• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micellar Exchange Kinetics of Quaternary Ammonium Type Gemini Surfactants Monitored by Nuclear Magnetic Resonance

    2018-05-07 02:04:18JunLiuYouruDuShizhenMoMiliLiu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Jun LiuYou-ru DuShi-zhen MoMi-li Liu

    a.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    b.National Engineering Laboratory of Wheat&Corn Further Processing,Henan University of Technology,Zhengzhou 450000,China

    I.INTRODUCTION

    The kinetic and dynamic molecular exchange between monomers in the bulk solution and those in the micelle,and the disintegration and reformation of the micelle are the key factors that affect the properties of surfactants[1].The two distinguishable relaxation processes are the fast process(molecular exchange)with the relaxation time,T1,generally on the order of microseconds and the slow process(disintegration and reformation)with the relaxation time,T2,generally on the order of milliseconds[2?4].

    Nuclear magnetic resonance(NMR)spectroscopy has been used to detect the first class of relaxation dynamic process,i.e.,the molecular exchange kinetics[5].Huc and Oda[6] first reported the slow exchange of 14-2-14 at the NMR time scale,and quantitatively obtained the exchange characteristic time through 1D line shape analysis,which proved that NMR is an effective tool for the study of micellar exchange kinetics in aqueous solution.Afterwards,1D line shape analysis and 2D EXSY have been applied to the qualitative and quantitative analysis of exchange kinetics of some Gemini and conventional surfactants in single surfactant or mixed surfactant systems[7?10].In comparison with other experimental techniques available for studying the surfactant mixtures,NMR has special advantages of nonperturbation and invasion of the sample,as well as a small dosage of sample[11?15].Surfactant monomers in the bulk solution and those in the micelle are treated as two states in NMR methods.

    Gemini surfactants are a new class of surfactants[16,17].They exhibit superior physicochemical properties compared to their analogous conventional surfactants[18?21].In spite of the wide application,kinetic processes of Gemini surfactants are not fully researched[22].The relaxation kinetics of quaternary ammonium type Gemini surfactants,12-s-12,has been investigated by Zanaet al.[23]using the pressure-jump relaxation method,where 12-s-12 was found to exhibit especially longer relaxation time ofT1andT2compared to their corresponding monomeric counterparts and the twostep exchange mechanism was proposed at the first time for explanation.Recently,the exchange kinetic process of 14-s-14(s=2,3 and 4)has been investigated by Cuiet al.,Jianget al.and Liuet al.using NMR methods of the line shape analysis and EXSY,whereas the exchange characteristic time of 14-s-14 at 298 K in the single surfactant as well as the mixed surfactant solution was obtained[8?10].However,the exchange rate constant and the exchange mechanism of 14-s-14 were not further investigated.Afterwards,Jianget al.[24]reported the molecular exchange kinetics of 12-s-12 in the mixed surfactant solution with conventional surfactants.Unfortunately,quantitative results of exchange kinetic parameters for 12-s-12 were lack.

    In this study,we applied DNMR to quantitatively measure the molecular exchange rate constant between monomers in the bulk solution and those in the micelle of Gemini quaternary ammonium surfactants,14-s-14 as well as 12-s-12(s=2,3 and 4).Moreover,the exchange mechanism of Gemini surfactants was also further investigated through measurements of the activation energy and the micro-polarity by temperature variation and fluorescence probe experiments.

    II.EXPERIMENTS

    The Gemini quaternary ammonium surfactants,14-s-14(s=2,3 and 4)and 12-s-12(s=2,3 and 4),were synthesized and supplied by the Southwest Petroleum University(Chengdu,China).D2O with a deuteration of 99.9%and 2,2,3,3-d4-3-(trimethylsilyl)propionic acid sodium(TMSP)with a deuteration of 98%were obtained from Cambridge Isotope Laboratories.Pyrene with a purity of 98%was from ACROS ORGANICS.The reagents were used as received,without any further puri fication.The structures and proton numbering of the surfactants used in this study are shown in Scheme 1.

    Stock solutions of 14-s-14(s=2,3,4)(1.0 mmol/L),12-2-12(2.0 mmol/L),12-3-12(2.4 mmol/L),12-4-12(3.0 mmol/L)in D2O were prepared initially.For 14-s-14,sample solutions at 2 cmc(critical micelle concentration)for 1D line shape analysis were prepared by diluting the stock solution until resonance peak areas for the monomer and the micelle are the same,and sample solutions below cmc were prepared by further dilution until the micelle resonance peaks well disappeared and the half-height line width of monomer resonance peaks no longer changed.For 12-s-12,their stock solutions were stepwise diluted to get a series of sample solutions with concentrations respectively at well below and above cmc for measurement of their cmc values.And their sample solutions at 2 cmc and below cmc for 1D line shape analysis were prepared by dilution of the stock solutions according to the obtained cmc values.

    NMR measurements were performed on a Bruker AVANCE-500 with a proton frequency of 500.13 MHz and Bruker AVANCE-600 with a proton frequency of 600.13 MHz.For all 1D1H NMR spectra,a smallangle pulse of 30°was used rather than 90°in the conventional single-pulse sequence to save time.An external standard of TMSP(0.03 mmol/L)in a capillary was added in sample solutions of 14-s-14.Water suppression was performed with presaturation and the chemical shift of TMSP was calibrated to 0 ppm.Residue HOD was used as the internal standard in sample solutions of 12-s-12. No water suppression was performed and the chemical shift of HDO was calibrated to 4.70 ppm.The fluorescence emission spectra of pyrene were recorded using a Horiba Fluoromax-4 spectro- fluorometer at 298 K,operated at an excitation wavelength of 335 nm,with an excitation slit of 5 nm and an emission slit of 1 nm.The concentration of pyrene added in micellar solutions of each surfactant was 10?6mol/L.

    Scheme 1 Molecular structures and proton numberings of 12-s-12(s=2,3,and 4)and 14-s-14(s=2,3,and 4).

    III.RESULTS AND DISCUSSION

    To well display the exchange process of 14-s-14 and 12-s-12 at the NMR time scale,resonance signals of H6(N-methyl proton)of 14-3-14 and 12-3-12 at different solution concentrations and different temperatures are shown in FIG.1.It is obvious that two sets of resonance peak for 14-s-14 appeared.Resonance signals of micelles,expressed as H6′in the spectra,appeared at the lower field corresponding to those of the free monomers in the bulk solution,expressed as H6 in the spectra.This shows that the exchange of 14-s-14 is slow at the NMR time scale.As for 12-s-12,only one coalesced signal is observed,showing that the exchange process is fast at the NMR time scale.So,different approaches should be considered to treat the experimental data.

    According to the pseudo- first-order chemical exchange process(the two-site exchange reaction)of two states,the exchange equilibrium can be described by Eq.(1).

    FIG.1 The resonance peaks of N-methyl proton,H6 for 14-3-14 and 12-3-12,(a)at different concentrations of 14-3-14 and 294 K,(b)at different concentrations of 12-3-12 and 288 K(The red lines are spectra at 2 cmc and below cmc for 1D line-shape analysis),(c)at different temperatures of 14-3-14 and 2 cmc,(d)at different temperatures of 12-3-12 and 2 cmc.

    Where,SmicandSmonare the surfactant molecules respectively sited at the micelle state and the free monomer state in the bulk solution,k+andk?are the rate constants of the molecule entering from the bulk solution into the micelles and that of the molecule escaping from the micelles into the bulk solution.When the two molecule states,SmicandSmonexchange slowly at the NMR time scale,two sets of NMR signals respectively corresponding to the micellar and the monomeric states are observed as FIG.1(a)shows.Based on twosite exchange equation developed by Gutowsky and Holm[25],the NMR line width broadening at half height of the exchanging singlet compared to the nonexchanging reference singlet can be used to determinek+by the equation:

    where ΔW1/2is the width broadening,which can be determined as the half-height line width(W1/2)difference of the resonance peak of free monomers respectively at the concentration above cmc and below cmc.At the concentration of 2 cmc,the statistical proportions of surfactant molecules at the free monomer state and the micelle state are identical,andk?is equal tok+and can be thus determined.

    When the two states,SmicandSmon,exchange fast at the NMR time scale,only one set of their coalesced signal can be observed as FIG.1(b)shows.The observed resonance frequency(νobs)is actually between the resonance peak of free monomers and that of the micelles,expressed as:

    whereνmonandνmicare the resonance frequencies of free monomers and micelles,respectivly.PmonandPmicare the statistical proportions of surfactant molecules sited at the two states.The half-height line width could be approximately given by Meiboom’s equation[26],

    whereT2is the transverse relaxation time,τis the average residence time.The relationships ofτandk+,k?can be expressed as:

    At the concentration of 2 cmck?is equal tok+and can be determined as 1/2τ.Therefore the half-height line width broadening at 2 cmc is analyzed to measurek?by the equation:

    where ΔW1/2is the exchanging broadening of halfheight line width of the coalesced peak at 2 cmc compared to the resonance peak of free monomers below cmc.And Δνis the frequency difference betweenνmonandνmic,i.e.(νmic?νmon).νmonandνmiccan be determined from the chemical shift(Hz)variation curves as a function of the reciprocal of concentration,i.e.the cmc determination curves[7],where they-intercept values respectively of the linear fitted plot below cmc and of the linear fitted plot above cmc are deemed asνmonand

    Values of cmc of 14-s-14 and 12-s-12 measured by the NMR method[7,9,10]in this study are listed in Table S1(supplementary materials).The calculatedk?values andτmic(the residence time in the micelle)of 14-s-14 determined according to Eq.(2)at 298 K are listed in Table I.Wherein,k?is determined ask+/αto eliminate the concentration deviation from 2 cmc(α=1)ask+is in direct proportion toαat certain concentration range(shown as FIG.S1 in supplementary materials).

    Values ofk?andτmicof 12-s-12 were determined according to Eq.(5)and listed in Table II.

    As Tables I and II show,the magnitude orders ofk?for 14-s-14 and 12-s-12 are respectively 10 and 103s?1,correspondingly,their residence time in micelles are respectively 0.07?0.51 s with the time scale of 10?1s and 0.19?0.54 ms with the time scale of 10?1ms.This shows that 12-s-12 exchanges nearly 103times faster than 14-s-14 in spite of having the same spacer length.It suggests that surfactants with the longer alkyl chains experience the stronger hydrophobic interactions which prevents them escaping from micelles,i.e.a longer residence time in micelles.

    The variations ofk?of 12-s-12 and 14-s-14 with the spacer length are plotted in FIG.2.It shows that the values ofk?of 12-s-12 and 14-s-14 both increase withthe spacer length growing,andk?of 12-s-12 increases slower as compared to that of 14-s-14.

    TABLE I Values of ΔWH6′,ΔWTMSP,ΔWH6and accordingly calculated values of k+,k? and τmicfor 14-s-14 at 298 K.

    TABLE II Values of ΔWH6′,ΔWHDO,ΔWH6,Δν and accordingly calculated values of k? and τmicfor 12-s-12 at 298 K.

    FIG.2 The variations of k?of 14-s-14 and 12-s-12 with the spacer length at 298 K.

    Temperature variation experiments of the exchange process were performed.Tables S2 and S3(supplementary materials)listand accordingly calculated values ofk?of 14-s-14 and 12-s-12 at different temperatures.Results show thatk?values of 14-s-14 and 12-s-12 increased with temperature.Consequently,Ea?could be detected according to the Arrhenius equation:

    Curves of lnk?were fitted as a function of 1/Twith the linear correlation coefficients all above 0.95.Values ofEa?were obtained and are listed in Table III.As Table III shows,Ea?of 14-s-14 and 12-s-12 obviously decreases with the spacer length growing,which well explains the increase ofk?with the spacer length.

    Generally speaking,the micro-polarity inside micelles can be a measure of its hydrophobicity inside the micelle core.The micro-polarity of these surfactant micelles was measured using fluorescence emission spectra.Pyrene(10?6mol/L)was added into the micellar solution with surfactant concentrations at 2 cmc,which wassupposed to be all dissolved in the micelle core.After being excited at 335 nm, fluorescence emission spectra of pyrene were recorded.As well known,the ratio of intensities for the first(I1)and the third(I3)electronic vibration peaks of pyrene are strongly dependent on the micro-polarity of its surrounding environment.The value ofI1/I3is high in pure aqueous solution(1.81 in current study).It would drastically fall when pyrene is dissolved in the hydrophobic core of micelles.The tighter the molecules are packed,the stronger the hydrophobicity and the weaker the micro-polarity in the micelle core,and the lower theI1/I3value would be.

    TABLE III The values of Ea?(kJ/mol)for 14-s-14 and 12-s-12.

    ExperimentalI1/I3values of pyrene in the micelles of 12-s-12 and 14-s-14 are listed in Table IV.

    To better figure out the relationship between the hydrophobicity andEa?,the variation tendencies ofEa?(red symbols and lines)andI1/I3values(black symbols and lines)of 14-s-14 and 12-s-12 with the spacer length are depicted in the FIG.3.

    It clearly shows that,Ea?of 12-s-12 and 14-s-14 almost linearly decreases withsincreasing.However,I1/I3increases less whensincreases from 3 to 4,which accordingly indicates that the hydrophobicity of the micelle core decreases less withsincreasing from 3 to 4.Besides,the micro-polarity of 14-s-14 is lower than that of 12-s-12 with the same spacer length,which suggests that the hydrophobicity inside the micelle core of 14-s-14 is higher than that in 12-s-12 micelles.It should be noted that the hydrophobicity difference between the micelle of 14-s-14 and 12-s-12 with the same spacer length actually gets larger as the spacer length increases.In contrast,the increment ofEa?of 14-s-14compared to 12-s-12 gets smaller.It suggests thatEa?does not totally originate from the intermolecular hydrophobic interactions in the micellar core.Some other factors should be considered.

    TABLE IV The I1/I3values of the pyrene probe inside the micelles of 12-s-12(s=2,3 and 4),and 14-s-14(s=2,3 and 4).

    FIG.3 The Ea?(red colour)and I1/I3values(black colour)of 12-s-12(s=2,3 and 4)and 14-s-14(s=2,3 and 4).

    The Gemini surfactant molecules have to adoptcisconformation inside the micelles due to high hydrophobic interaction. However,leaving from the micelle,thetrans-form should favor the molecule to overcome the intra-hydrophobic interaction between the two alkyl chains.The energy of transformation fromcis-form totrans-form in the micelle depends not only on the intra-molecular hydrophobic interactions but also on the steric effects inside the micelle core.Consequently,Gemini surfactant molecules have to overcome an extra steric hindrance effects inside the micelle core.The longer the spacer length,the looser the hydrophobic chain packed,consequently,the weaker the steric effect inside the micelle.So,the increment in the activation energy for Gemini surfactant to overcome the steric hindrance effect with longer spacer length becomes smaller,which should account for the additional decrease ofEa?in addition to the non-linear weakening of the hydrophobicity inside the micelle with the spacer length increasing.

    FIG.4 Possiblemolecularexchangemodelsbetween monomers in the bulk solution and in the micelle for Gemini surfactants.

    This conclusion actually well supports the two-step exchange model of 12-s-12 put forward by Zanaet al.[23],that is one alkyl chain of Gemini surfactant molecule exit first and then the other when escaping from the micelle.As FIG.4 shows,there should simultaneously exist the two-step exchange and one-step exchange mechanisms for Gemini surfactants,as free monomers in the bulk solution should adopt thetransas well as thecis-conformations in a view of statistic thermodynamics.With the spacer length growing,the statistical proportion of free monomers adopting thetrans-conformation decreases,and so would the proportion of Gemini surfactants to adopt the two-step exchange mechanism.Therefore,the energy for conformation changes of Gemini surfactant molecules to escape from the micelles gets smaller,which should be another factor accounting for the activation energy decrease with the spacer length.

    IV.CONCLUSION

    Quantitative kinetic parameters,k?andEa?,of the molecular exchange process between monomers in the bulk solution and those in the micelle for Gemini quaternary ammonium surfactants were acquired by the DNMR method.The exchange mechanism of Gemini surfactants was further discussed throughEa?and the micro-polarity variations with the spacer length.It was indicated that the conformation change is supposed to be experienced by the Gemini surfactant molecule when it escapes from the micelle,which well supports the possible two-step molecular exchange model for Gemini surfactants.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21375145).

    [1]A.Patist,J.R.Kanicky,P.K.Shukla,and D.O.Shah,J.Colloid Interface Sci.245,1(2002).

    [2]E.A.G.Aniansson and S.N.Wall,J.Phys.Chem.78,1024(1974).

    [3]E.A.G.Aniansson and S.N.Wall,J.Phys.Chem.79,857(1975).

    [4]E.A.G.Aniansson,S.N.Wall,M.Almgren,H.Hoff-mann,I.Kielmann,W.Ulbricht,R.Zana,J.Lang,and C.Tondre,J.Phys.Chem.80,905(1976).

    [5]B.D.Nageswara Rao,Methods Enzymol.176,279(1989).

    [6]I.Huc and R.Oda,Chem.Commun.2025(1999).

    [7]X.H.Cui,Y.Jiang,C.S.Yang,X.Y.Lu,H.Chen,S.Z.Mao,M.L.Liu,H.Z.Yuan,P.Y.Luo,and Y.R.Du,J.Phys.Chem.B114,7808(2010).

    [8]X.H.Cui,X.Y.Yang,H.Chen,A.H.Liu,S.Z.Mao,M.L.Liu,H.Z.Yuan,P.Y.Luo,and Y.R.Du,J.Phys.Chem.B112,2874(2008).

    [9]Y.Jiang,X.Y.Lu,H.Chen,S.Z.Mao,M.L.Liu,P.Y.Luo,and Y.R.Du,J.Phys.Chem.B113,8357(2009).

    [10]J.Liu,Y.Jiang,H.Chen,S.Z.Mao,Y.R.Du,and M.L.Liu,J.Phys.Chem.B116,14859(2012).

    [11]M.Frindi,B.Michels,H.Levy,and R.Zana,Langmuir10,1140(1994).

    [12]J.Lang,J.J.Auborn,and E.M.Eyring,J.Colloid Interface Sci.41,484(1972).

    [13]D.Schaeffel,A.Kreyes,Y.Zhao,K.Landfester,H.J.Butt,D.Crespy,and K.Koynov,ACS Macro Lett.3,428(2014).

    [14]K.Takeda and T.Yasunaga,J.Colloid Interface Sci.40,127(1972).

    [15]T.Zinn,L.Willner,V.Pipich,D.Richter,and R.Lund,ACS Macro Lett.4,651(2015).

    [16]F.M.Menger and C.A.Littau,J.Am.Chem.Soc.115,10083(1993).

    [17]M.J.Rosen and D.J.Tracy,J.Surfactants Deterg.1,547(1998).

    [18]M.Hajy Alimohammadi,S.Javadian,H.Gharibi,A.R.Tehrani-Bagha,M.R.Alavijeh,and K.Kakaei,J.Chem.Thermodyn.44,107(2012).

    [19]M.A.Mir,N.Gull,J.M.Khan,R.H.Khan,A.A.Dar,and G.M.Rather,J.Phys.Chem.B114,3197(2010).

    [20]U.S.Siddiqui,F.Khan,I.A.Khan,and Kabir-ud-Din,J.Solution Chem.41,1133(2012).

    [21]Z.Jiang,J.Liu,K.Sun,J.F.Dong,X.F.Li,S.Z.Mao,Y.R.Du,and M.L.Liu,Colloid Polym.Sci.292,739(2014).

    [22]C.Groth,M.Nydén,K.Holmberg,J.R.Kanicky,and D.O.Shah,J.Surfactants Deterg.7,247(2004).

    [23]W.Ulbricht and R.Zana,Colloids Surf.A183-185,487(2001).

    [24]Y.Jiang,H.Chen,S.Z.Mao,P.Y.Luo,Y.R.Du,and M.L.Liu,J.Phys.Chem.B115,1986(2011).

    [25]H.S.Gutowsky and C.H.Holm,J.Phys.Chem.25,1228(1956).

    [26]N.M.Sergeev,Russ.Chem.Rev.42,339(1973).

    久久人人爽av亚洲精品天堂| 国产爽快片一区二区三区| 日本欧美视频一区| 久久久久国产网址| 久久久久久久久久人人人人人人| 叶爱在线成人免费视频播放| 亚洲精品视频女| 性高湖久久久久久久久免费观看| 久久久久久久大尺度免费视频| 考比视频在线观看| 亚洲久久久国产精品| 国产不卡av网站在线观看| 午夜福利,免费看| a级片在线免费高清观看视频| 五月开心婷婷网| 日本免费在线观看一区| 看非洲黑人一级黄片| 日本午夜av视频| 99热网站在线观看| av片东京热男人的天堂| 男女边吃奶边做爰视频| 日日爽夜夜爽网站| 下体分泌物呈黄色| 热99国产精品久久久久久7| 亚洲五月色婷婷综合| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 麻豆av在线久日| 免费人妻精品一区二区三区视频| 久久久久精品久久久久真实原创| 只有这里有精品99| 中文字幕色久视频| 97在线视频观看| 国产精品女同一区二区软件| 亚洲四区av| 精品少妇一区二区三区视频日本电影 | 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 高清黄色对白视频在线免费看| 日韩av不卡免费在线播放| 久久精品国产自在天天线| 成人国产av品久久久| 成人国产一区最新在线观看| 国产欧美日韩一区二区三| 国产黄a三级三级三级人| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图 男人天堂 中文字幕| 日本一区二区免费在线视频| 国产精品 欧美亚洲| 精品国内亚洲2022精品成人| 色综合婷婷激情| 国产激情欧美一区二区| 9热在线视频观看99| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 日本黄色日本黄色录像| 日本a在线网址| 欧美日韩福利视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 少妇粗大呻吟视频| 天天影视国产精品| 丰满的人妻完整版| 午夜福利在线免费观看网站| 久久午夜亚洲精品久久| 日本三级黄在线观看| 日韩大尺度精品在线看网址 | 女生性感内裤真人,穿戴方法视频| 天天影视国产精品| 美女高潮到喷水免费观看| 俄罗斯特黄特色一大片| 三级毛片av免费| 欧美中文综合在线视频| 99久久99久久久精品蜜桃| 在线观看66精品国产| 好男人电影高清在线观看| 国产真人三级小视频在线观看| 亚洲精品国产区一区二| 国产在线观看jvid| 黄色视频不卡| 老鸭窝网址在线观看| 麻豆国产av国片精品| 自拍欧美九色日韩亚洲蝌蚪91| 欧美久久黑人一区二区| 久久精品亚洲熟妇少妇任你| 日本免费一区二区三区高清不卡 | 搡老熟女国产l中国老女人| 美女国产高潮福利片在线看| 嫩草影视91久久| 婷婷六月久久综合丁香| 国产黄a三级三级三级人| 久久99一区二区三区| 一级片免费观看大全| 国产成人欧美在线观看| 国产精品一区二区精品视频观看| 国产又爽黄色视频| 老鸭窝网址在线观看| 国产高清国产精品国产三级| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 亚洲国产精品合色在线| 亚洲成人国产一区在线观看| 久9热在线精品视频| 国产精品电影一区二区三区| 亚洲自拍偷在线| 18禁美女被吸乳视频| 99久久综合精品五月天人人| 黑人巨大精品欧美一区二区mp4| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| netflix在线观看网站| 国产野战对白在线观看| 天堂中文最新版在线下载| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 国产成人系列免费观看| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 久久久国产精品麻豆| 97超级碰碰碰精品色视频在线观看| 免费观看精品视频网站| 国产伦一二天堂av在线观看| 少妇 在线观看| 亚洲精品一区av在线观看| 久久精品影院6| 69av精品久久久久久| 99久久国产精品久久久| 脱女人内裤的视频| 国产99白浆流出| 亚洲第一av免费看| 亚洲久久久国产精品| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 操美女的视频在线观看| 国产片内射在线| 日韩免费高清中文字幕av| 999精品在线视频| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 欧美日韩一级在线毛片| 成人影院久久| 不卡一级毛片| 国产伦人伦偷精品视频| 午夜久久久在线观看| 黄色成人免费大全| 久久香蕉国产精品| 国产成人欧美在线观看| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| 一级作爱视频免费观看| 热99国产精品久久久久久7| 午夜福利一区二区在线看| 久久性视频一级片| 亚洲av成人一区二区三| 欧美黑人精品巨大| 欧美日韩视频精品一区| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产清高在天天线| 99香蕉大伊视频| 搡老熟女国产l中国老女人| 巨乳人妻的诱惑在线观看| 国产黄色免费在线视频| 91精品国产国语对白视频| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 欧美最黄视频在线播放免费 | 日韩欧美免费精品| 国产av一区在线观看免费| 999精品在线视频| 丝袜美腿诱惑在线| 多毛熟女@视频| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 伦理电影免费视频| 国产欧美日韩一区二区三区在线| 亚洲五月天丁香| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 精品久久久久久电影网| 国产精品免费视频内射| 国产精品爽爽va在线观看网站 | 男女下面插进去视频免费观看| 久久影院123| 好男人电影高清在线观看| 久久久久久久精品吃奶| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品合色在线| 成人亚洲精品一区在线观看| 搡老乐熟女国产| 欧美一区二区精品小视频在线| 精品国产乱码久久久久久男人| svipshipincom国产片| ponron亚洲| 欧美成人性av电影在线观看| 国产成人免费无遮挡视频| 亚洲一区中文字幕在线| 午夜福利,免费看| 久9热在线精品视频| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 看片在线看免费视频| 涩涩av久久男人的天堂| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 啦啦啦 在线观看视频| 中国美女看黄片| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 国产色视频综合| 午夜福利影视在线免费观看| 国产精品九九99| 欧美另类亚洲清纯唯美| 女人被躁到高潮嗷嗷叫费观| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 另类亚洲欧美激情| 黄色片一级片一级黄色片| 亚洲专区字幕在线| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 悠悠久久av| 中文字幕人妻丝袜制服| 免费一级毛片在线播放高清视频 | 中文字幕人妻丝袜制服| 男男h啪啪无遮挡| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 悠悠久久av| 亚洲黑人精品在线| 国产精品野战在线观看 | 免费观看精品视频网站| av欧美777| 欧美色视频一区免费| 不卡av一区二区三区| 国产一区二区三区综合在线观看| 正在播放国产对白刺激| 精品一品国产午夜福利视频| 最新在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 香蕉国产在线看| 色婷婷久久久亚洲欧美| 叶爱在线成人免费视频播放| 丝袜美足系列| 亚洲av成人av| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| www日本在线高清视频| 啦啦啦 在线观看视频| 国产片内射在线| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 男人舔女人的私密视频| 久久香蕉激情| 亚洲一区二区三区色噜噜 | 色播在线永久视频| 亚洲av美国av| 亚洲欧美精品综合久久99| 每晚都被弄得嗷嗷叫到高潮| 欧美精品一区二区免费开放| 国产亚洲精品久久久久久毛片| 男女之事视频高清在线观看| 亚洲午夜理论影院| 日本黄色日本黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 美女午夜性视频免费| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 亚洲一区二区三区欧美精品| 又黄又爽又免费观看的视频| 黄频高清免费视频| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三区在线| 麻豆国产av国片精品| 女同久久另类99精品国产91| 亚洲国产精品一区二区三区在线| 国产熟女xx| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 日韩视频一区二区在线观看| 国产1区2区3区精品| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 999久久久国产精品视频| 中文欧美无线码| av免费在线观看网站| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 久久久久久久午夜电影 | 极品教师在线免费播放| 国产亚洲精品综合一区在线观看 | 午夜福利影视在线免费观看| 俄罗斯特黄特色一大片| 香蕉久久夜色| 欧美黄色片欧美黄色片| 在线av久久热| 新久久久久国产一级毛片| 一级片免费观看大全| 淫妇啪啪啪对白视频| av欧美777| 久久草成人影院| 国产深夜福利视频在线观看| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 久久久久九九精品影院| 水蜜桃什么品种好| 亚洲黑人精品在线| 国产精品1区2区在线观看.| 黄频高清免费视频| 欧美精品啪啪一区二区三区| cao死你这个sao货| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点 | 少妇的丰满在线观看| 人人妻,人人澡人人爽秒播| 后天国语完整版免费观看| 午夜两性在线视频| 久久性视频一级片| 久久婷婷成人综合色麻豆| 久久性视频一级片| 999精品在线视频| 成人手机av| 欧美成人午夜精品| 成年人黄色毛片网站| 久久香蕉精品热| 久久久久国内视频| 国产精品亚洲一级av第二区| 大香蕉久久成人网| 精品国产超薄肉色丝袜足j| 久久精品91无色码中文字幕| 亚洲人成网站在线播放欧美日韩| 99riav亚洲国产免费| 麻豆成人av在线观看| 交换朋友夫妻互换小说| 少妇 在线观看| 18美女黄网站色大片免费观看| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜制服| 又黄又爽又免费观看的视频| 电影成人av| 午夜激情av网站| 高清黄色对白视频在线免费看| 欧美国产精品va在线观看不卡| 国产伦人伦偷精品视频| 亚洲国产精品合色在线| 日韩人妻精品一区2区三区| 一本大道久久a久久精品| 大陆偷拍与自拍| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| av电影中文网址| 久久中文字幕一级| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 一二三四在线观看免费中文在| av网站免费在线观看视频| 曰老女人黄片| 亚洲精华国产精华精| 成年版毛片免费区| 亚洲五月天丁香| 亚洲五月色婷婷综合| 18禁裸乳无遮挡免费网站照片 | 国产高清国产精品国产三级| 国产精品二区激情视频| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| a级毛片黄视频| 夜夜爽天天搞| 亚洲熟女毛片儿| 十八禁人妻一区二区| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 老司机靠b影院| 国产欧美日韩一区二区精品| 日本免费一区二区三区高清不卡 | 午夜91福利影院| 黑丝袜美女国产一区| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 一边摸一边做爽爽视频免费| 在线看a的网站| 国产精品电影一区二区三区| 亚洲精品国产区一区二| 日韩欧美国产一区二区入口| 国产成人精品无人区| 欧美大码av| 国产亚洲精品第一综合不卡| 日本精品一区二区三区蜜桃| 人成视频在线观看免费观看| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| 亚洲欧美日韩无卡精品| 99香蕉大伊视频| 亚洲熟女毛片儿| 男女下面插进去视频免费观看| 国产亚洲精品综合一区在线观看 | 午夜亚洲福利在线播放| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av| 久久热在线av| 免费看a级黄色片| 国产av又大| 女性被躁到高潮视频| 成人免费观看视频高清| 级片在线观看| 亚洲成人精品中文字幕电影 | 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 在线观看66精品国产| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 久久久久久大精品| 精品一区二区三区av网在线观看| 在线观看免费视频网站a站| 高清av免费在线| 欧美在线黄色| 成人18禁高潮啪啪吃奶动态图| 99在线人妻在线中文字幕| 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 午夜精品国产一区二区电影| 欧美丝袜亚洲另类 | 香蕉丝袜av| 香蕉久久夜色| 国产精品久久视频播放| 国产高清视频在线播放一区| 少妇的丰满在线观看| 国产蜜桃级精品一区二区三区| 我的亚洲天堂| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| 99riav亚洲国产免费| 老汉色∧v一级毛片| bbb黄色大片| 91成人精品电影| 午夜久久久在线观看| 国产精品二区激情视频| 搡老熟女国产l中国老女人| 最近最新中文字幕大全免费视频| 亚洲 欧美 日韩 在线 免费| 国产精品秋霞免费鲁丝片| 国产xxxxx性猛交| 久久影院123| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美大码av| 国产精品二区激情视频| 精品第一国产精品| 1024香蕉在线观看| 级片在线观看| 国产高清激情床上av| 亚洲免费av在线视频| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 激情视频va一区二区三区| 大型av网站在线播放| 日韩大尺度精品在线看网址 | cao死你这个sao货| 悠悠久久av| 女人被狂操c到高潮| 亚洲视频免费观看视频| 亚洲av片天天在线观看| 亚洲五月天丁香| 国产精品综合久久久久久久免费 | 久久午夜综合久久蜜桃| 国产精品爽爽va在线观看网站 | 多毛熟女@视频| 欧美日本中文国产一区发布| 欧美性长视频在线观看| 91国产中文字幕| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 国产一区二区三区综合在线观看| 久久精品亚洲熟妇少妇任你| 如日韩欧美国产精品一区二区三区| 涩涩av久久男人的天堂| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 黑人巨大精品欧美一区二区mp4| 黄色片一级片一级黄色片| 久久狼人影院| 人人妻人人添人人爽欧美一区卜| 日本免费a在线| 亚洲欧美日韩另类电影网站| 国产极品粉嫩免费观看在线| 国产一区在线观看成人免费| 精品一区二区三区av网在线观看| 日本免费a在线| 丰满饥渴人妻一区二区三| 夜夜夜夜夜久久久久| 亚洲激情在线av| 色综合婷婷激情| 中亚洲国语对白在线视频| 自线自在国产av| 国产精品久久电影中文字幕| 国产精品日韩av在线免费观看 | 久热这里只有精品99| 黄色毛片三级朝国网站| 国产成人精品无人区| 少妇粗大呻吟视频| 美女扒开内裤让男人捅视频| 欧美日本中文国产一区发布| a级毛片黄视频| 99精品久久久久人妻精品| 午夜福利欧美成人| 国产精品野战在线观看 | 99久久久亚洲精品蜜臀av| 91麻豆av在线| 日本精品一区二区三区蜜桃| 成年人黄色毛片网站| 亚洲国产精品999在线| 黄色怎么调成土黄色| 亚洲欧美一区二区三区黑人| 99久久久亚洲精品蜜臀av| 久久久国产一区二区| 亚洲精品国产精品久久久不卡| 亚洲一区中文字幕在线| 亚洲人成电影观看| 成人特级黄色片久久久久久久| tocl精华| 黄色 视频免费看| 午夜精品在线福利| 亚洲成人久久性| 免费在线观看黄色视频的| 成人av一区二区三区在线看| 麻豆国产av国片精品| 老汉色∧v一级毛片| 99久久国产精品久久久| 涩涩av久久男人的天堂| 亚洲欧美精品综合久久99| 国产av一区二区精品久久| 国产aⅴ精品一区二区三区波| 亚洲久久久国产精品| 黄色毛片三级朝国网站| 99精国产麻豆久久婷婷| 老司机亚洲免费影院| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| av福利片在线| 午夜影院日韩av| www.精华液| 亚洲成av片中文字幕在线观看| 亚洲中文日韩欧美视频| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 视频在线观看一区二区三区| 久久国产精品影院| bbb黄色大片| 亚洲视频免费观看视频| 高清欧美精品videossex| 69精品国产乱码久久久| 两个人免费观看高清视频| 午夜91福利影院| 久久午夜亚洲精品久久| 精品一品国产午夜福利视频| netflix在线观看网站| 欧美乱妇无乱码| 在线观看免费视频网站a站| 9191精品国产免费久久| 欧美乱妇无乱码| 在线观看免费视频网站a站| 精品国产国语对白av| 制服诱惑二区| 一a级毛片在线观看| 亚洲午夜理论影院| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久成人aⅴ小说| 久久精品国产综合久久久| 制服诱惑二区| 久久精品国产亚洲av香蕉五月| 一本综合久久免费| 中文字幕人妻熟女乱码| 欧美午夜高清在线| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 午夜福利,免费看| 欧美不卡视频在线免费观看 | 日本 av在线| 亚洲av成人一区二区三| 后天国语完整版免费观看| 午夜福利一区二区在线看| 欧美 亚洲 国产 日韩一|