• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Praseodymium Doping on Conductivity and Oxygen Permeability of Cobalt-Free Perovskite-Type Oxide BaFeO3?δ

    2018-05-07 02:04:26BngzhengWeiYuWngMengLiuChenxiXuJiguiCheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Bng-zheng WeiYu WngMeng LiuChen-xi XuJi-gui Cheng

    a.School of Materials Science and Engineering,Hefei University of Technology,Hefei 230009,China

    b.Key Laboratory of Advanced Functional Materials and Devices of Anhui Province,Hefei 230009,China

    I.INTRODUCTION

    Fossil energy is still the major energy sources in current industrial production,such as coal,oil and natural gas,etc.,and enhancing its utilization efficiency and reducing emissions of polluted gases have become one of the most imperative requirements in energy and environment areas.Using oxygen enriched air or pure oxygen instead of air as oxidizer combustion is one of the effective ways to meet the needs.However,the traditional oxygen production processes,such as cryogenic separation and pressure swing adsorption have some disadvantages,including high production cost and low purity of resultant[1,2].As a new oxygen production technology,separating oxygen from air by ceramic membranes has shown to be a promising process due to the advantages of without additional circuitry required and high oxygen selectivity of about 100%[3,4].

    Perovskite-type(ABO3)materials with mixed ionic and electronic conductivity(MIEC)have attracted enormous attentions in oxygen permeable membranes[5–7].Since the reports of the high oxygen permeability of La1?xSrxCo1?yFeyO3?δby Teraokaet al.[8],many cobalt-based perovskite-type oxygen permeable membranes have been developed,e.g.SrCo0.8Fe0.2O3?δ[9,10], Ba0.5Sr0.5Co0.8Fe0.2O3?δ[11,12], SrCoxNb1?xO3?δ[13,14], BaCo0.7Fe0.3?xNbxO3?δ[15,16],60wt%Ce0.9Gd0.1O2?δ-40wt%Ba0.5Sr0.5Co0.8Fe0.2O3?δ[17].However,cobalt-based perovskite-type oxides may be not favorable for practical uses because of their relatively low stability under harsh conditions due to the evaporation and reduction of cobalt[18,19].To overcome this drawback,some cobalt-free perovskitetype materials have been developed to use as oxygen permeable membranes.Bene fiting from the less flexible redox behavior of iron,Fe replacing Co as B-site ions in the ABO3perovskite-type materials has been investigated.Among the ferrum-based perovskite-type materials,BaFeO3?δhas high oxygen permeability because Ba can expand the lattice free volume and lower the average metal-oxygen bond energy in the lattices[20].Nevertheless,Ba has a large ionic radius,which results in a phase transition of the BaFeO3?δmaterials as temperature decreases[21].At high temperature,the crystal structure of BaFeO3?δmaterials is cubic phase,however,at low temperature,which probably transforms to hexagonal,tetragonal,triclinic,etc.[22].Cubic phase provides a large channel for oxygen ions transmission in their interior due to the relatively open space,moreover,the equivalent positions of which are the most,that conducive to the migration of oxygen ions.Thus,in the same material system,the cubic perovskite structure has the highest oxygen permeation flux.Ramadass introduced the concept of tolerance factor(Ft)to characterize the stability of cubic perovskite structure[23]:

    WhererA,rBandrOare radii of A,B site ions and oxygen ion,respectively.It is usually considered that the material can keep the ideal cubic structure when 0.95<t<1.04[24],and thetof BaFeO3?δis calculated to be 1.066,which is beyond the established range.

    Previously,several reports have shown that it is feasible to stabilize the phase of BaFeO3?δwith cubic perovskite structure at low temperature by partial substitution of A or B site ions,such as these in Ba0.95La0.05FeO3?δ[25],Gd0.33Ba0.67FeO3?δ[26],BaFe1?yTayO3?δ[27],BaNbyFe1?yO3?δ[28]and BaFe1?yCuyO3?δmaterials[29]. The ionic radii of Pr3+and Pr4+were 0.99 and 0.85?A,respectively,which are slightly larger than that of Fe3+(0.55?A)and Fe4+(0.585?A)of B-site ions,meanwhile,much smaller than that of Ba2+(1.61?A).Therefore,in this paper,Prn+were selected as the doping ions to partial substitute Fem+in BaFeO3materials,and the in fluences of partial substitution on the crystal structure,microstructure,electrical conductivity and oxygen permeability of BaFe1?yPryO3?δhave been systematically investigated.

    II.EXPERIMENTS

    A.Samples preparation

    BaFe1?yPryO3?δ(y=0,0.025,0.05,0.075,0.1)powders were synthesized by the solid state reaction method in which BaCO3,Fe2O3,Pr6O11powders were weighed according to stoichiometric ratio,after ball-milling with zirconia media in absolute alcohol for 20 h,the dried powder mixes were pressed into block,calcined at 1100°C for 5 h in air,and then ball-milled for 10 h to obtain BaFe1?yPryO3?δpowders.In order to characterize the electrical conductivities,oxygen permeation fluxes and some other performance of the prepared materials,the synthesized powders were pressed into green bars and disks under a pressure of 150 MPa,respectively,and subsequently sintering in air at 1300°C for 5 h.The surface of the sintered samples were then polished with an emery paper(80)to adjust the dimensions of sintered bars with of 4 mm×5 mm×10 mm and thickness of disks with 1.0 mm.

    B.Characterizations

    Relative densities of the sintered samples were measured using the Archimedes’method.The crystal structures of the BaFe1?yPryO3?δpowders at room temperature were characterized by X-ray diffraction(XRD D/MAX2500V)using CuKαradiation,with diffraction angles of 10°≤2θ≤80°at an interval of 0.02°. The crystal structures of BaFe0.975Pr0.025O3?δmembrane were characterized by a high-temperature X-ray diffraction(HT-XRD),the temperature was slowly increased from room temperature to 100,200,300,400,500,600,700,800,900°C and maintained constant at each designated temperature for 30 min before measurements were taken. The elemental compositions of BaFe0.975Pr0.025O3?δpowders was analyzed by energy dispersive spectrometer(EDS).The surface and cross section morphologies of BaFe0.975Pr0.025O3?δand BaFe0.925Pr0.075O3?δdisks were examined by scanning electron microscope(SEM,JSM-6490LV).

    C.Electrical conductivity measurements

    The electrical conductivities of the BaFe1?yPryO3?δbars were measured using a four-probe DC method between 300 and 900°C at an interval of 50°C.Silver paste and silver wire were used as current collector and current wire,respectively.A constant current was applied to the two current wires,and the voltage responseσon the two voltage wires was recorded by Digital Multimeter(U3606A),the electrical conductivity was calculated according to Eq.(2).

    WhereLis the length of the two voltage contacts,RandSare the resistance and cross-sectional area of BaFe1?yPryO3?δbars,respectively.

    D.Test of oxygen permeability

    The oxygen permeation flux of BaFe1?yPryO3?δmembranes were tested using a homemade apparatus,described in our previous work[30].The membranes were sealed onto an Al2O3tube using a commercial ceramic sealant(Yihui,Hongkong).Within test temperature range of 600?950°C,the feed side of membranes was exposed to atmospheric air,whilst a 100 mL/min flow of helium was fed with the permeating side to provide the oxygen partial pressure.Flow flux of the helium was controlled by a mass flow controller(D08-1F).

    TABLE I Structural parameters of BaFe1?yPryO3?δ powders at room temperature.

    The content of O2and N2in the permeation gas were analyzed by the gas chromatography,where N2is the leak gas.The effect of leakages can be estimated using Eq.(3)to calculate the oxygen permeation flux:

    WhereCOandCNare the measured gas phase concentrations of oxygen and nitrogen in the sweeping gas,fis the flow flux of the exit gas on the sweep side,andSis the effective oxygen permeable area of the oxygen permeable membranes.

    III.RESULTS AND DISCUSSION

    A.Characteristics

    FIG.1 shows X-ray diffraction patterns of the BaFe1?yPryO3?δpowders with different praseodymium doping amount at room temperature.The main peaks were shifted to lower angles with the increasing of the substitution amount(y)in BaFe1?yPryO3?δ,indicating that the lattice constant increases as doping more praseodymium into the B-site. Moreover,no crystalline phase of praseodymium oxide was detected from the XRD patterns,suggesting that the praseodymium were successfully doped into the oxide lattice of BaFeO3?δ.Table I lists structural parameters of BaFe1?yPryO3?δpowders at room temperature.It is shown that the crystal structure of the parent BaFeO3?δis hexagonal,which is consistent with other reports[26,28].When the substitution amounty=0.025,BaFe0.975Pr0.025O3?δfailed to stabilize the cubic structure but formed a triclinic phase together with the cubic phase[31].In contrast,cubic structure forms at a substitution amount ofy=0.05,0.075,0.1.The tolerance factor of the BaFe1?yPryO3?δmaterials decreases from 1.066(y=0)to 1.045(y=0.1)with the increase of the substitution amount(y).The results show that doping Prn+is bene ficial to stabilize the cubic perovskite structure of BaFeO3?δoxygen permeable membranes at room temperature.

    FIG.1 X-ray diffraction patterns of the BaFe1?yPryO3?δ powders at room temperature.

    FIG.2 shows point scanning analysis patterns of BaFe0.975Pr0.025O3?δpowders,only Ba,Fe,Pr,O were detected.Table II lists the theoretical and trial percentage of elements of BaFe0.975Pr0.025O3?δpowders,respectively.The results show that the powders synthesized by the solid state reaction method have good composition stability.

    FIG.3 showsSEM photographsofthesurface and cross section of un-doped BaFeO3?δ,BaFe0.975Pr0.025O3?δand BaFe0.925Pr0.075O3?δmaterials.The surface of all membranes are dense with clear grain boundaries,the cross section contains a small amount of closed pores.The compact structure ensures the purity of separated oxygen. The grain size of BaFe1?yPryO3?δincrease monotonically with the increase of the praseodymium doping amount,the detail of grain size effects on the oxygen permeability has not been understood well. However,there are different opinions on whether the increase of grain size is beneficial to the improvement of oxygen permeability[32].

    FIG.2 SEM photograph(left)and EDS spectrum(right)of the BaFe0.975Pr0.025O3?δ powders.

    FIG.3 SEM photographs of the surface(top)and cross section(bottom)of membranes. (a,d)BaFeO3?δ,(b,e)BaFe0.975Pr0.025O3?δ,(c,f)BaFe0.925Pr0.075O3?δ.

    TABLE II Atomic percentage of elements in BaFe0.975Pr0.025O3?δ.

    B.Conductivity properties

    FIG. 4 shows electrical conductivities of BaFe1?yPryO3?δbars at temperature intervals from 300°C to 900°C.Below 750°C,the electrical conductivity of parent BaFeO3?δis low,and then increases sharply,implying that there probably exists a phase transition around the temperature.With a small amount of praseodymium doping(y=0.025),the temperature of obvious increase of the electrical conductivity for BaFe0.975Pr0.025O3?δadvances to 600°C.Due to the cubic structure that is beneficial to the carrier transmission forms with a larger praseodymium doping amount(y=0.05,0.075,0.1),the specimen bars also have high electrical conductivity at low temperature. Moreover,under all test temperature,the electrical conductivity increases with the increase of doping amount,and maximum electrical conductivity reaches 6.5 S/cm for BaFe0.9Pr0.1O3?δat 900°C.The electrical conductivity in the perovskite oxides is generally created by electron hopping along the B-site lattice cations and oxygen ion through strongly overlapping B?O?B bonds with a mechanism known as the Zerner double exchange:

    FIG.4 Electrical conductivity of BaFe1?yPryO3?δ between 300 and 900°C.

    The stabilization of cubic lattice structure of BaFe1?yPryO3?δis strengthened with the increase of the praseodymium doping amount. The cubic perovskite phase can maximize the overlapping of the electron clouds between O2and Fem+ions,thus facilitate the electron conduction[28]. Prn+has a variable valence state,which lets it participate in the Zerner double exchange.It should be noted that,at temperature above 550°C,the electrical conductivity of the materials decreases with the increase of temperature.That may be ascribed that the BaFe1?yPryO3?δmaterials are p-type electronic conductors,and the conductivity increases with increasing temperature.However,more oxygen vacancies will be formed inside the materials at higher temperature,but the formation of an oxygen vacancy consumes 2 times electron hole,thus reducing the electrical conductivity[33].

    C.Oxygen permeability

    FIG.5 shows oxygen permeation fluxes of the BaFe1?yPryO3?δmaterials as a function of temperature.With praseodymium doping in B-site,the oxygen permeation fluxes of all membranes were higher than that of the parent BaFeO3?δ,particularly at lower temperature around 600?750°C.In addition,the oxygen permeation fluxes increase with the increase of praseodymium doping amount,and the maximum oxygen permeation flux reaches 1.112 mL/(cm2·min)for BaFe0.9Pr0.1O3?δcomposition at 900°C,which is consistent with the increase of conductivity.However,at temperature below 650°C,the oxygen permeation flux of BaFe0.975Pr0.025O3?δmaterials is low,and above 650°C,it increases sharply,implying there probably exists a phase transition around the temperature.To elucidate the reason for this,the crystal structure of BaFe0.975Pr0.025O3?δmembrane with the change of temperature was characterized by high temperature X-ray diffraction(HT-XRD).

    FIG. 6 shows HT-XRD patterns of BaFe0.975Pr0.025O3?δmembrane atdifferenttemperature.The membrane is triclinic phase at 100°C,which is the same as that measured at room temperature. With the increase of temperature,the crystal structure of the membrane gradually changes into cubic phase,and completely transforms into a cubic phase above 700°C.This phase transformation explains the reason that the oxygen permeation flux of BaFe0.975Pr0.025O3?δshows a sharp increase near 700°C.

    FIG.5 Oxygen permeation fluxes of BaFe1?yPryO3?δmembranes.

    FIG.6 HT-XRD patterns of BaFe0.975Pr0.025O3?δ membrane.

    IV.CONCLUSION

    BaFe1?yPryO3?δ(y=0,0.025,0.05,0.075,0.1)powders were synthesized by a solid state reaction method.The BaFeO3?δand BaFe0.975Pr0.025O3?δsamples have hexagonal and triclinic crystal structure at room temperature,respectively,while others have cubic crystal structure,which proves that doping of praseodymium is beneficial to the stabilization of the cubic phase structure.The sintered BaFe1?yPryO3?δsamples have dense microstructure and praseodymium doping promotes the grain growth.Electrical conductivity and oxygen permeation flux of BaFe1?yPryO3?δsamples increase with the increase of the praseodymium doping amount,which reach 6.5 S/cm and 1.112 mL/(cm2·min)for BaFe0.9Pr0.1O3?δcomposition at 900°C,respec-tively.The test results of high temperature XRD show that the crystal structure of BaFe0.975Pr0.025O3?δgradually transforms from triclinic to cubic at temperature around 700°C,which results in a sharp increase in oxygen permeation flux of the materials near around this temperature.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.216060647)and the Industry-University-Research Project of Aviation Industry Corporation of China(No.cxy2012HFGD025).

    [1]A.R.Smith and L.Klosek,Fuel Process Technol.70,115(2001).

    [2]K.S.Knaebel and F.B.Hill,Chem.Eng.Sci.40,2351(1985).

    [3]S.P.S.Badwal and F.T.Ciacchi,Adv.Mater.13,993(2001).

    [4]J.Sunarso,S.Baumann,J.M.Serra,W.A.Meulenberg,S.Liu,Y.S.Lin,and J.C.Diniz da Costa,J.Membrane Sci.320,13(2008).

    [5]J.W.Zhu,G.P.Liu,Z.K.Liu,Z.Y.Chu,W.Q.Jin,and N.P.Xu,Adv.Mater.28,3511(2016).

    [6]W.Ito,T.Nagai,and T.Sakon,Solid State Ionics178,809(2007).

    [7]Z.H.Chen,R.Ran,Z.P.Shao,H.Yu,J.C.D.da Costa,and S.M.Liu,Ceram.Int.35,2455(2009).

    [8]Y.Teraoka,H.M.Zhang,S.Furukawa,and N.Yamazoe,Chem.Lett.14,1743(1985).

    [9]H.Kruidhof,H.J.M.Bouwmeester,R.H.E.V.Doorn,and A.J.Burggraaf,Solid State Ionics63?65,816(1993).

    [10]L.Qiu,T.H.Lee,L.M.Liu,Y.L.Yang,and A.J.Jacobson,Solid State Ionics76,321(1995).

    [11]H.Q.Xie,Y.Y.Wei,and H.H.Wang,Chin.J.Chem.Eng.25,892(2017).

    [12]M.B.Choi,D.K.Lim,S.Y.Jeon,H.S.Kim,and S.J.Song,Ceram.Int.38,1867(2012).

    [13]T.Nagai,W.Ito,and T.Sakon,Solid State Ionics177,3433(2007).

    [14]G.R.Zhang,Z.K.Liu,N.Zhu,W.Jiang,X.L.Dong,and W.Q.Jin,J.Membrane Sci.405/406,300(2012).

    [15]Y.F.Cheng,H.L.Zhao,D.Q.Teng,F.S.Li,X.G.Lu,and W.Z.Ding,J.Membrane Sci.322,484(2008).

    [16]Q.Yuan,Q.Zhen,R.Li,and W.Tan,J.Funct.Mater.45,7051(2014).

    [17]J.Xue,Q.Liao,Y.Y.Wei,Z.Li,and H.H.Wang,J.Membrane Sci.443,124(2013).

    [18]K.E fimov,T.Halfer,A.Kuhn,P.Heitjans,J.Caro,and A.Feldhoff,Chem.Mater.22,1540(2010).

    [19]H.Wang,C.Tablet,A.Feldhoff,and J.Caro,Adv.Mater.17,1785(2005).

    [20]X.F.Zhu,H.H.Wang,and W.S.Yang,Chem.Commun.1130(2004).

    [21]K.Watanabe,D.Takauchi,M.Yuasa,T.Kida,K.Shimanoe,Y.Yasutake,and N.Yamazoe,J.Electrochem.Soc.156,E81(2009).

    [22]M.A.Pe?a and J.L.G.Fierro,Chem.Rev.101,1981(2001).

    [23]N.Ramadass,Mater.Sci.Eng.36,231(1978).

    [24]A.F.Sammells,R.L.Cook,J.H.White,J.J.Osborne,and R.C.Macduff,Solid State Ionics52,111(1992).

    [25]K.Watenabe,M.Yuasa,T.Kida,Y.Teraoka,N.Yamazoe,and K.Shimanoe,Adv.Mater.22,2367(2010).

    [26]Y.J.Wang,Q.Liao,L.Y.Zhou,and H.H.Wang,J.Membrane Sci.457,82(2014).

    [27]Q.Liao,Y.J.Wang,Y.Chen,and H.H.Wang,Chin.J.Chem.Eng.24,339(2016).

    [28]D.Xu,F.F.Dong,Y.B.Chen,B.T.Zhao,S.M.Liu,M.O.Tade,and Z.P.Shao,J.Membrane Sci.455,75(2014).

    [29]T.Kida,A.Yamasaki,K.Watanabe,N.Yamazoe,and K.Shimanoe,J.Solid State Chem.183,2426(2010).

    [30]S.S.Li,J.G.Cheng,Y.Gan,P.P.Li,X.C.Zhang,and Y.Wang,Sur.Coat.Technol.276,47(2015).

    [31]T.Kida,D.Takachi,K.Watanabe,M.Yuasa,K.Shimanoe,Y.Teraoka,and N.Yamazoe,J.Electrochem.Soc.156,E187(2009).

    [32]Salehi.M,F.Clemens,E.M.Pfaff,S.Diethelm,C.Leach,and T.Graule,J.Membrane Sci.382,186(2011).

    [33]W.D.Penwell and J.B.Giorgi,Sens.Actuators B Chem.191,171(2014).

    亚洲av电影不卡..在线观看| 亚洲最大成人中文| 级片在线观看| 最近的中文字幕免费完整| 亚洲精品国产成人久久av| 少妇人妻一区二区三区视频| 日本与韩国留学比较| 只有这里有精品99| 日日摸夜夜添夜夜添av毛片| 午夜久久久久精精品| 国产麻豆成人av免费视频| 69av精品久久久久久| 九九热线精品视视频播放| 亚洲精品乱久久久久久| 久久精品国产自在天天线| 国产午夜福利久久久久久| 身体一侧抽搐| 国产精品国产高清国产av| 国产伦精品一区二区三区四那| 亚洲av成人精品一区久久| 国产又黄又爽又无遮挡在线| 男女视频在线观看网站免费| 少妇裸体淫交视频免费看高清| 一边亲一边摸免费视频| 床上黄色一级片| 精品久久国产蜜桃| 精品午夜福利在线看| 国产精品爽爽va在线观看网站| 综合色av麻豆| av在线播放精品| 少妇裸体淫交视频免费看高清| 一个人观看的视频www高清免费观看| 99久久无色码亚洲精品果冻| 一个人观看的视频www高清免费观看| 国产成人福利小说| 精品久久久久久久久av| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品免费久久| 爱豆传媒免费全集在线观看| 国产成人免费观看mmmm| 最新中文字幕久久久久| 美女大奶头视频| 美女大奶头视频| 天堂√8在线中文| 国产高清有码在线观看视频| 国产69精品久久久久777片| 级片在线观看| 中文亚洲av片在线观看爽| 中文亚洲av片在线观看爽| 久久久久精品久久久久真实原创| 一级毛片久久久久久久久女| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 99视频精品全部免费 在线| 国产午夜精品久久久久久一区二区三区| 国产一区亚洲一区在线观看| 卡戴珊不雅视频在线播放| 午夜激情欧美在线| 看片在线看免费视频| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 色网站视频免费| 在线播放无遮挡| 亚洲av中文字字幕乱码综合| 天堂网av新在线| 青春草国产在线视频| 性色avwww在线观看| 好男人视频免费观看在线| 免费观看的影片在线观看| 建设人人有责人人尽责人人享有的 | 亚洲性久久影院| 伦精品一区二区三区| 一个人看视频在线观看www免费| 久久久精品大字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产麻豆成人av免费视频| 精品一区二区三区视频在线| 国内精品宾馆在线| 国产高清国产精品国产三级 | 精品熟女少妇av免费看| 熟女人妻精品中文字幕| 两个人视频免费观看高清| 日韩欧美 国产精品| 黄色欧美视频在线观看| 精品一区二区三区视频在线| 搡老妇女老女人老熟妇| 久久久成人免费电影| 国产老妇女一区| 国产在线男女| 国产精品久久久久久精品电影小说 | 欧美不卡视频在线免费观看| 欧美3d第一页| 亚洲国产精品成人综合色| 国产精品一区二区三区四区久久| 亚洲精品色激情综合| 久久精品夜夜夜夜夜久久蜜豆| 国产高潮美女av| 亚洲第一区二区三区不卡| 三级经典国产精品| 少妇熟女aⅴ在线视频| 麻豆成人av视频| 亚洲国产日韩欧美精品在线观看| 天堂网av新在线| 岛国毛片在线播放| 亚洲精品aⅴ在线观看| 久久婷婷人人爽人人干人人爱| 嫩草影院新地址| 51国产日韩欧美| 亚洲人成网站高清观看| 久久久久久久久久久免费av| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人aa在线观看| 亚洲国产精品国产精品| 黄色一级大片看看| 高清日韩中文字幕在线| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 日韩成人伦理影院| 精品熟女少妇av免费看| 九色成人免费人妻av| 午夜精品在线福利| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| or卡值多少钱| 精品人妻熟女av久视频| 看片在线看免费视频| 久久99蜜桃精品久久| 国产亚洲午夜精品一区二区久久 | 中文字幕制服av| 成人亚洲精品av一区二区| 丝袜喷水一区| 国产高潮美女av| 国产亚洲91精品色在线| 最近手机中文字幕大全| 黄色欧美视频在线观看| 国产午夜福利久久久久久| 久久久久久伊人网av| 久久韩国三级中文字幕| 国产av一区在线观看免费| 白带黄色成豆腐渣| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 成人亚洲精品av一区二区| 夜夜爽夜夜爽视频| 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 18禁在线无遮挡免费观看视频| 欧美极品一区二区三区四区| 一级黄色大片毛片| 久久人人爽人人爽人人片va| 亚洲av不卡在线观看| 欧美人与善性xxx| 国产极品天堂在线| 国产黄片视频在线免费观看| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄 | 看十八女毛片水多多多| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久av| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 免费观看在线日韩| 国产一区亚洲一区在线观看| 男插女下体视频免费在线播放| 亚洲国产精品国产精品| 天堂中文最新版在线下载 | 男插女下体视频免费在线播放| av黄色大香蕉| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 日韩av在线大香蕉| 十八禁国产超污无遮挡网站| 国产高潮美女av| 变态另类丝袜制服| 日韩亚洲欧美综合| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 成年女人永久免费观看视频| 99热这里只有是精品在线观看| 国产伦在线观看视频一区| 午夜福利在线在线| 日日干狠狠操夜夜爽| 禁无遮挡网站| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| 最近2019中文字幕mv第一页| 伦精品一区二区三区| 亚洲成人精品中文字幕电影| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 黄色一级大片看看| 日本wwww免费看| videossex国产| 天堂影院成人在线观看| 国产高清不卡午夜福利| 国产精品一及| 18禁裸乳无遮挡免费网站照片| 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 18+在线观看网站| 国产极品天堂在线| 一夜夜www| 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 狠狠狠狠99中文字幕| 晚上一个人看的免费电影| 日本-黄色视频高清免费观看| 亚洲熟妇中文字幕五十中出| 少妇熟女欧美另类| 伦精品一区二区三区| 欧美bdsm另类| 成人无遮挡网站| 十八禁国产超污无遮挡网站| 波多野结衣高清无吗| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| 丰满人妻一区二区三区视频av| 狂野欧美激情性xxxx在线观看| 高清毛片免费看| 看免费成人av毛片| 久久99热这里只有精品18| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 精品国产三级普通话版| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 日韩av在线免费看完整版不卡| 我要看日韩黄色一级片| 青春草视频在线免费观看| 亚洲精品自拍成人| 观看美女的网站| 亚洲久久久久久中文字幕| 国产老妇女一区| 高清av免费在线| 久久久久网色| 小蜜桃在线观看免费完整版高清| eeuss影院久久| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 国产伦理片在线播放av一区| 91av网一区二区| 国产精品女同一区二区软件| 99热全是精品| 不卡视频在线观看欧美| 国产 一区精品| 精品久久国产蜜桃| 国产淫片久久久久久久久| 日本一本二区三区精品| 久久久久久久久久成人| 久久这里只有精品中国| 丝袜美腿在线中文| 亚洲一区高清亚洲精品| 国产伦在线观看视频一区| 国产女主播在线喷水免费视频网站 | av在线播放精品| 免费黄色在线免费观看| 欧美潮喷喷水| 美女脱内裤让男人舔精品视频| 欧美日韩在线观看h| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看| 国产乱人视频| 精品久久久久久久末码| 美女大奶头视频| 国产精品久久久久久av不卡| 国产单亲对白刺激| 中文亚洲av片在线观看爽| 国产av不卡久久| a级毛色黄片| 国产精品一区二区三区四区免费观看| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 国产av码专区亚洲av| 亚洲av男天堂| 美女高潮的动态| 欧美高清成人免费视频www| av国产免费在线观看| 99久久无色码亚洲精品果冻| 午夜免费男女啪啪视频观看| www.色视频.com| 超碰97精品在线观看| 三级经典国产精品| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久 | 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 欧美97在线视频| 精品久久久久久久久亚洲| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品伦人一区二区| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 在线播放国产精品三级| 国产三级在线视频| 日韩高清综合在线| 尾随美女入室| 国产精品一及| 嘟嘟电影网在线观看| 国产老妇女一区| 亚洲av免费在线观看| 久久久国产成人精品二区| 欧美日韩一区二区视频在线观看视频在线 | 日本欧美国产在线视频| 亚洲,欧美,日韩| 七月丁香在线播放| 国产精品一二三区在线看| av天堂中文字幕网| 精品久久久久久电影网 | 久久精品熟女亚洲av麻豆精品 | 亚洲经典国产精华液单| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 国产精品一区二区在线观看99 | 国产成人午夜福利电影在线观看| 深夜a级毛片| 男插女下体视频免费在线播放| 免费av观看视频| 日本与韩国留学比较| 久久久久久大精品| 欧美另类亚洲清纯唯美| 国产老妇女一区| 精品久久久久久电影网 | 少妇高潮的动态图| av在线天堂中文字幕| 波多野结衣巨乳人妻| 长腿黑丝高跟| 大又大粗又爽又黄少妇毛片口| 免费电影在线观看免费观看| 国产 一区 欧美 日韩| 男女下面进入的视频免费午夜| 又爽又黄无遮挡网站| 国产极品天堂在线| 最近的中文字幕免费完整| 边亲边吃奶的免费视频| 亚洲国产色片| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 中文亚洲av片在线观看爽| 国产精品久久视频播放| .国产精品久久| 欧美激情在线99| 精品少妇黑人巨大在线播放 | 97热精品久久久久久| 欧美变态另类bdsm刘玥| 我的女老师完整版在线观看| 美女高潮的动态| 国产午夜福利久久久久久| 麻豆国产97在线/欧美| 色尼玛亚洲综合影院| 中文天堂在线官网| 成人午夜高清在线视频| kizo精华| a级毛片免费高清观看在线播放| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲欧美清纯卡通| 色综合色国产| 视频中文字幕在线观看| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 色综合站精品国产| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 日韩一区二区三区影片| 成人毛片60女人毛片免费| 性插视频无遮挡在线免费观看| 91狼人影院| av又黄又爽大尺度在线免费看 | 久久人妻av系列| 黄片wwwwww| 久久午夜福利片| 麻豆成人av视频| 有码 亚洲区| 亚洲天堂国产精品一区在线| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲第一区二区三区不卡| 亚洲av熟女| 国产精品人妻久久久久久| 国产高清视频在线观看网站| 99久久人妻综合| 国产午夜精品久久久久久一区二区三区| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 精品久久久久久电影网 | 午夜福利在线在线| 亚洲国产精品成人综合色| av在线老鸭窝| 七月丁香在线播放| 直男gayav资源| 精品人妻视频免费看| 精品人妻熟女av久视频| 国产免费福利视频在线观看| 丰满少妇做爰视频| 亚洲欧美日韩东京热| 一级毛片电影观看 | 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 大香蕉97超碰在线| 国产黄片美女视频| 禁无遮挡网站| 日本免费一区二区三区高清不卡| 国产视频内射| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影 | 在线观看一区二区三区| 在线播放国产精品三级| 草草在线视频免费看| a级毛色黄片| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| 高清在线视频一区二区三区 | 有码 亚洲区| av在线老鸭窝| 精品久久久久久电影网 | 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 成人欧美大片| 高清av免费在线| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 成人av在线播放网站| 熟女电影av网| 美女内射精品一级片tv| 欧美不卡视频在线免费观看| 青春草亚洲视频在线观看| 久久久国产成人精品二区| 欧美日韩综合久久久久久| 久久久久久久午夜电影| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 精品久久久久久久人妻蜜臀av| 久久久久久久久久黄片| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 成人二区视频| 中文欧美无线码| 久久精品夜色国产| 日本免费一区二区三区高清不卡| 日韩 亚洲 欧美在线| 麻豆久久精品国产亚洲av| 精品久久国产蜜桃| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 国产 一区精品| 最后的刺客免费高清国语| 中文字幕制服av| 色网站视频免费| 少妇的逼好多水| 国产精品久久久久久久久免| 欧美日韩一区二区视频在线观看视频在线 | 大香蕉97超碰在线| 国产午夜精品一二区理论片| 3wmmmm亚洲av在线观看| 岛国毛片在线播放| 久久这里只有精品中国| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花 | 国产极品天堂在线| 简卡轻食公司| 亚洲欧美精品自产自拍| videossex国产| 免费看光身美女| 偷拍熟女少妇极品色| 国产精品野战在线观看| 国产av不卡久久| 国产免费又黄又爽又色| 搡女人真爽免费视频火全软件| 国产精品伦人一区二区| 日韩一本色道免费dvd| 亚洲最大成人手机在线| av福利片在线观看| 女人十人毛片免费观看3o分钟| 伦精品一区二区三区| 久久久久久久午夜电影| 大又大粗又爽又黄少妇毛片口| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 日韩精品有码人妻一区| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| av卡一久久| 白带黄色成豆腐渣| 久久韩国三级中文字幕| 亚洲色图av天堂| 国产免费视频播放在线视频 | 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| www.av在线官网国产| 免费观看性生交大片5| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 观看美女的网站| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 国产成人freesex在线| 性色avwww在线观看| 日日啪夜夜撸| 又爽又黄a免费视频| 中文字幕熟女人妻在线| 精品国产露脸久久av麻豆 | 亚洲久久久久久中文字幕| 亚洲内射少妇av| 色综合色国产| 日韩 亚洲 欧美在线| 亚洲美女视频黄频| 国产成人午夜福利电影在线观看| 成人无遮挡网站| 亚洲真实伦在线观看| 观看免费一级毛片| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 老司机福利观看| 日本猛色少妇xxxxx猛交久久| 久久久久国产网址| 精品人妻熟女av久视频| 九九久久精品国产亚洲av麻豆| 久久久欧美国产精品| 日韩欧美精品免费久久| 亚洲成人精品中文字幕电影| 国产免费又黄又爽又色| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 免费黄网站久久成人精品| 欧美性猛交黑人性爽| 国产老妇女一区| 久久精品久久久久久久性| 国产精品国产三级国产av玫瑰| 亚洲在久久综合| 中文乱码字字幕精品一区二区三区 | 久久婷婷人人爽人人干人人爱| 久久久久久久久中文| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品久久久久久一区二区三区| 一级爰片在线观看| 一区二区三区四区激情视频| 在线观看av片永久免费下载| 久久精品国产鲁丝片午夜精品| 欧美性感艳星| 国产人妻一区二区三区在| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 一本久久精品| 精品久久久久久久久亚洲| 秋霞伦理黄片| 最后的刺客免费高清国语| 国产一区二区三区av在线| 国产淫语在线视频| 亚洲五月天丁香| 国产亚洲5aaaaa淫片| 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 日韩精品青青久久久久久| 老师上课跳d突然被开到最大视频| 国产精品女同一区二区软件| 1000部很黄的大片| 久久精品国产亚洲av天美| 深爱激情五月婷婷| 永久免费av网站大全| 亚洲美女搞黄在线观看| 国产精品精品国产色婷婷| 亚洲av日韩在线播放| 欧美成人午夜免费资源| 国产精品爽爽va在线观看网站| av.在线天堂| 欧美极品一区二区三区四区| 中文字幕熟女人妻在线| 大话2 男鬼变身卡| 中文字幕免费在线视频6| 久久久久久国产a免费观看| 高清午夜精品一区二区三区| 国产精品国产三级国产专区5o | 欧美另类亚洲清纯唯美| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 久久久精品欧美日韩精品| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 22中文网久久字幕| videos熟女内射| 日日干狠狠操夜夜爽| 日日啪夜夜撸| 国产探花在线观看一区二区| 国模一区二区三区四区视频| av在线观看视频网站免费|