solution was cooled in an icewater bath.Ethyl acetate was added to the above solution to precipitate the nanocrystals,and the precipitate was redispersed in absolute ethanol.The precipitationredispersion treatment was repeated for several times to purify the products thoroughly.The obtained colloids were used for further characterizations.Parallel experiments were performed with the same procedure described above,except for changes in solvents and the ultrasound treatment.

    B.Materials and physical techniques

    All reagents and solvents for the syntheses and analyses were of analytical reagent grade(Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China).Transmission electron microscopy(TEM)images were recorded on a Jeol JEM-200CX microscopy.Absorption spectra of the colloidal nanocrystals in ethanol were measured at room temperature on a Shimadzu UV240 spectrophotometer.The ethanol solutions of the samples were then vaporized and dried at 100°C.The obtained powders were used for X-ray diffraction(XRD)and infrared analysis.XRD experiments were performed on a Thermo Electron Corporation ARLX’TRA-48 X-ray diffractometer using Cu Kαradiation.Infrared(IR)spectra were measured on a Nicolet Nexus 870 infrared spectrometer.The actual cadmium to zinc molar ratios of the samples were determined on a Shimadzu ICPS-7500 inductively coupled plasma mass spectrometer.

    III.RESULTS AND DISCUSSION

    A.Structural study of cadmium-doped zinc oxide nanocrystals

    TEM imagines of Cd-ZnO nanocrystals are shown in FIG.1.It is found that the samples are uniform spherical nanocrystals with narrow size distributions.High resolution TEM images show that the samples have a wurtzite structure.The crystallite sizes of the samples are inversely proportional to Cd2+content,ranging from 5 nm to 2.5 nm approximately.

    XRD spectra of the samples are shown in FIG.2.It can be found that all the samples have a wurtzite structure.The XRD patterns in FIG.1 correspond to(100),(002),(101),(102),(110),(103),and(112)re flections of a wurtzite structure(JCPDS Card 36-1451).The results demonstrate there is no phase separation or separated nucleation of CdO or ZnO nanocrystals.The alloyed structure is supported by the XRD spectra of the nanocrystals,in which the diffraction peaks systematically shift to small angles with the increase of Cd2+content.Although the lattice volumes of nanocrystals may change with reducing the crystallite size because of surface stresses,oxygen vacancies or broken coordination,the lattice spacing has been found to be stationary for pure ZnO colloids with diameters ranging from 2 nm to 5 nm[26].The shifts of XRD peaks with the increase of Cd2+content are dominantly due to the size difference between Cd2+(0.97 ?A)and Zn2+(0.74 ?A)ions[27].

    In the insert of FIG.2,the lattice parametercmeasured from XRD patterns of the nanocrystals exhibits a linear relationship with the molar fraction of Cd2+.The variation of lattice parametercfrom 5.21?A to 5.44?A is in accordance with Vegard’s law,and is consistent with the result of Cd-ZnO alloys[13,28].This further con firms the formation of homogeneous nanocrystals.Swaffordet al.characterized the uniformity of particles with the periodic removal of aliquots of the growing nanocrystals,and analyzed the aliquots to determine composition[29].The method is not suitable here because of the very fast synthesis processes.Crystallite sizes of the samples have been determined using Scherrer’s equation,i.e.,D=0.9λ/Bcosθ,whereDis the average crystallite size,λis the wavelength of 0.15418 nm from Cu Kαradiation,Bis the full-width at half-maximum of the diffraction peak andθis the Bragg angle[30].The crystallite sizes are 5.1,4.1,3.8,3.2,2.7,and 2.6 nm,respectively,for the samples withA=0,0.15,0.30,0.60,1.0,and 2.0.The diffraction peaks of the samples are broad and weak because of the small crystallite sizes and the decrease of crystallinity.Actual Cd/Zn molar ratios for the samples have been measured by inductively coupled plasma mass spectrometer.For the samples withA=0,0.15,0.30,0.60,1.0,and 2.0,the measured values are 0,0.15,0.29,0.58,0.97,and 1.9,respectively.

    IR spectra of the samples are shown in FIG.3.One broad IR absorption band appears around 464 cm?1for pure ZnO sample,which is consistent with the calculated and experimental results for spherical ZnO particles[31,32].The maximum of Zn?O IR band shows a systematical red shift from 464 cm?1atA=0 to 449 cm?1atA=2 in FIG.3(b).It indicates a continuous lattice expansion due to the substitution of Cd2+in ZnO lattice.IR bands in the region of 1700?600 cm?1correspond to C=O,C?O,and C?H vibrations of the acetate group.No absorption bands of zinc hydroxide or cadmium hydroxide can be found in the IR spectra.It suggests that no phase segregation or secondary phase has formed for the samples.

    FIG.1 TEM images of cadmium-doped zinc oxide nanocrystals with different cadmium to zinc molar ratio A.

    FIG.2 XRD patterns of cadmium-doped zinc oxide nanocrystals with different cadmium to zinc molar ratio A.Relationship of lattice parameter c as a function of cadmium molar fraction(inserted figure).

    B.Band gap study of cadmium-doped zinc oxide nanocrystals

    FIG.3 Infrared spectra of cadmium-doped zinc oxide nanocrystals with different cadmium to zinc molar ratio A.

    Absorption spectra of the samples are shown in FIG.4.The band gapEgof the samples can be obtained with Tauc’s equation(αhν)=C(hν?Eg)n[33],whereαis the absorption coefficient,Cis the constant andhνis the photon energy.For crystalline semiconductors,the exponentnin Tauc’s equation can take the value 1/2,3/2,or 2 when the transitions are direct allowed,direct forbidden or indirect allowed,respectively.The band gapEgcan be obtained from the extrapolation of the straight-line portion of the(αhν)1/nvs.hνplot tohν=0.It is observed that for all the samples,the best straight line is obtained forn=1/2,which is expected for direct allowed transition of Cd-ZnO alloys[16,34].The dashed curves in FIG.4 show the best fitted results.

    The behavior of alloys is characterized by Vegard’s Law[28],which states that,while lattice constant changes linearly with composition,other physical properties such as band gap often vary nonlinearly.The nonlinearity is usually deemed to come from three sources,namely,the volume deformation,the chemical electronegativity difference and the internal structural relaxation[35].Moreover,in the case of nanocrystals of any composition,quantum confinement also induces a size dependence[36].Thus the variation of band gap energies of the samples can be attributed to both the composition and quantum confinement effect.The experimental data were fitted by the expression:

    FIG.4 Absorption spectra of cadmium-doped zinc oxide nanocrystals with different cadmium to zinc molar ratio A.

    wherexis the molar fraction of Cd2+in Cd-ZnO nanocrystals,andbis the bowing parameter which describes the nonlinearity.For the samples of any composition,quantum con finement also introduces a size dependence[36]:

    whereEg(R)is the band gap of the nanocrystals,Ris the radius of the crystal,μis the effective mass of the exciton,his Plank’s constant,εis the relative permittivity,ε0is the permittivity of free space andeis the charge on the electron.Substituting Eq.(2)into Eq.(1),the dependence of band gap on crystallite size and composition can be derived as below[29]:

    In Eq.(3),the bowing parameterbis treated as a function of the nanocrystal radius.With the values ofEgbulkandμof CdO and ZnO[37],the band gaps have been calculated based on Eq.(3).The results are shown in FIG.5,where the solid lines are theoretical values at certain radius of Cd-ZnO nanocrystals and the dots are the experimental results.

    FIG.5 Crystallite radius and composition-dependent band gaps of cadmium-doped zinc oxide nanocrystals.

    It can be found in FIG.5 that the samples are in the quantum con finement region.The variation of the band gap can be elucidated well based on the crystallite size and the composition,yielding a constant bowing parameter of 0.61 eV for the samples.With the increase ofAfrom 0 to 0.3,the band gap decreases from 3.472 eV to 3.375 eV.At low doping level,the variation of band gaps mainly re flects the trend of the composition effect because the crystallite sizes of the samples are relatively large.With the increase ofAfrom 0.3 to 1.0,the band gap increases from 3.375 eV to 3.508 eV.This is because that the crystallite sizes of the samples are small and the quantum con finement effect plays a main role in the band gap energy.With further increase ofAfrom 1.0 to 2.0,the band gap decreases again.As the crystallite sizes of the samples withA=1.0 and 2.0 are quite similar,the remarkable increase of Cd2+content in the sample results in the decrease of the band gap energy.

    For Cd-ZnO alloys,the reported values of bowing parameter deviate between different studies.The value of bowing parameter in this work is less than the values of 1.26 and 0.95 eV[38,39],but is greater than the values of 0.45 and 0.54 eV[27,40].This is presumably due to different crystal structures and analytical methods.It might have been expected that the small change in lattice spacing,the surface effect and surrounding environment of nanocrystals can significantly impact the bowing parameter.The result in this work indicates that those effects mentioned above are not strong enough to impact the bowing behavior of the samples.The bowing parameter is in fact not sensitive to radius,in agreement with previous works on ZnxCd1?xSe and CdSxSe1?x[29,41].

    FIG.6 Schematic illustration of the formation process for cadmium-doped zinc oxide nanocrystals in triethylene glycol upon ultrasonic irradiation.

    C.Sonochemical formation mechanism of the nanoparticles

    In order to investigate the effect of both solvents and the irradiation of ultrasound on the preparation of the products,parallel experiments were carried out.Anhydrous ethanol or an ionic liquid,1-butyl-3-methylimidazolium tetra fluoroborate has been chosen to substitute for triethylene glycol.Anhydrous ethanol is the most commonly used solvent in sol-gel preparation of ZnO nanocrystals.The ionic liquid has a negligible vapour pressure and a high decomposition point(300°C),which is similar to triethylene glycol with a high boiling point(287°C).Experimental results show that only mixtures of CdO and ZnO can be obtained in the two parallel reactions.Moreover,the parallel experiment without ultrasound treatment shows that no products can be obtained.These results demonstrate that both the ultrasonic irradiation and triethylene glycol play crucial roles in the present preparation.

    Based on the above experimental results,a plausible preparation mechanism of Cd-ZnO nanocrystals is proposed in FIG.6.In the presence of LiOHH2O,metal acetates transfer to basic acetate precursors,denoting as Zn-OAc and Cd-OAc[42].Upon ultrasonic irradiation,highly non-thermal equilibrium environment can be established in triethylene glycol solution.This favors homogenous nucleation processes through hydrolysis and condensation reactions of the basic acetate precursors.For the wurtzite crystal,the top surface(0001)is Zn2+or Cd2+terminated and the bottom surface(000ˉ1)is O2?terminated.Additionally,the wurtzite crystal has other O2?terminated surfaces.The wurtzite crystal needs the smallest active energy to grow along the(0001)direction[25].However,triethylene glycol can strongly coordinate to metal ions on this surface,prohibiting the anisotropic growth of the nanocrystals.Although triethylene glycol can also form hydrogen bonds with terminated O2?ions,some active sites can be produced randomly on the surfaces of ZnO nuclei due to the enhanced mobility triggered by the ultrasonic irradiation.This reaction environment results in the isotropic growth of spherical nanocrystals.

    With the increase of Cd2+content,the crystallinity of the samples decreases remarkably,which will prevent the continuous growth of wurtzite crystals.Meanwhile,triethylene glycol can effectively stabilize the small crystals by coordination bonds or hydrogen bonds with terminated metal ions or O2?ions on the surfaces of the crystals,resulting in the decrease of the crystallite size.

    IV.CONCLUSION

    Cadmium-doped zinc oxide nanocrystals have been firstly synthesized in the quantum con finement region.The band gaps of the samples can be interpreted well based on both the quantum con finement effect and the constituent stoichiometry.The formation of the nanocrystals mainly arises from the non-thermal equilibrium environment established in sonochemical reaction and the coordination ability of triethylene glycol.The fast,facile and green sonochemical approach is promising to prepare other nanomaterials with nonequilibrium structures.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Basic Research Program of China(No.2012CB921504)and the National Natural Science Foundation of China(No.11074127).

    [1]M.Schwarze,W.Tress,B.Beyer,F.Gao,R.Scholz,C.Poelking,K.Ortstein,A.A.Gunther,D.Kasemann,D.Andrienko,and K.Leo,Science352,1446(2016).

    [2]A.M.Smith and S.Nie,Acc.Chem.Res.43,190(2009).

    [3]M.D.Regulacio and M.Y.Han,Acc.Chem.Res.43,621(2010).

    [4]H.Wei,S.Z.Chen,X.L.Ren,B.J.Qian,Y.J Su,Z.Yang,and Y.F.Zhang,CrystEngComm14,7408(2012).

    [5]H.Wei,Y.J.Su,Z.Y.Han,T.T.Li,X.L.Ren,Z.Yang,L.M.Wei,F.S.Cong,and Y.F.Zhang,Nanotechnology24,235706(2013).

    [6]H.Wei,X.L.Ren,Z.Y.Han,T.T.Li,Y.J.Su,L.M.Wei,F.S.Cong,and Y.F.Zhang,Mater.Lett.102,94(2013).

    [7]A.B.Djurisic and Y.H.Leung,Small2,944(2006).

    [8]B.Wen,C.Q.Liu,N.Wang,H.L.Wang,S.M.Liu,W.Y.Ding,W.D.Fei,and W.P.Chai,Chin.J.Chem.Phys.29,229(2016).

    [9]N.Kumar and A.Srivastava,J.Alloys Compd.706,438(2017).

    [10]J.Zhang,S.Q.Zhao,K.Zhang,and J.Q.Zhou,Chemosphere95,105(2014).

    [11]M.A.Mansoor,M.A.Ehsan,V.McKee,N.M.Huang,M.Ebadi,Z.Ari fin,W.Z.Basiruna,and M.Mazhar,J.Mater.Chem.17,5284(2013).

    [12]S.Chu and G.Wang,Mater.Lett.85,149(2102).

    [13]J.Ishihara,A.Nakamura,S.Shigemori,T.Aoki,and J.Temmyo,Appl.Phys.Lett.89,091914(2006).

    [14]A.A.Jacob,L.Balakrishnan,S.R.Meher,K.Shambavi,and Z.C.Alex,J.Alloys Compd.695,3753(2017).

    [15]B.Khodadadi,M.Bordbar,and A.Y.Faal,J.Sol-Gel Sci.Tech.77,521(2016).

    [16]D.M.Detert,S.H.M.Lim,K.Tom,A.V.Luce,A.Anders,O.D.Dubon,K.M.Yu,and W.Walukiewicz,Appl.Phys.Lett.102,232103(2013).

    [17]J.J.Hinman and K.S.Suslick,Top.Curr.Chem.375,12(2017).

    [18]J.H.Bang and K.S.Suslick,Adv.Mater.22,1039(2010).

    [19]D.G.Shchukin and H.Mohwald,Phys.Chem.Chem.Phys.8,3496(2006).

    [20]A.Phuruangrat,S.Mad-ahin,O.Yayapao,S.Thongtem,and T.Thongtem,Res.Chem.Intermed.41,9757(2015).

    [21]H.X.Zhang,B.Gao,Y.T.Yang,and X.J.Liu,Int.J.Thermophys.36,1336(2015).

    [22]B.Gao,Y.T.Yang,H.Yang,S.Y.Zhang,and X.J.Liu,Sci.China-Phys.Mech.Astron.56,1280(2013).

    [23]Y.Wang,Y.T.Yang,X.G.Zhang,X.J.Liu,and A.Nakamura,CrystEngComm14,240(2012).

    [24]T.Noorunisha,V.S.Nagarethinam,M.Suganya,D.Praba,S.Ilangovan,K.Usharani,and A.R.Balu,Optik127,2822(2106).

    [25]U.Ozgur,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.J.Cho,and H.Morkoc,J.Appl.Phys.98,041301(2005).

    [26]A.Wood,M.Giersig,M.Hilgendorff,A.V.Campos,L.M.Marzan,and P.Mulvaney,Aust.J.Chem.56,1051(2003).

    [27]O.Vigil,L.Vaillant,F.Cruz,G.Santana,A.M.Acevedo,and G.C.Puente,Thin Solid Films361,53(2000).

    [28]L.Vegard,Z.Phys.5,17(1921).

    [29]L.A.Swafford,L.A.Weigand,M.J.Bowers,J.R.McBride,J.L.Rapaport,T.L.Watt,S.K.Dixit,L.C.Feldman,and S.J.Rosenthal,J.Am.Chem.Soc.128,12299(2006).

    [30]A.Burns,G.Hayes,W.Lia,J.Hirvonen,J.D.Demaree,and S.I.Shah,Mater.Sci.Eng.B111,150(2004).

    [31]H.Kleinwechter,C.Janzen,J.Knipping,H.Wiggers,and P.Roth,J.Mater.Sci.37,4349(2002).

    [32]M.A.Verges,A.Mifsud,and C.J.Serna,J.Chem.Soc.Faraday Trans.86,959(1990).

    [33]J.I.Pankove,Optical Processes in Semiconductors,New York:Englewood Cliffs,34(1971).

    [34]X.F.Fan,H.D.Sun,Z.X.Shen,J.L.Kuo,and Y.M.Lu,J.Phys.:Condens.Matter20,235221(2008).

    [35]J.E.Bernard and A.Zunger,Phys.Rev.B36,3199(1987).

    [36]K.F.Lin,H.M.Cheng,H.C.Hsu,L.J.Lin,and W.F.Hsieh,Chem.Phys.Lett.409,208(2005).

    [37]B.J.Zheng,J.S.Lian,L.Zhao,and Q.Jiang,Appl.Surf.Sci.257,5657(2011).

    [38]D.W.Ma,Z.Z.Ye,and Y.S.Yang,Appl.Phys.B82,85(2006).

    [39]X.J.Wang,I.A.Buyanova,W.M.Chen,M.Izadifard,S.Rawal,D.P.Norton,S.J.Pearton,A.Osinsky,J.W.Dong,and A.Dabiran,Appl.Phys.Lett.89,151909(2006).

    [40]I.A.Buyanova,X.J.Wang,W.M.Chen,M.Izadifard,D.P.Norton,S.J.Peartonc,A.Osinsky,J.W.Dong,and A.Dabiran,ECS Trans.3,391(2006).

    [41]X.H.Zhong,M.Y.Han,Z.L.Dong,T.J.White,and W.Knoll,J.Am.Chem.Soc.125,8589(2003).

    [42]E.A.Meulenkamp,J.Phys.Chem.B102,5566(1998).

    久久人人97超碰香蕉20202| 亚洲综合色网址| 国产成人精品无人区| av欧美777| 下体分泌物呈黄色| 中国国产av一级| 精品国产乱码久久久久久小说| 国产欧美日韩精品亚洲av| 欧美亚洲日本最大视频资源| 亚洲av片天天在线观看| 一级毛片 在线播放| 国产午夜精品一二区理论片| 久久久精品区二区三区| 久久 成人 亚洲| 亚洲精品乱久久久久久| 免费高清在线观看视频在线观看| 欧美黑人欧美精品刺激| 精品国产超薄肉色丝袜足j| 色视频在线一区二区三区| 美女主播在线视频| 欧美激情极品国产一区二区三区| 国产野战对白在线观看| 色婷婷久久久亚洲欧美| 国产高清videossex| 两性夫妻黄色片| 在线天堂中文资源库| 成人国产一区最新在线观看 | 亚洲情色 制服丝袜| 大香蕉久久成人网| av视频免费观看在线观看| 亚洲三区欧美一区| 亚洲国产精品一区三区| 欧美精品一区二区免费开放| 视频区欧美日本亚洲| 精品亚洲成国产av| 亚洲专区国产一区二区| 午夜免费鲁丝| e午夜精品久久久久久久| 成人免费观看视频高清| 欧美日韩亚洲高清精品| 久久青草综合色| 亚洲国产av影院在线观看| 中文字幕人妻丝袜制服| 少妇被粗大的猛进出69影院| 老司机在亚洲福利影院| 男女国产视频网站| 久久影院123| 欧美日韩视频精品一区| 悠悠久久av| 校园人妻丝袜中文字幕| 精品国产乱码久久久久久小说| 99久久综合免费| 欧美精品一区二区大全| 国产亚洲精品久久久久5区| 欧美激情 高清一区二区三区| 精品人妻1区二区| 久久人人爽人人片av| 丰满少妇做爰视频| 亚洲av电影在线观看一区二区三区| 后天国语完整版免费观看| videosex国产| 80岁老熟妇乱子伦牲交| 午夜精品国产一区二区电影| 日韩 亚洲 欧美在线| 午夜福利视频精品| 大码成人一级视频| 如日韩欧美国产精品一区二区三区| 欧美激情高清一区二区三区| 捣出白浆h1v1| av欧美777| 国产深夜福利视频在线观看| 亚洲av综合色区一区| 成年人午夜在线观看视频| 丝袜美足系列| 青青草视频在线视频观看| xxx大片免费视频| 日韩伦理黄色片| 麻豆国产av国片精品| 天天躁夜夜躁狠狠久久av| 人人妻人人澡人人爽人人夜夜| 国产成人系列免费观看| 纯流量卡能插随身wifi吗| 欧美成人午夜精品| 丁香六月欧美| 免费av中文字幕在线| 中文字幕人妻熟女乱码| 免费观看人在逋| a级片在线免费高清观看视频| 十八禁高潮呻吟视频| 久久久久久免费高清国产稀缺| www日本在线高清视频| 91老司机精品| 熟女少妇亚洲综合色aaa.| 午夜老司机福利片| 麻豆av在线久日| 美女大奶头黄色视频| 19禁男女啪啪无遮挡网站| 午夜影院在线不卡| 午夜视频精品福利| 亚洲专区国产一区二区| 咕卡用的链子| 热re99久久国产66热| 啦啦啦在线免费观看视频4| 亚洲欧美日韩高清在线视频 | 国产精品久久久久久精品古装| 精品少妇一区二区三区视频日本电影| 97精品久久久久久久久久精品| 一边摸一边抽搐一进一出视频| 欧美人与性动交α欧美软件| 日本欧美国产在线视频| 无限看片的www在线观看| 国产免费一区二区三区四区乱码| 一区二区三区四区激情视频| 亚洲 欧美一区二区三区| 黑人欧美特级aaaaaa片| 成人18禁高潮啪啪吃奶动态图| 久久久精品94久久精品| 久久久国产一区二区| 各种免费的搞黄视频| 精品一区二区三区四区五区乱码 | 国产成人免费观看mmmm| 精品国产乱码久久久久久小说| 亚洲人成电影免费在线| 亚洲欧洲国产日韩| 中文字幕人妻熟女乱码| 精品国产乱码久久久久久小说| 欧美日韩一级在线毛片| 亚洲国产av影院在线观看| 成人国产av品久久久| 国产一区二区 视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩av在线免费看完整版不卡| 免费观看人在逋| 欧美xxⅹ黑人| 国产精品久久久久久人妻精品电影 | 久久人人爽av亚洲精品天堂| 真人做人爱边吃奶动态| 欧美精品亚洲一区二区| 欧美日韩亚洲国产一区二区在线观看 | 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| a级毛片在线看网站| 少妇人妻久久综合中文| 国产熟女午夜一区二区三区| 国产精品一区二区在线观看99| 18禁国产床啪视频网站| 久久亚洲精品不卡| 亚洲成人免费av在线播放| 亚洲少妇的诱惑av| 久久亚洲国产成人精品v| 99国产综合亚洲精品| 日韩熟女老妇一区二区性免费视频| 99re6热这里在线精品视频| av欧美777| 精品人妻在线不人妻| 精品国产一区二区三区四区第35| 国产亚洲av片在线观看秒播厂| 乱人伦中国视频| 蜜桃国产av成人99| 激情视频va一区二区三区| 久久久久国产精品人妻一区二区| 丝袜脚勾引网站| 成年人午夜在线观看视频| 久久久精品区二区三区| 一级a爱视频在线免费观看| 欧美国产精品va在线观看不卡| 日韩免费高清中文字幕av| 真人做人爱边吃奶动态| 欧美久久黑人一区二区| 国产成人欧美在线观看 | 久久亚洲精品不卡| 午夜影院在线不卡| 亚洲国产毛片av蜜桃av| 91成人精品电影| 国产一级毛片在线| 精品国产超薄肉色丝袜足j| 色婷婷久久久亚洲欧美| 在线 av 中文字幕| 高清欧美精品videossex| 一本综合久久免费| 咕卡用的链子| 欧美人与性动交α欧美软件| 亚洲欧美中文字幕日韩二区| www日本在线高清视频| 久热爱精品视频在线9| 另类精品久久| 成人国产一区最新在线观看 | 国产精品二区激情视频| 两性夫妻黄色片| 黄色一级大片看看| 久久久国产精品麻豆| 午夜精品国产一区二区电影| 日韩 亚洲 欧美在线| a级毛片黄视频| 亚洲精品一卡2卡三卡4卡5卡 | 婷婷色麻豆天堂久久| 免费高清在线观看视频在线观看| 亚洲黑人精品在线| 国产又爽黄色视频| 免费少妇av软件| 日韩视频在线欧美| 久久久精品免费免费高清| 18禁国产床啪视频网站| 蜜桃在线观看..| 国产91精品成人一区二区三区 | 国产一区二区三区av在线| 18在线观看网站| 国产高清videossex| 狂野欧美激情性bbbbbb| 亚洲视频免费观看视频| 久久精品成人免费网站| 后天国语完整版免费观看| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区| 欧美黄色淫秽网站| 中文精品一卡2卡3卡4更新| av一本久久久久| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 精品福利观看| 三上悠亚av全集在线观看| 亚洲国产成人一精品久久久| 十八禁高潮呻吟视频| 午夜福利,免费看| 国产亚洲欧美在线一区二区| 狠狠婷婷综合久久久久久88av| 女性生殖器流出的白浆| 国产一卡二卡三卡精品| 亚洲成人国产一区在线观看 | 国产亚洲午夜精品一区二区久久| 亚洲av电影在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 黄色毛片三级朝国网站| 国产在视频线精品| 97人妻天天添夜夜摸| 国产成人欧美| 久久精品国产a三级三级三级| 国产欧美日韩精品亚洲av| 久久99精品国语久久久| 久久ye,这里只有精品| 亚洲精品第二区| 亚洲成av片中文字幕在线观看| 日本色播在线视频| 黄色a级毛片大全视频| 久久久久久久国产电影| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 丝袜美足系列| 丝袜喷水一区| 欧美在线一区亚洲| 伦理电影免费视频| 晚上一个人看的免费电影| 国产成人精品在线电影| 国产麻豆69| 夜夜骑夜夜射夜夜干| 国产在线观看jvid| 母亲3免费完整高清在线观看| 黑人猛操日本美女一级片| 亚洲中文字幕日韩| 啦啦啦 在线观看视频| 一区二区av电影网| av电影中文网址| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 精品一区在线观看国产| 午夜福利影视在线免费观看| 亚洲欧美精品综合一区二区三区| 亚洲av在线观看美女高潮| 亚洲成人国产一区在线观看 | www.精华液| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 啦啦啦啦在线视频资源| 天天影视国产精品| 91精品三级在线观看| 国产成人精品久久久久久| 成人黄色视频免费在线看| 一级毛片 在线播放| 精品少妇久久久久久888优播| 亚洲国产精品成人久久小说| 好男人电影高清在线观看| 精品国产一区二区三区四区第35| 性高湖久久久久久久久免费观看| av网站免费在线观看视频| 国产成人一区二区三区免费视频网站 | 亚洲五月婷婷丁香| 99久久精品国产亚洲精品| 色视频在线一区二区三区| 精品福利观看| 欧美av亚洲av综合av国产av| 成年人免费黄色播放视频| 汤姆久久久久久久影院中文字幕| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| a级毛片黄视频| 午夜影院在线不卡| 欧美激情极品国产一区二区三区| 婷婷色麻豆天堂久久| 国产成人欧美在线观看 | 国产日韩一区二区三区精品不卡| 一级毛片我不卡| 欧美成人精品欧美一级黄| 亚洲视频免费观看视频| 国产福利在线免费观看视频| 在线观看免费午夜福利视频| 高清av免费在线| 亚洲国产欧美网| 在线观看www视频免费| 少妇精品久久久久久久| 国产欧美日韩一区二区三区在线| 欧美乱码精品一区二区三区| 激情视频va一区二区三区| 天天影视国产精品| 亚洲九九香蕉| 欧美日韩一级在线毛片| 欧美久久黑人一区二区| 欧美人与性动交α欧美软件| 欧美av亚洲av综合av国产av| 成年人免费黄色播放视频| 这个男人来自地球电影免费观看| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲一区中文字幕在线| 久久久国产欧美日韩av| 午夜福利免费观看在线| 青草久久国产| 国产人伦9x9x在线观看| 亚洲国产精品成人久久小说| av在线app专区| 亚洲国产日韩一区二区| 免费高清在线观看视频在线观看| 欧美国产精品一级二级三级| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区 | 69精品国产乱码久久久| 国产亚洲午夜精品一区二区久久| 亚洲中文日韩欧美视频| 欧美成人精品欧美一级黄| 99国产精品免费福利视频| 91字幕亚洲| 国产精品久久久av美女十八| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 99国产精品99久久久久| 午夜精品国产一区二区电影| 亚洲精品一二三| 日韩大码丰满熟妇| 国产高清国产精品国产三级| 久久国产精品影院| www.999成人在线观看| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 手机成人av网站| 久久亚洲精品不卡| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 天堂俺去俺来也www色官网| avwww免费| 精品免费久久久久久久清纯 | 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 桃花免费在线播放| 一级毛片我不卡| 丁香六月天网| 国产精品九九99| 操出白浆在线播放| av国产精品久久久久影院| 飞空精品影院首页| 深夜精品福利| 国产黄色免费在线视频| 国产高清国产精品国产三级| 99热全是精品| 国产午夜精品一二区理论片| 天天操日日干夜夜撸| 国产精品 欧美亚洲| 一级黄片播放器| 亚洲第一青青草原| 1024视频免费在线观看| 久久久久精品国产欧美久久久 | 69精品国产乱码久久久| 制服人妻中文乱码| 欧美日韩黄片免| 亚洲久久久国产精品| 观看av在线不卡| 亚洲成人手机| videos熟女内射| 少妇裸体淫交视频免费看高清 | 精品国产乱码久久久久久男人| 免费不卡黄色视频| 国产在视频线精品| avwww免费| 免费看十八禁软件| 亚洲 欧美一区二区三区| 黄色 视频免费看| 看十八女毛片水多多多| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| av网站免费在线观看视频| 日本av手机在线免费观看| 精品一区二区三卡| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 午夜福利免费观看在线| 在线观看国产h片| 波多野结衣av一区二区av| 两性夫妻黄色片| 国产精品一区二区精品视频观看| 国产免费福利视频在线观看| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 久久久精品94久久精品| 男女无遮挡免费网站观看| 亚洲免费av在线视频| 国产爽快片一区二区三区| 国产黄色免费在线视频| 欧美 亚洲 国产 日韩一| 亚洲av日韩精品久久久久久密 | 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 国产亚洲精品久久久久5区| av一本久久久久| 国产亚洲精品第一综合不卡| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o | 超碰成人久久| 国产色视频综合| netflix在线观看网站| 一区二区日韩欧美中文字幕| 成年人黄色毛片网站| 久久国产亚洲av麻豆专区| 丁香六月天网| 男的添女的下面高潮视频| 高清欧美精品videossex| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 91字幕亚洲| 黄频高清免费视频| 久久久精品94久久精品| 国产日韩欧美视频二区| 国产精品九九99| 一本色道久久久久久精品综合| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区三区在线| 日韩,欧美,国产一区二区三区| 亚洲av男天堂| 国产精品久久久久久精品电影小说| 尾随美女入室| 黄色片一级片一级黄色片| 中文乱码字字幕精品一区二区三区| 蜜桃在线观看..| 免费观看a级毛片全部| 中文字幕av电影在线播放| 无遮挡黄片免费观看| 日韩av不卡免费在线播放| av在线播放精品| 日本91视频免费播放| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 一个人免费看片子| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 国产精品麻豆人妻色哟哟久久| 国产成人影院久久av| 国产99久久九九免费精品| 成年av动漫网址| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 亚洲国产欧美在线一区| 手机成人av网站| 性高湖久久久久久久久免费观看| 免费av中文字幕在线| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o | 久热这里只有精品99| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 狠狠婷婷综合久久久久久88av| 黄色怎么调成土黄色| 精品视频人人做人人爽| 亚洲av成人精品一二三区| 久久国产精品影院| 亚洲九九香蕉| 欧美日韩视频高清一区二区三区二| 日本欧美视频一区| av福利片在线| 午夜两性在线视频| 亚洲七黄色美女视频| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 亚洲精品成人av观看孕妇| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 免费少妇av软件| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 国产老妇伦熟女老妇高清| 黄色视频不卡| 国产高清videossex| 在线观看一区二区三区激情| 欧美日韩福利视频一区二区| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 一区二区三区四区激情视频| 日韩精品免费视频一区二区三区| 久久久精品国产亚洲av高清涩受| 秋霞在线观看毛片| 久久毛片免费看一区二区三区| 美女大奶头黄色视频| 国产精品 欧美亚洲| 亚洲色图综合在线观看| 少妇猛男粗大的猛烈进出视频| 久久久久网色| 婷婷成人精品国产| 精品人妻一区二区三区麻豆| 国产在线一区二区三区精| 午夜福利乱码中文字幕| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 欧美大码av| 日韩精品免费视频一区二区三区| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 只有这里有精品99| 欧美精品啪啪一区二区三区 | 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 男男h啪啪无遮挡| www.999成人在线观看| 国产精品欧美亚洲77777| 欧美97在线视频| 两人在一起打扑克的视频| 国产成人欧美| 国产色视频综合| 一级黄色大片毛片| 亚洲国产欧美一区二区综合| 国产精品熟女久久久久浪| 午夜福利在线免费观看网站| 国精品久久久久久国模美| 人妻一区二区av| 中文字幕最新亚洲高清| 午夜免费观看性视频| 一级片'在线观看视频| 国产精品久久久av美女十八| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 国产精品偷伦视频观看了| 丝袜脚勾引网站| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| www.av在线官网国产| 久久久久久久精品精品| 久久av网站| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免| 婷婷丁香在线五月| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 飞空精品影院首页| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 婷婷色综合www| 国产有黄有色有爽视频| 丰满少妇做爰视频| 老司机影院毛片| 好男人视频免费观看在线| 精品久久久久久久毛片微露脸 | 视频在线观看一区二区三区| a 毛片基地| 电影成人av| 欧美精品亚洲一区二区| 国产成人精品无人区| 亚洲一区中文字幕在线| 亚洲黑人精品在线| www日本在线高清视频| 少妇裸体淫交视频免费看高清 | 日本一区二区免费在线视频| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 久热爱精品视频在线9| 交换朋友夫妻互换小说| 在线 av 中文字幕| 人成视频在线观看免费观看| 在线观看www视频免费| 日本av免费视频播放| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区 | 婷婷色综合www| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 午夜日韩欧美国产| 日韩熟女老妇一区二区性免费视频| 少妇猛男粗大的猛烈进出视频| videosex国产| 中文字幕高清在线视频|