• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First Principles Probing of Photo-Generated Intermolecular Charge Transfer State in Conjugated Oligomers

    2018-05-07 02:04:21DinghaoHongLiChenQinggangKongHuiCao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Ding-hao HongLi ChenQing-gang KongHui Cao

    Jiang Su Laboratory of Atmospheric Environment Monitoring and Pollution Control,Collaborative Center of Atmospheric Environment and Equipment Technology,School of Environmental Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    I.INTRODUCTION

    Charge separation upon photo-excitation in organic semiconductors has attracted much interest due to its broad application prospects in photovoltaic cells[1–3]. Although the charge separation ordinarily happens in the heterojunction interface where the energy offset between the lowest unoccupied molecular orbital(LUMO)of donor(D)and that of acceptor(A)(or between the highest occupied molecular orbital(HOMO)of donor and that of acceptor)acts as the driving force[4–6],free charge carriers can be generated upon photo-excitation in small well-ordered conjugated molecule crystals[7].Recently,Tautzet al. found that upon higher energy photo-excitation pronounced polaron pairs[8]can be detected in D-A type poly(4,7-benzo[2,1,3]thiadiazole-2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[1,2-b;3,4-b′]dithiophene-4,7-benzo[2,1,3]thiadiazole)(PCPDTBT)and the oligomer CPDTBT(as shown in FIG.1)[9].

    FIG.1 Potential energy curve of CPDTBT dimer at equilibrium with respect to the distance between two monomers.

    It was found that long-wavelength excitation(530 nm)cannot generate polaron pairs while shortwavelength excitation (370 nm)can generatein oligomer CPDTBT,indicating that the excess energy plays a key role[9].TDDFT simulations,however,showed that there was significant spatial overlap between hole and electron wave functions for both lower and higher energy excitations[9].Thus,one hypothesis is that there is certain intermediate excited state that has charge transfer character after the initial higher energy excitation.It was also found that polaron pairs had longer life-time in oligomer CPDTBT than in polymer PCPDTBT.The above mentions seem to point toward the intermolecular process in generating polaron pairs in oligomer CPDTBT.Apart from the proposed intramolecular charge separation picture[9],the intermolecular charge transfer is thus also of important significance in understanding the generation of polaron pairs in oligomer CPDTBT.

    It is well known that the conformational change can introduce the substantial variation in the elec-tronic structure of conjugated oligomer. If such conformational change happens in one monomer of CPDTBT while the nearest neighbor monomer remains unchanged,then it will constitute a dimer that has the character of heterojunction,with one CPDTBT monomer as a donor and another one as an acceptor.To verify this hypothesis,we perform the density functional calculations on the CPDTBT dimer with a little conformational change in one monomer,namely,rotating one BT[10]group(see FIG.2)in CPTBT monomer against the conjugation plane with a small angle.The density functional theory(DFT)method is one of the most taken approaches in calculating the charge transfer state in organic semiconductors[11,12].

    In this work,we employ the conventional DFT method in which a ground state occupied orbital is substituted with a ground state unoccupied orbital to simulate the excited state(after self consistent process)of CPDTBT dimmers[13].We first give the validation of DFT method on the first peak of photo-absorption and photoluminescence spectra of CPDTBT monomer.Then we perform the calculations on the electronic structure of excited states of CPDTBT dimer,including the DA?(or D?A)and D+A?type excitations.Based on the calculations of charge transfer exciton(D+A?),we rationalize the generation of polaron pairs under the higher energy photo-excitation,especially from the indirect path,i.e.,from S0(DA)to Sn(DA?)and then to CTn(D+A?).

    II.COMPUTATIONAL DETAILS

    The geometry of CPDTBT in ground state is at first optimized by means of hybrid density functional B3LYP with basis set of 6-31G?.We scan the potential energy curve of CPDTBT dimer(two monomers are placed on the same plane)with respect to the separation distance between two monomers.Then at the equilibrium conformation we rotate the right acceptor group BT in the upper monomer(lower monomer fixed)to construct the CPDTBT dimer that has the character of heterojunction.The key point in our DFT calculations on the excited states is to directly excite one electron from occupied orbital to the unoccupied orbital by exchanging the corresponding two orbitals,and then make the self consistent calculation[13].It is a single con figuration method,in contrast to the TDDFT method that involves multicon figurations.Orbitals in TDDFT configurations are the same as those in the ground state con figuration,but they have been changed in the consistent single con figuration method.The single con figuration method is thus convenient for the discussion in terms of electron and hole,since the electrostatic Columbic attraction between electron and hole is in fact taken account of during the self consistent process.When an occupied orbital is exchanged with an unoccupied orbital in the same monomer,the Frenkel exciton can be simulated,and when an occupied orbital in one monomer is exchanged with an unoccupied orbital in another monomer then the charge transfer exciton can be calculated.In this work,all calculations are performed using the Gaussian 09 package[14].

    FIG.2 The potential energy curve of CPDTBT dimer with respect to the rotational angle of right BT group in the upper monomer against the conjugated plane.Inset shows the structure of CPDTBT dimer(upper CPDTBT as an acceptor(A)and the lower CPDTBT as a donor(D))and BT group.

    III.RESULTS AND DISCUSSION

    A.Validation of calculations on excited states

    Based on optimized geometry of CPDTBT,we calculate the vertical excitation and get the excitation energy of first low lying excited state(HOMO→LUMO).The geometry of the first low lying excited state of CPDTBT is then optimized to estimate the first photoluminescence peak. As a test,our computational result of the first peak in photo-absorption(photoluminescence)spectrum of CPDTBT is 2.30(1.89)eV,in good agreement with the experimental value of 2.34(1.93)eV[9].

    B.Ground state geometry of model CPDTBT dimer

    Since there is no experimental data of the crystal structure of oligomer CPDTBT at the present time,we use the simplest geometry of model CPDTBT dimer in this work.The two CPDTBT monomers are placed at the same plane.We scan the potential energy curve of CPDTBT dimer with respect to the separation distance between two monomers(see FIG.1).The equilibrium separation distance of 9.0?A is found.Then at the equilibrium conformation we rotate the right acceptor group BT in the upper monomer(lower monomer fixed),and the potential energy curve with respect to the rotational angle is shown in FIG.2.The equilibrium dihedral an-gle as depicted in the inset of FIG.2 is about 3°.The rotational barrier with the dihedral angle of 90°is about 0.25 eV.

    C.Photo-excitation and charge transfer

    To explain the possible intermolecular photogeneration of experimental polaron pair,we investigate the charge transfer state in the CPDTBT dimer junction,as shown in the inset of FIG.2.Our findings indicate that the intermolecular charge transfer can happen in high probability,generating the separated polaron pair.With BT in one monomer(e.g.in the upper CPDTBT in FIG.2)deviating against the conjugated plane,we find the charge transfer state in which electron is excited from the lower monomer to the upper one.

    1.Intramolecular exciton(Sn)and intermolecular charge transfer state(CTn)

    Because the intermolecular charge transfer state can be generated in two paths,namely,the indirect path in which the intramolecular exciton dissociates at interface of CPDTBT dimer and the direct path in which it is generated directly upon photo-excitation from the ground state,both intramolecular exciton and intermolecular charge transfer state are discussed.Our calculations show that CPDTBT dimer has no intermolecular charge transfer states at the equilibrium conformation.All the tested intermolecular charge transfer excitations of electron in the occupied molecular orbital of one CPDTBT monomer to the unoccupied molecular orbital of another CPDTBT monomer collapse to the intramolecular excitonic states.The onset torsion angle of BT against the conjugated plane of CPDTBT for effective intermolecular charge transfer in CPDTBT dimer is about 20°.Energy needed for this conformational change is only 0.01 eV,as shown in FIG.2,less than the thermal energykBT(kBis the Boltzmann constant andTis the temperature)at room temperature.

    The example of intramolecular exciton and intermolecular charge transfer states of this tortured CPDTBT dimer can be found in FIG.3.The electrostatic potential distributions of electron and hole of the third DA?type intramolecular exciton,S3,are shown in FIG.3(a)and(b)respectively.Although the S3excitonic state has higher excitation energy,the involved orbitals of electron and hole are still delocalized,as found previously with TDDFT method[9].The electrostatic potential distributions of electron and hole of the first and the second intermolecular charge transfer states,CT1and CT2,are shown in FIG.3(c)and(d)respectively.The essential difference between intramolecular exciton and intermolecular charge transfer exciton is that the centers of electron and hole are at the same CPDTBT monomer in the former case and they are separated,locating on different CPDTBT monomers,in the latter case.The two lower lying charge transfer states CT1and CT2are of excitation energy of 2.94 and 3.24 eV,enough to be generated in the experimental higher energy photo-excitation(3.35 eV,370 nm).

    FIG.3 Examples of electrostatic potential distributions of intramolecular exaction((a)hole and(b)electron in S3of DA?)and intermolecular charge transfer states((c)CT1and(d)CT2of D+A?)in CPDTBT dimer with the rotational angle(20°)of right BT group in the upper monomer against the conjugated plane.Detailed information of S3of DA?and CT1,CT2of D+A?see FIG.5.

    The charge transfer states in CPDTBT dimer with different torsion angle of BT against the conjugated plane can be found in FIG.4.The same excitation with larger torsion has larger excitation energy,e.g.,the HOMO→LUMO+2 excitation energies for torsion angle of 20°,40°,and 90°are 3.23,3.27,and 3.87 eV respectively.This is because that electron in the tortured CPDTBT will be more localized at the side BT group that is deviated from the conjugated plane,resulting in the larger separation distance between the centre of electron and hole(see FIG.4).

    2.Energy state diagram

    FIG.4 Charge transfer states(HOMO→LUMO+2)with the torsion angle(BT against the conjugated plane)of(a)40° and(b)90°.The distances between the centre of positive charge and negative charge in(a)and(b)are about 9.0 and 11.3?A respectively.

    FIG.5 Energy state diagram involved in the charge photogeneration of CPDTBT dimer with a BT group in one monomer tortured of 20°.The DA? type singlet(S)exciton excitation of this CPDTBT dimer is shown in the left column,the D+A?charge transfer states(CT)in the middle column,and the D+/A?charge separated state(CS)in the right column.Charge transfer states can be reached indirectly by the path of ground state S0→Sn→CTnor directly by S0→CTn.

    In the next statement,the energy of the ground state of DA is set as the zero point of energy.The energy state diagram summarizing the photo-generation of electronhole pairs in CPDTBT dimer with the torsion angle of 20°is shown in FIG.5.In general,each CPDTBT can act as the donor or acceptor.Here,we only show the case with the tortured CPDTBT as acceptor and the pristine CPDTBT as donor.Detailed information of orbital excitation in Snand in CTncan be seen in FIG.6 to FIG.8.The experimental lower energy excitation(2.34 eV,530 nm)[9]can thus only excite S1(excitation energy of which is about 1.74 eV),but cannot generate the charge transfer states either in the indirect path(S0→Sn→CTn)or in the direct path(S0→CTn)[12,15,16].In contrast,the experimental higher energy photo-excitation(3.35 eV,370 nm)[9]is enough to excite the intermolecular electron-hole pair both indirectly and directly.The indirect photoexcitation path is through S0→S3(HOMO?7→LUMO)and then→lower lying CT1and CT2.Moreover,our computational results of charge transfer states provide the possibility to identify the transitions between states corresponding to the transient absorption spectra in pump-probe experiments[9]by investigating the energy difference between charge transfer states.

    FIG.6 The D?A type excitations in CPDTBT dimer with the BT group in one monomer rotated 20°against the conjugated plane,S1(HOMO→LUMO+1),S2(HOMO?2→LUMO+1), S3(HOMO?6→LUMO+1),S4(HOMO?4→LUMO+3 and HOMO?2→LUMO+5 degenerated),S5(HOMO→LUMO+11),and S6(HOMO?2→LUMO+7).Energy levels are shown in two columns to represent whether corresponding states on CPDTBT(left,the lower one in FIG.2)or CPDTBT monomer in which BT group is rotated 20°against the conjugated plane(right,the upper one in FIG.2).

    FIG.7The DA?type excitations in CPDTBT dimer with the BT group in one monomer rotated 20°against the conjugated plane,S1(HOMO?1→LUMO),S2(HOMO?3→LUMO), S3(HOMO?7→LUMO), S4(HOMO?7→ LUMO+2),S5(HOMO?3→LUMO+4),S6(HOMO?1→LUMO+10),and S7(HOMO?3→ LUMO+6).Energy levels are shown in two columns to represent whether corresponding states are located on CPDTBT(left,the lower one in FIG.2)or CPDTBT monomer in which BT group is rotated 20°against the conjugated plane(right,the upper one in FIG.2).

    3.Electronic structures of charge transfer exciton

    FIG.8 The direct D+A?type charge transfer excitations in CPDTBT dimer with the BT group in one monomer rotated 20°against the conjugated plane,CT1(HOMO→LUMO),CT2(HOMO→LUMO+2),CT3(HOMO?2→LUMO+2).Energy levels are shown in two columns to represent whether corresponding states are located on CPDTBT(left,the lower one in FIG.2)or CPDTBT monomer in which BT group is rotated 20°against the conjugated plane(right,the upper one in FIG.2).

    FIG.9 Orbital diagram of S3of DA?and CT1of D+A?in the charge photo-generation of CPDTBT dimer with a BT group in one monomer tortured of 20°.Energy levels of electronic states in DA?and D+A? are shown in two columns to denote the orbital distribution(left:totally on D;right:totally on A;middle:bridge states in which part of the state on D and other part on A).Orbitals of D+and A?are shown for understanding the formation of the charge transfer state of CT1.The solid red line and the dashed blue line represent the electron and the hole respectively.

    Electronic structures involved in generating the charge transfer state are shown in FIG.9.In the indirect path,hole generated in S3of DA?jumps to the HOMO of D,forming the charge transfer state CT1of D+A?.The characteristics of the electronic structures of the charge transfer state CT1is that energy level of the electron enters into the unoccupied orbital region and the energy level of the hole into the occupied region of CPDTBT dimer.This can be understood by seeing how the separated electron(A?)and hole(D+)form the Coulombically bound charge transfer exciton as they approach with each other.In comparison with the electronic structures of CPDTBT monomer,all the energy levels in D+drop because of the attraction of electron by the positive charge,and in contrast,all the energy levels in A?rise because of the repulsion of electron by the negative charge[17–19].

    FIG.10 Potential energy diagram of the ground state S0 of DA(solid triangle in black),S3of DA?(hollow circle in navy),S1of D?A(hollow square in blue),and CT1of D+A?(solid circle in orange)of CPDTBT dimer junctions with respect to the distances between two monomers(with a BT group in upper monomer tortured of 20°).The processes from(i)to(v)represent the main approach of charge photogeneration and recombination in the indirect path.

    4.Process of charge photo-generation

    Potential energy curves of ground state,excitonic state S1of D?A and S3of DA?,and the charge transfer states CT1of D+A?with respect to the separation distance between two monomers are shown in FIG.10.One can refer to the explanation of the potential energy curves in Morteaniet al.’s work[20].For clear understanding,we give a brief description here:(i)Exciton generated somewhere first diffuses to the interface;(ii)Then the exciton dissociates into Coulombically bound charge transfer state;(iii)The charge transfer state can either become the separated state or(iv)collapse into the exciplex;(v)The exciplex can then go back to the exciton state or directly recombine to the ground state S0.It is interesting that there is no charge transfer state as the separation distances lower than the equilibrium distance of the ground state(9.0?A).Our calculations indicate that in this region the charge transfer states degenerate into the excitonic state S1of D?A.

    IV.CONCLUSION

    In general,we employ the DFT method to theoretically investigate the photo-generation of electron-hole pair in CPDTBT oligomers. We find that the de-viation of BT group against the conjugated plane of CPDTBT results in the efficient intermolecular charge transfer.We con firm that the lower energy excitation(2.34 eV,530 nm)can only generate the intramolecular singlet excitonic state,while the higher energy excitation(3.35 eV,370 nm)can generate the intermolecular electron-hole pair with charge dissociation,in good agreement with the experiment.Our computational results of the electronic states and the potential energy diagram of CPDTBT dimer in the ground state,the intramolecular excitonic state,and the intermolecular charge transfer state provide the detailed information for understanding the charge photo-generation in CPDTBT oligomers.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.21473092),and the Jiangsu Province Production and Joint Innovation Fund-Prospective Joint Research Project(No.BY2014007-01).

    [1]T.M.Clarke and J.R.Durrant,Chem.Rev.110,6736(2010).

    [2]F.Etzold,I.A.Howard,N.Forler,D.M.Cho,M.Meister,H.Mangold,J.Shu,M.R.Hansen,K.Müllen,and F.Laquai,J.Am.Chem.Soc.134,10569(2012).

    [3]C.B.Zhao,Z.H.Tang,X.H.Guo,H.G.Ge,J.Q.Ma,and W.L.Wang,Chin.J.Chem.Phys.30,268(2017).

    [4]M.M.Wienk,J.M.Kroon,W.J.H.Verhees,J.Knol,J.C.Hummelen,P.A.Van Hal,and R.A.J.Janssen,Angew.Chem.Int.Ed.42,3371(2003).

    [5]G.Grancini,M.Maiuri,D.Fazzi,A.Petrozza,H.J.Egelhaaf,D.Brida,G.Cerullo,and G.Lanzani,Nat.Mater.12,29(2013).

    [6]A.A.Bakulin,S.D.Dimitrov,A.Rao,P.C.Y.Chow,C.B.Nielsen,B.C.Schroeder,I.McCulloch,H.J.Bakker,J.R.Durrant,and R.H.Friend,J.Phys.Chem.Lett.4,209(2013).

    [7]F.A.Hegmann,R.R.Tykwinski,K.P.H.Lui,J.E.Bullock,and J.E.Anthony,Phys.Rev.Lett.89,227403(2002).

    [8]R.Tautz,E.Da Como,T.Limmer,J.Feldmann,H.J.Egelhaaf,E.von Hauff,V.Lemaur,D.Beljonne,S.Yilmaz,I.Dumsch,S.Allard,and U.Scherf,Nat.Commun.3,970(2012).

    [9]R.Tautz,E.Da Como,C.Wiebeler,G.Soavi,I.Dumsch,N.Fr?hlich,G.Grancini,S.Allard,U.Scherf,G.Cerullo,S.Schumacher,and J.Feldmann,J.Am.Chem.Soc.135,4282(2013).

    [10]N.Blouin,A.Michaud,D.Gendron,S.Wakim,E.Blair,R.Neagu-Plesu,M.Bellet?ete,G.Darocher,Y.Tao,and M.Leclerc,J.Am.Chem.Soc.130,732(2008).

    [11]Y.Kanai and J.C.Grossman,Nano Lett.7,1967(2007).

    [12]J.Lee,K.Vandewal,S.R.Yost,M.E.Bahlke,L.Goris,M.A.Baldo,J.V.Manca,and T.Van Voorhis,J.Am.Chem.Soc.132,11878(2010).

    [13]Details for the keyword of Guess=Alter can be seen in the Gaussian09 user’s reference.www.gaussian.com.

    [14]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian09,Revision A01,Gaussian,Inc.,Wallingford CT,(2009).

    [15]T.Drori,C.X.Sheng,A.Ndobe,S.Singh,J.Holt,and Z.V.Vardeny,Phys.Rev.Lett.101,037401(2008).

    [16]A.A.Bakulin,A.Rao,V.G.Pavelyev,P.H.M.Van Loosdrecht,M.S.Pshenichnikov,D.Niedzialek,J.Cornil,D.Beljonne,and R.H.Friend,Science335,1340(2012).

    [17]H.Cao,T.Fang,S.H.Li,and J.Ma,Macromolecules40,4363(2007).

    [18]P.P.Debye and E.M.Conwell,Phys.Rev.93,693(1954).

    [19]S.Suzuki,F.Maeda,Y.Watanabe,and T.Ogino,Phys.Rev.B67,115418(2003).

    [20]A.C.Morteani,P.Sreearunothai,L.M.Herz,R.H.Friend,and C.Silva,Phys.Rev.Lett.92,247402(2004).

    天天添夜夜摸| 免费高清视频大片| 久久香蕉激情| 变态另类丝袜制服| av有码第一页| 国产高清有码在线观看视频 | 亚洲美女黄片视频| 国产精品 欧美亚洲| 一本久久中文字幕| 精品无人区乱码1区二区| aaaaa片日本免费| 精品欧美一区二区三区在线| 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人| netflix在线观看网站| 亚洲最大成人中文| 97碰自拍视频| 男女做爰动态图高潮gif福利片| 欧美午夜高清在线| 久久久国产精品麻豆| 精品免费久久久久久久清纯| 免费搜索国产男女视频| 女警被强在线播放| 国产精品永久免费网站| 欧美高清成人免费视频www| 成人欧美大片| 亚洲成av人片在线播放无| 欧美乱码精品一区二区三区| 日本黄色视频三级网站网址| 老熟妇仑乱视频hdxx| 2021天堂中文幕一二区在线观| 在线视频色国产色| 国产精品一区二区三区四区久久| a在线观看视频网站| 亚洲avbb在线观看| 成年版毛片免费区| 每晚都被弄得嗷嗷叫到高潮| 搡老岳熟女国产| 深夜精品福利| 欧美zozozo另类| 国产亚洲av嫩草精品影院| 亚洲成a人片在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦观看免费观看视频高清| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区免费观看 | 亚洲最大成人中文| 99国产极品粉嫩在线观看| 国产蜜桃级精品一区二区三区| 99在线人妻在线中文字幕| 搡老妇女老女人老熟妇| 成人av在线播放网站| 亚洲欧美精品综合久久99| 91老司机精品| 三级男女做爰猛烈吃奶摸视频| 男人舔女人的私密视频| 亚洲av美国av| 亚洲精品中文字幕一二三四区| 毛片女人毛片| 亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 久久国产乱子伦精品免费另类| 欧美黑人欧美精品刺激| 夜夜爽天天搞| 国产成人欧美在线观看| 成人一区二区视频在线观看| 成人特级黄色片久久久久久久| 国产av在哪里看| 1024香蕉在线观看| 亚洲黑人精品在线| 首页视频小说图片口味搜索| 国产激情欧美一区二区| 又紧又爽又黄一区二区| 国产一区在线观看成人免费| 国产精品爽爽va在线观看网站| av超薄肉色丝袜交足视频| 国产麻豆成人av免费视频| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久人妻蜜臀av| 免费无遮挡裸体视频| 精品电影一区二区在线| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看 | 国产麻豆成人av免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av激情在线播放| 久久精品亚洲精品国产色婷小说| 18禁观看日本| 中文字幕人妻丝袜一区二区| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 国产1区2区3区精品| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| 久久精品综合一区二区三区| 欧美色视频一区免费| 亚洲avbb在线观看| 欧美精品亚洲一区二区| 亚洲片人在线观看| 国产黄色小视频在线观看| 精品熟女少妇八av免费久了| 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 18禁观看日本| 久久香蕉国产精品| 欧美乱妇无乱码| 欧美中文综合在线视频| 老司机在亚洲福利影院| av欧美777| 精品国产乱码久久久久久男人| 制服诱惑二区| 亚洲欧美日韩高清在线视频| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 久久亚洲真实| 国产久久久一区二区三区| 国产午夜精品论理片| 亚洲人与动物交配视频| 99精品在免费线老司机午夜| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| av超薄肉色丝袜交足视频| 成年女人毛片免费观看观看9| 日韩欧美在线二视频| 亚洲国产欧美网| 身体一侧抽搐| 亚洲,欧美精品.| 两个人视频免费观看高清| 在线看三级毛片| 50天的宝宝边吃奶边哭怎么回事| 激情在线观看视频在线高清| 国产精品久久久av美女十八| 制服丝袜大香蕉在线| 可以在线观看的亚洲视频| 黄色丝袜av网址大全| 欧美性长视频在线观看| 村上凉子中文字幕在线| 露出奶头的视频| 两性夫妻黄色片| 国产久久久一区二区三区| www日本在线高清视频| 此物有八面人人有两片| 一进一出好大好爽视频| 男插女下体视频免费在线播放| 色av中文字幕| 老司机在亚洲福利影院| 国产免费av片在线观看野外av| 性色av乱码一区二区三区2| 99精品久久久久人妻精品| 久久热在线av| 亚洲成人免费电影在线观看| 五月玫瑰六月丁香| 久久久久九九精品影院| 亚洲国产中文字幕在线视频| 国语自产精品视频在线第100页| 一a级毛片在线观看| 一个人免费在线观看电影 | 亚洲免费av在线视频| 免费在线观看日本一区| 久久精品91蜜桃| 久久99热这里只有精品18| 性色av乱码一区二区三区2| 在线看三级毛片| 韩国av一区二区三区四区| 精品电影一区二区在线| 最近视频中文字幕2019在线8| 国产真实乱freesex| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清专用| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 在线观看午夜福利视频| 久久国产精品人妻蜜桃| 久久久久久人人人人人| 亚洲人成77777在线视频| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 极品教师在线免费播放| 国内精品久久久久精免费| 国内少妇人妻偷人精品xxx网站 | 国产一区二区在线av高清观看| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 精品少妇一区二区三区视频日本电影| 五月玫瑰六月丁香| 又大又爽又粗| 精品高清国产在线一区| 亚洲自拍偷在线| 免费观看人在逋| 欧美一级毛片孕妇| 全区人妻精品视频| 久久精品影院6| 在线观看日韩欧美| 在线国产一区二区在线| 久久国产乱子伦精品免费另类| 黄频高清免费视频| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 午夜免费观看网址| 亚洲精品久久国产高清桃花| 一级毛片精品| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 蜜桃久久精品国产亚洲av| 黄色成人免费大全| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 成人精品一区二区免费| 国产高清激情床上av| 精品久久久久久久末码| 怎么达到女性高潮| 久久久国产欧美日韩av| 色播亚洲综合网| svipshipincom国产片| 在线a可以看的网站| 免费在线观看完整版高清| 禁无遮挡网站| 亚洲国产欧美网| 99re在线观看精品视频| 精品欧美国产一区二区三| 成人18禁在线播放| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 99久久国产精品久久久| 亚洲国产精品合色在线| 日韩欧美一区二区三区在线观看| 又大又爽又粗| 黑人操中国人逼视频| 无遮挡黄片免费观看| av视频在线观看入口| 久久热在线av| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看 | 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 久久中文字幕一级| 成人18禁高潮啪啪吃奶动态图| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 欧美成人午夜精品| 一个人免费在线观看的高清视频| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 一本一本综合久久| 国产亚洲精品综合一区在线观看 | 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 久久久久久久精品吃奶| 亚洲一区二区三区不卡视频| 琪琪午夜伦伦电影理论片6080| 国产又黄又爽又无遮挡在线| 欧美黑人精品巨大| 国产亚洲欧美98| 色哟哟哟哟哟哟| 老鸭窝网址在线观看| 色综合婷婷激情| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| 国产熟女午夜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 国产一区在线观看成人免费| 国产97色在线日韩免费| 亚洲专区国产一区二区| 欧美黑人精品巨大| 两性夫妻黄色片| 在线观看舔阴道视频| 久久这里只有精品中国| 精品熟女少妇八av免费久了| 国产黄片美女视频| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 老汉色∧v一级毛片| 极品教师在线免费播放| 国产久久久一区二区三区| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 后天国语完整版免费观看| 成人永久免费在线观看视频| 在线免费观看的www视频| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 国产一区在线观看成人免费| 非洲黑人性xxxx精品又粗又长| 激情在线观看视频在线高清| 国产精品一区二区三区四区久久| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产 | 女人爽到高潮嗷嗷叫在线视频| 国产高清激情床上av| 操出白浆在线播放| 白带黄色成豆腐渣| 亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯| 国产激情久久老熟女| 99国产精品一区二区三区| 日本 av在线| 美女 人体艺术 gogo| 色老头精品视频在线观看| 亚洲精品久久成人aⅴ小说| 别揉我奶头~嗯~啊~动态视频| 欧美日本视频| 欧美午夜高清在线| 成人国语在线视频| 成人av一区二区三区在线看| 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| 在线免费观看的www视频| 一级作爱视频免费观看| 日韩国内少妇激情av| 九色成人免费人妻av| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 亚洲欧美激情综合另类| 亚洲电影在线观看av| 国产精品av久久久久免费| 一本精品99久久精品77| 村上凉子中文字幕在线| 国产熟女午夜一区二区三区| 一边摸一边做爽爽视频免费| 搡老妇女老女人老熟妇| 99精品在免费线老司机午夜| av欧美777| 可以在线观看的亚洲视频| 国产精品98久久久久久宅男小说| 黄频高清免费视频| 国产av麻豆久久久久久久| 亚洲美女视频黄频| 一级作爱视频免费观看| 精品不卡国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 久久午夜综合久久蜜桃| 午夜福利高清视频| 国产成人精品久久二区二区91| 成人18禁高潮啪啪吃奶动态图| 日韩欧美精品v在线| 91国产中文字幕| 欧美日韩国产亚洲二区| 亚洲av成人av| 人妻久久中文字幕网| 熟女电影av网| 最近视频中文字幕2019在线8| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品第一综合不卡| 毛片女人毛片| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 亚洲中文日韩欧美视频| 欧美黑人欧美精品刺激| 国产高清videossex| 日本五十路高清| 一本久久中文字幕| 757午夜福利合集在线观看| 国产蜜桃级精品一区二区三区| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 欧美日本视频| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 久9热在线精品视频| 久久香蕉精品热| 国产高清有码在线观看视频 | 亚洲va日本ⅴa欧美va伊人久久| 婷婷六月久久综合丁香| 色综合欧美亚洲国产小说| 精品人妻1区二区| av福利片在线| 国产一级毛片七仙女欲春2| 啪啪无遮挡十八禁网站| 国内精品一区二区在线观看| 日本免费a在线| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| netflix在线观看网站| 国产三级黄色录像| 99热这里只有是精品50| 99久久精品热视频| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| a在线观看视频网站| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| a级毛片a级免费在线| 成人欧美大片| 亚洲精品粉嫩美女一区| 日本一本二区三区精品| 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 欧美不卡视频在线免费观看 | 国产1区2区3区精品| 欧美黑人欧美精品刺激| 国产av一区在线观看免费| 免费看a级黄色片| 亚洲美女视频黄频| 好男人在线观看高清免费视频| 精品欧美一区二区三区在线| 人妻夜夜爽99麻豆av| 国产精品久久久久久人妻精品电影| 国产成人av激情在线播放| 亚洲美女视频黄频| 久久热在线av| 久久精品影院6| 日韩大尺度精品在线看网址| 宅男免费午夜| 国产片内射在线| 精品午夜福利视频在线观看一区| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产av在哪里看| 少妇的丰满在线观看| www日本黄色视频网| 免费在线观看黄色视频的| 可以在线观看毛片的网站| 国产精品永久免费网站| 50天的宝宝边吃奶边哭怎么回事| 99久久久亚洲精品蜜臀av| 岛国在线免费视频观看| 成人亚洲精品av一区二区| 搞女人的毛片| 亚洲自拍偷在线| 我要搜黄色片| 国产精品永久免费网站| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 亚洲人成网站高清观看| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| netflix在线观看网站| 国产免费av片在线观看野外av| 日韩有码中文字幕| 欧美日韩国产亚洲二区| 免费av毛片视频| 国产熟女午夜一区二区三区| 亚洲在线自拍视频| 动漫黄色视频在线观看| 成人午夜高清在线视频| 天堂av国产一区二区熟女人妻 | 精品久久久久久成人av| 波多野结衣高清无吗| 免费在线观看黄色视频的| 午夜福利高清视频| 91国产中文字幕| 国产精品乱码一区二三区的特点| 美女大奶头视频| 成人av在线播放网站| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 香蕉久久夜色| 欧美性猛交黑人性爽| www国产在线视频色| 久久国产精品影院| 久久中文字幕人妻熟女| 欧美中文综合在线视频| 久久国产精品影院| 男女做爰动态图高潮gif福利片| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 少妇粗大呻吟视频| 国产高清有码在线观看视频 | 国产aⅴ精品一区二区三区波| 在线观看66精品国产| 天堂√8在线中文| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 女人高潮潮喷娇喘18禁视频| 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 免费在线观看视频国产中文字幕亚洲| 亚洲av电影在线进入| 亚洲av成人精品一区久久| avwww免费| 日本一区二区免费在线视频| 激情在线观看视频在线高清| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 丁香六月欧美| 国产成人系列免费观看| 一本久久中文字幕| www日本在线高清视频| videosex国产| 精品一区二区三区av网在线观看| 午夜福利在线在线| 岛国在线免费视频观看| 国产亚洲精品一区二区www| 麻豆国产97在线/欧美 | 久久人妻av系列| av天堂在线播放| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 小说图片视频综合网站| 免费高清视频大片| 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清| 在线观看美女被高潮喷水网站 | 亚洲人成伊人成综合网2020| 在线观看www视频免费| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 一级毛片女人18水好多| 18禁国产床啪视频网站| 天堂影院成人在线观看| av欧美777| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 国产久久久一区二区三区| 亚洲熟妇熟女久久| 在线十欧美十亚洲十日本专区| 1024手机看黄色片| www日本黄色视频网| 脱女人内裤的视频| 成人午夜高清在线视频| 日本免费一区二区三区高清不卡| 欧美极品一区二区三区四区| 国产精品九九99| 白带黄色成豆腐渣| 久久这里只有精品19| 亚洲激情在线av| 中文资源天堂在线| 俺也久久电影网| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 精品国产乱码久久久久久男人| 在线观看www视频免费| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 亚洲av五月六月丁香网| 亚洲人与动物交配视频| 久久婷婷人人爽人人干人人爱| 国产1区2区3区精品| 一个人观看的视频www高清免费观看 | 成人国语在线视频| 亚洲精品色激情综合| 不卡av一区二区三区| 欧美色视频一区免费| avwww免费| 国产亚洲精品综合一区在线观看 | 好男人电影高清在线观看| 久久久久精品国产欧美久久久| 天天添夜夜摸| 全区人妻精品视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品粉嫩美女一区| 在线a可以看的网站| 国内精品久久久久久久电影| 国产私拍福利视频在线观看| 国产亚洲精品一区二区www| tocl精华| 在线观看一区二区三区| 亚洲国产欧美网| 成人手机av| 国产精品香港三级国产av潘金莲| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 亚洲精品一区av在线观看| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 亚洲av成人不卡在线观看播放网| 正在播放国产对白刺激| 搡老妇女老女人老熟妇| 国产高清视频在线播放一区| 蜜桃久久精品国产亚洲av| 最近视频中文字幕2019在线8| 国产精品亚洲一级av第二区| 久久草成人影院| 九色成人免费人妻av| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看成人毛片| 美女黄网站色视频| 不卡av一区二区三区| 黄色片一级片一级黄色片| 亚洲激情在线av| 成人高潮视频无遮挡免费网站| 别揉我奶头~嗯~啊~动态视频| 亚洲美女视频黄频| 一本综合久久免费| 欧美日韩一级在线毛片|