• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Sensitive Silver Nanorod Arrays for Rapid Surface Enhanced Raman Scattering Detection of Acetamiprid Pesticides

    2018-05-07 02:04:17CiqinHnYueYoWenWngLiuqinToWenxinZhngWhitneyMrvellIngrmKngzhenTinYingLiuAixiLuYingWuChngchunYnLuLuQuHitoLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Ci-qin HnYue YoWen WngLiu-qin ToWen-xin ZhngWhitney Mrvell IngrmKng-zhen TinYing LiuAi-xi LuYing WuChng-chun YnLu-Lu QuHi-to Li

    a.Jiangsu Key Laboratory of Advanced Laser Materials and Devices,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    b.School of Chemistry and Materials Science,Jiangsu Normal University,Xuzhou 221116,China

    c.Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry,Jiangsu Normal University,Xuzhou 221116,China

    d.Department of Physics and Astronomy,and Nanoscale Science and Engineering Center,University of Georgia,Athens,Georgia 30602,USA

    I.INTRODUCTION

    Acetamiprid is a commonly used neonicotinoid pesticide in modern farming for exterminating pests and increasing crop yields[1].However,the acetamiprid residue can result in food and surface and/or groundwater contamination,which is potentially harmful to humans.Thus,the development of a rapid,simple,and sensitive detection for acetamiprid on food surfaces is particularly important.Some methods such as gas chromatography(GC)[2?4],high performance liquid chromatography(HPLC)[5,6],enzyme linked immunosorbent assay(ELISA)[7,8]and colorimetry[9,10]have been employed to analyze pesticides.However,these methods suffer from a complex pretreatment process and a long detection time,which are not conducive to real-time monitoring and on-site testing.

    Recently, surface-enhanced Raman scattering(SERS)spectroscopy emerged as a method that can enhance the original Raman signal of molecules based on a strong localized electric field generated on a roughened metal surface[11,12].It has aroused much interest in agriculture and food safety due to its capacity for rapid,simple,and sensitive detection[13].For example,Fanet al.detected phosmet in fruits and vegetables by gold-coated SERS substrates,where signals possessed the good reproducibility and stability[14].Mulleret al.investigated the possibility to detect thiabendazole from chemically treated bananas and citrus fruits samples by SERS[15].Zhanget al.fabricated the single-crystal silver nanowires with good draw ratios and smooth surfaces,which can be applied to the detection of pesticide thiram[16].However,most of the SERS substrates have disadvantages in reproducibility,sensitivity and stability,which limits the potential ap-plication of SERS for detection.

    Oblique angle deposition(OAD)has been recognized as a stable and effective method to fabricate nanostructures.In our previous work,the OAD method has been used to fabricate different silver or gold nanostructures by changing various deposition conditions such as the material thickness and deposition angle[17?19].Moreover,the silver nanorod(AgNR)array SERS substrates fabricated by OAD exhibit good sensitivity and high reproducibility.To improve the reproducibility and sensitivity for SERS detection of acetamiprid,in the present work,AgNR array SERS substrates were prepared by OAD.However,in practical applications,the oxidation of the AgNRs and the adsorption of impurities onto the substrate decreases the overall signal strength of samples and it increases background noise of AgNR array substrates.To resolve these problems,the substrates surfaces are cleaned commonly by a plasma cleaner,which is expensive and inconvenient to operate.Therefore,we developed and evaluated two cleaning methods to remove the impurities on AgNR array substrates.Then,the cleaned substrates were applied to the detection of acetamiprid.The characteristic peak and vibration attribution of acetamiprid were determined by DFT simulation.The detection limit was improved and a new method for rapid detection of pesticide was proposed.

    II.EXPERIMENTS

    A.Materials

    Acetamiprid pesticide,methanol,acetone,nitric acid,sulfuric acid and hydrogen peroxide were purchased from Sinopharm Chemical Reagent Co.,Ltd.(China).Silver(99.999%)and titanium(99.995%)pellets were obtained from Kurt J.Lesker Co.,Ltd.(USA).Ultrapure water(≥18.2 M?)was used in all experiments.

    B.Fabrication of AgNR substrates

    Glass slides were cut into 1 cm×1 cm as the supporting substrate for growing AgNR arrays.The glass slides were cleaned in Piranha solution(80%sulfuric acid,20%hydrogen peroxide),rinsed with de-ionized water,and then dried with nitrogen gas.Then,the cleaned glass slides were mounted at deposition angle of 0°inside deposition chamber.Under the pressure of 1×10?6Torr,20 nm titanium film and 500 nm silver film were deposited with the rate of 0.2 and 0.3 nm/s by using an electron beam evaporation equipment(DE500 electron beam evaporation deposition system,DE instrument technology,Beijing),respectively.Subsequently,the substrate holder rotated at a deposition angle of 86°,and another 2000 nm silver film was deposited with the rate of 0.3 nm/s(FIG.1(a)).

    FIG.1(a)Schematic diagram of the AgNR array fabricated by OAD.(b)The top-view SEM image of the AgNR array substrate.(c)The cross-section SEM image of the AgNR array substrate.

    The top-view and cross-section SEM images of the Ag-NRs were obtained as shown in FIG.1(b)and(c).The measured nanorod lengthL=(1100±90)nm,the rod diameterD=(150±70)nm,the average rod-to-rod spacingS=(130±40)nm,and the nanorod tilting angleβ=74°±3°are de fined.

    C.Methods of cleaning the AgNR substrates

    The common methods for cleaning the AgNR array substrates are the chemical and physical elution.For this study,the first method evaluated was nitric acid(10?7mol/L,diluted by DI water)to wash the AgNR substrates(FIG.2).The substrates were placed into the solution,and the silver oxide on the surface was removed by reacting with nitric acid.After one minute,the cleaned AgNR substrates were rinsed with methanol at least two times in order to remove the residual liquid on the substrate.After the methanol on the surface evaporated,AgNR substrate can be used for SERS detection.The second cleaning method evaluated was a mixed solution of methanol and acetone.The cleaning process was similar to the nitric acid cleaning process:substrates were immersed in the acetone methanol mixture for one minute,then rinsed with methanol.

    D.Density function theory(DFT)calculation

    The Gaussian 09 W DFT package was used to calculate the Raman spectrum of acetamiprid and identify the corresponding vibrational modes.The DFT calculations were based on Becke’s three-parameter exchange function(B3)with the dynamic correlation function of Lee,Yang,and Parr(LYP).The molecular structure of acetamiprid was optimized using B3LYP function in conjunction with a modest 6-311G basis set.After the modi fication of the molecular structure,putting a silver atom beside the acetamiprid molecular,the SERS spectrum of acetamiprid was calculated with a modest LANL2DZ basis set.

    FIG.2 Schematic diagram of two cleaning methods for AgNR array substrates,(a)the nitric acid cleaning and(b)the organic reagent cleaning.

    E.SERS measurements

    A commonly used probe molecule,trans-1,2-bis(4-pyridyl)ethane(BPE),was dissolved with methanol and reached the final concentration of 10?5,10?6,10?7,10?8,10?9,10?10mol/L.A 2 μL solution sample was applied to the AgNR substrate to detect the Raman signals after air-dried.The acetamiprid pesticide powder samples(100 mg,20%acetamiprid)were directly dissolved in the 100 mL deionized water with a concentration of 1000 mg/L as the standard solution.Then,the solution was diluted to the different concentrations:100,50,10,5,1,and 0.5 mg/L for SERS measurements.For the practical application study,5μL of acetamiprid solution was added onto the surface of cucumber.After the solution dried in air,a droplet of 5μL water was added onto the spot to extract the acetamiprid.For SERS detection,samples were detected by the portable Raman Spectrometer(BWS465,B&W TEK,USA).Before testing,AgNR array substrates were put on the platform of the instrument to obtain the background signals.The excitation wavelength was 785 nm,the spot size of laser was 85μm and the scanning range was from 350 cm?1to 1800 cm?1.All of the spectra were acquired from nine randomly selected spots with a laser power of 30 mW and integration time of 5 s.

    III.RESULTS AND DISCUSSION

    A.Pretreatment of AgNR array substrates

    Once exposed to the air,the AgNRs array substrates oxidize rapidly,thus resulting in the dramatic decrease of SERS activity.In addition,the impurities in the air may adsorb on the surface of AgNR array substrates,causing high background SERS signals,which may conceal the signal of the analytes.Thus,the main components on the AgNR array substrate surface are silver oxide and other pollutants.To improve SERS activity of the AgNRs array substrates,our first purpose is to remove silver oxide.Nitric acid is the most commonly used acid solution,which can react with silver oxide from the silver nanorod surface. In order to remove the Ag2O effectively,the total mass of Ag2O on the surface of silver nanorods was estimated asg(Text S1 in supplementary materials).According to the chemical reaction(Text S2 in supplementary materials),the amount of dilute nitric acid material was 4.914×10?8mol when fully reacted.

    The background signals of the substrate cleaned by nitric acid were shown in FIG.3(a).Compared with the untreated substrate,the Raman peaks at 891,966,1039,1407,and 1635 cm?1appeared after washing it with nitric acid.With the increasing concentrations of nitric acid,the peaks at 891,966,1407,and 1635 cm?1decreased.It indicated the reaction of silver oxide and nitric acid on the substrate.At 1039 cm?1,the peak intensity increases with the nitric acid increased,which is possibly due to the reaction product.The background signal suggested that the nitric acid cleaning process removed the silver oxide,however,new impurities were introduced.Subsequently,SERS activity of AgNRs which reacted with different concentration of acid was investigated,as shown in FIG.3(b).The SERS signal intensity of BPE was the strongest after 4.914×10?8mol nitric acid cleaning,which accords with theoretical calculation.When the acid was fewer or excess,the SERS intensity of BPE peaks decreased,which may be caused by other emerging impurities[20,21].

    FIG.3(a)The background signal of the AgNRs substrate and(b)the SERS signal of 10?5mol/L BPE solution on AgNR substrate after washing with different concentration of nitric acid.

    Another method to clean the SERS substrate is to remove the silver oxide with methanol,and remove the impurities on the AgNRs substrate with acetone(Text S2 in supplementary materials).After the substrate was washed with the mixed solvent of methanol and acetone in different ratios,the background signals on the substrate were recorded and displayed in FIG.4(a).The results show that the background signal of the uncleaned substrate is strong,and there are sharp peaks at 836,1001,and 1598 cm?1.When the ratio of methanol to acetone solution increased,the background peaks of the substrate gradually increased.At ratios of 1:9 and 3:7,the background signals were weakened signi ficantly and even faded,indicating that no or less impurities was on the substrate surface.

    To con firm that the SERS performance of the cleaned substrate was improved,BPE with different concentrations was added to the cleaned substrate surface.As shown in FIG.4(b),the characteristic peaks intensity of BPE increased with the increasing of solution concentration.The peaks of BPE were clearly identi fied at Δν=884,1012,1199,1604,and 1635 cm?1.The limit of detection(LOD)of BPE solution was 10?6mol/L for the uncleaned substrate(FIG.S1 in supplementary material).When the ratio of methanol to acetone was 1:9,the LOD was 10?8mol/L.The characteristic peak intensities of the same concentration of BPE on the substrate after cleaning with methanol:acetone of 3:7 were much higher,which shows an LOD of 10?9mol/L and the enhancement factor(EF)of 5.7×107(Text S3 and FIG.S2 in supplementary materials).Therefore,the ratio of 3:7 was better for cleaning of AgNR substrates.

    FIG.4(a)The background signal of AgNR substrates after washing with the mixture of methanol and acetone in different ratios.(b)The SERS signal of BPE recorded from the AgNR substrates after washing with methanol and acetone(3:7).

    From the above results,we found the SERS performances were improved signi ficantly after cleaning the substrate with two methods.However,the acid cleaning introduces pollution and increases the background signal,which may affect actual detection.Organic cleaning process is simple,and the pollution of cleaning is less than that of nitric acid cleaning.After cleaning,the substrate background signal tends to be smooth,which improves the actual detection sensitivity. Moreover,the organic cleaning achieved the LOD of 10?9mol/L,which was 1000 times greater than an uncleaned substrate.

    In addition,the AgNRs substrates exhibited a high reproducibility after cleaning.The relative standard deviations(RSDs)of spot-to-spot and batch-to-batch are around 8.96%and 16.65%,respectively(FIG.S3 in supplementary materials),which is comparable to the previous reported SERS substrates[13,22,23].Furthermore,to determine the stability of the cleaned substrates,SERS signals of 10?5mol/L BPE solution were collected from the substrates with various storage time.As the result displays,the SERS intensity of BPE did not show the obvious changes with increasing storage time after cleaning,which means the AgNR substrate after cleaning is stable during the half an hour(FIG.S4 in supplementary materials).

    FIG.5 (a)The optimized molecular structure of acetamiprid.(b)The Raman spectrum of acetamiprid calculated by DFT,the SERS spectrum of acetamiprid calculated by DFT and SERS spectrum of acetamiprid.Spectra were normalized by the most intensive peaks and offset for clari fication.

    B.Detection of acetamiprid

    To expand the applicability of the AgNRs,acetamiprid,a new neonicotinoid class of systemic insecticides,was detected using AgNRs.The stable molecular structure,Raman spectrum and SERS spectrum were initially simulated by the density function theory(DFT)calculation(FIG.5).Compared with the experimental SERS spectrum,the position of sample’s characteristic peaks and their corresponding vibration modes can be obtained.

    The optimized molecular structure of acetamiprid was shown in FIG.5(a).The characteristic peak positions of acetamiprid were identi fied as Δν=745,1336,and 1535 cm?1.The experimental and calculated Raman shifts and their corresponding vibrational mode using these optimized structures were summarized in Table I.

    FIG.6(a)SERS signals of acetamiprid solution with different concentrations acquired on AgNR substrates.(b)SERS intensity of acetamiprid peak at 745 cm?1with different concentrations.The black line is the detectable control line(3σ=613).The red line is the exponential fitting.

    All characteristic peaks arise from different forms of molecular vibrations.For example,among the 10 identi fied peaks of the SERS spectrum shown in the Table I,the weak peak at Δν=502 cm?1is attributed to the H12-C10-H11 rocking vibration mode. The N22-C21=N17 wagging and C1-C2-C3 wagging vibration mode were found to have peaks at Δν=602 cm?1and Δν=651 cm?1.A strong peak at Δν=745 cm?1attributes to the C1?H5 wagging vibration mode and C14?C15 stretching.The characteristic peak at Δν=957 cm?1is assigned to the C4-C5-N26 scissoring mode. The N26?C5 stretching vibration correlates to Δν=1092 cm?1,and the C2?C10 stretching to Δν=1272 cm?1.The H12-C10-H11 antisymmetrical mode has a strong peak intensity at Δν=1336 cm?1,and a moderate peak intensity peak at Δν=1535 cm?1is assigned to ring breathing.

    In order to determine the LOD of the acetamiprid by AgNR substrates,different concentrations acetamiprid solutions were measured. Even at the concentration of 0.1 mg/L,the relevant characteristic peaks at Δν=745,1336,and 1535 cm?1can be distinguished(FIG.6(a)).The relationship between the SERS intensity of representative peak at 745 cm?1and the concentration of acetamiprid was measured,as shown in FIG.6(b).A linear correlation between SERS intensities and logarithmic concentration was observed,I=5573.0(logC)+3505.5.The LOD and LOQ were estimated to be 0.05 mg/L(3σmethod,σis the mean square root of the noise signal,which was determined by standard deviation of the spectral intensity at a spectral region:1700?1800 cm?1)and 0.01 mg/L(10σmethod)utilizing the silver nanorod array SERS substrates as a platform,which was much lower than the China national standard 1 mg/L.This result indicates the high sensitivity of AgNRs for pesticide qualitative detection.

    TABLE I The major Raman and SERS peaks of acetamiprid calculated by DFT and the experiment SERS peaks of acetamiprid,and their corresponding vibration modes.

    The substrates cleaned by the organic solution were employed to test the acetamiprid from a cucumber surface.For each measurement trial,a different concentration of acetamiprid solution was add onto the cucumber surface.After extraction by water,the SERS signal of acetamiprid was obtained,as shown in FIG.7.The peaks at Δν=745,1336,and 1535 cm?1were observed clearly.Table S1 shows the recoveries of acetamiprid from cucumber by inserting the Raman intensities into the calibration curve from FIG.6(b).The recoveries of spiked acetamiprid can achieve 71.6%?115.1%.The good recovery reveals that our AgNRs is reliable in determining acetamiprid residual on the cucumber.This result showed that the real application can be achieved using the highly sensitive and reproducible AgNRs.

    IV.CONCLUSION

    The AgNR array substrates were fabricated by the oblique angle deposition for highly sensitive detection of acetamiprid.To remove impurities on the AgNRs substrate and improve the detection ability of the substrates,nitric acid or organic solvent cleaning,were applied to pretreat the substrate surface,respectively.The LOD of BPE after organic cleaning was determined to be 10?9mol/L and the SERS performance was improved 1000 times than those uncleaned.The acetamiprid molecule structure,the Raman spectrum and SERS spectrum were obtained by DFT simulation calculations.The characteristic peaks and their corresponding vibrational modes were also determined.In addition,the acetamiprid on cucumber was tested by the AgNR array with a LOD of 0.05 mg/L.The results suggested that the cleaned AgNR substrates can be used for SERS detection of pesticide residues on the surface of vegetables.This method provids an effective and sensitive strategy for monitoring residues on agricultural products.

    FIG.7 The SERS signal of acetamiprid with different concentrations extracted from cucumber.

    Supplementary material:Calculation of the mass of Ag2O on the AgNR surface(Text S1),reaction of chemicals on the AgNR surface during the cleaning(Text S2),effect of the different organic solutions and the LOD of BPE(FIG.S1),calculation of the SERS EF of the AgNR array(Text S3),SERS spectrum and Raman spectrum of BPE(FIG.S2),reproducibility of AgNR array(FIG.S3),effect of storage time on SERS signals(FIG.S4),and recovery of real sample detection(Table S1)are given.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.61575087,No.21505057,and No.61771227),the Natural Science Foundation of Jiangsu Province(No.BK20151164,No.BK20150227,and No.BK20170229),the Innovation Project of Jiangsu Province(No.KYLX161322),theNaturalScience Foundation of the Jiangsu Higher Education Institutions(No.17KJB140007)and Foundation of Xuzhou City(No.KC15MS030). The authors would like to thank Layne Bradley for his assistance with linguistic revision,and a Project Funded the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1]N.S.Chatterjee,S.Utture,K.Banerjee,T.P.A.Shabeer,N.Kamble,S.Mathew,and K.A.Kumar,Food Chem.196,1(2016).

    [2]E.G.Amvrazi and N.G.Tsiropoulos,J.Chromatogr.A1216,2789(2009).

    [3]D.Bielawski,E.Ostrea Jr.,N.Posecion Jr.,M.Corrion,and J.Seagraves,Chromatographia62,623(2005).

    [4]Z.W.Xiao,M.He,B.B.Chen,and B.Hu,Talanta156/157,126(2016).

    [5]M.Asensio-Ramos,J.Hernández-Borges,G.González-Hernández,and M.á.Rodrguez-Delgado,Electrophoresis33,2184(2012).

    [6]J.F.Huertas-Pérez and A.M.García-Campa?na,Anal.Chim.Acta630,194(2008).

    [7]B.Liu,Y.Ge,Y.Zhang,Y.Song,Y.Y.Lv,X.X.Wang,and S.Wang,Food Agr.Immunol.23,157(2012).

    [8]Z.L.Xu,H.Wang,Y.D.Shen,M.Nichkova,H.T.Lei,R.C.Beier,W.X.Zheng,J.Y.Yang,Z.G.She,and Y.M.Sun,Analyst136,2512(2011).

    [9]X.Y.Zhang,Z.Y.Sun,Z.M.Cui,and H.B.Li,Sens.Actuat.B Chem.191,313(2014).

    [10]Y.J.Li,C.J.Hou,J.C.Lei,B.Deng,J.Huang,and M.Yang,Anal.Sci.32,719(2016).

    [11]J.Kubackova,G.Fabriciova,P.Miskovsky,D.Jancura,and S.Sanchez-Cortes,Anal.Chem.87,663(2015).

    [12]L.Xue,H.X.Gu,S.Q.Yuan,and D.W.Li,RSC Adv.7,192626(2017).

    [13]L.L.Qu,D.W.Li,J.Q.Xue,W.L.Zhai,J.S.Fossey,and Y.T.Long,Lab Chip12,876(2012).

    [14]Y.X.Fan,K.Q.Lai,B.A.Rasco,and Y.Q.Huang,Food Control37,153(2014).

    [15]C.Müller,L.David,V.Chi?s,and S.C.P??nzaru,Food Chem.145,814(2014).

    [16]L.Zhang,B.Wang,G.Zhu,and X.Zhou,Spectrochim.Acta A133,411(2014).

    [17]J.D.Driskell,S.Shanmukh,Y.J.Liu,S.B.Chaney,X.J.Tang,Y.P.Zhao,and R.A.Dluhy,J.Phys.Chem.C112,895(2008).

    [18]T.Karabacak,G.C.Wang,and T.M.Lu,J.Vac.Sci.Technol.A22,1778(2004).

    [19]Y.J.Liu and Y.P.Zhao,Phys.Rev.B78,075436(2008).

    [20]J.Novakovic,P.Vassiliou,and E.Georgiza,Int.J.Electrochem.Sci.8,3615(2013).

    [21]T.Palomar,B.R.Barat,E.Garca,and E.Cano,J.Cult.Herit.17,20(2016).

    [22]D.W.Li,W.L.Zhai,Y.T.Li,and Y.T.Long,Microchim.Acta181,23(2014).

    [23]Y.T.Li,L.L.Qu,D.W.Li,Q.X.Song,F.Fathi,and Y.T.Long,Biosens.Bioelectron.43,94(2013).

    我的亚洲天堂| 天天一区二区日本电影三级 | 亚洲,欧美精品.| 色综合亚洲欧美另类图片| 19禁男女啪啪无遮挡网站| 1024视频免费在线观看| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费 | 欧美成人免费av一区二区三区| 亚洲av片天天在线观看| 免费看a级黄色片| 亚洲视频免费观看视频| 18美女黄网站色大片免费观看| 精品日产1卡2卡| 9191精品国产免费久久| 在线视频色国产色| 亚洲狠狠婷婷综合久久图片| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| av福利片在线| 两性夫妻黄色片| 91成年电影在线观看| 久久精品aⅴ一区二区三区四区| 大陆偷拍与自拍| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 成人av一区二区三区在线看| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 免费看十八禁软件| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 黄色视频不卡| 日韩一卡2卡3卡4卡2021年| 国产精品野战在线观看| ponron亚洲| 老汉色av国产亚洲站长工具| 欧美日韩福利视频一区二区| 窝窝影院91人妻| 免费在线观看影片大全网站| 久久久国产精品麻豆| 亚洲色图 男人天堂 中文字幕| 黑人欧美特级aaaaaa片| 国产精品综合久久久久久久免费 | 99久久精品国产亚洲精品| 精品久久久久久久人妻蜜臀av | 视频在线观看一区二区三区| 9色porny在线观看| 欧美+亚洲+日韩+国产| 国产三级黄色录像| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三区在线| 国产av精品麻豆| 国内精品久久久久久久电影| 欧美 亚洲 国产 日韩一| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 日本在线视频免费播放| 女同久久另类99精品国产91| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 91在线观看av| 国产xxxxx性猛交| 国产高清有码在线观看视频 | 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 少妇 在线观看| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 熟妇人妻久久中文字幕3abv| 丁香欧美五月| 欧美在线一区亚洲| 九色国产91popny在线| 亚洲 欧美 日韩 在线 免费| 久久久国产精品麻豆| 极品人妻少妇av视频| 国产成人精品久久二区二区免费| 丁香欧美五月| 在线观看午夜福利视频| 精品第一国产精品| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯| 正在播放国产对白刺激| 国产精品综合久久久久久久免费 | 国内精品久久久久精免费| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 久久香蕉激情| 欧美日韩瑟瑟在线播放| 国产精品免费一区二区三区在线| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影 | 国产精品野战在线观看| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 免费观看精品视频网站| 国产亚洲精品第一综合不卡| 69av精品久久久久久| √禁漫天堂资源中文www| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 精品国产一区二区久久| 亚洲av美国av| 亚洲人成77777在线视频| 久久天堂一区二区三区四区| 久久青草综合色| 国产精品野战在线观看| 成人国产综合亚洲| 久久欧美精品欧美久久欧美| 亚洲视频免费观看视频| 黄频高清免费视频| 黄色片一级片一级黄色片| 制服人妻中文乱码| 亚洲最大成人中文| 亚洲全国av大片| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 国产极品粉嫩免费观看在线| 一级毛片女人18水好多| 亚洲自拍偷在线| cao死你这个sao货| 丁香六月欧美| 日韩 欧美 亚洲 中文字幕| 这个男人来自地球电影免费观看| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 人人妻人人澡欧美一区二区 | 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看| 免费在线观看亚洲国产| 一级黄色大片毛片| av在线天堂中文字幕| 亚洲欧美精品综合久久99| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 久久影院123| 在线观看www视频免费| 亚洲精品美女久久av网站| 精品无人区乱码1区二区| 中文字幕精品免费在线观看视频| 国产精品一区二区三区四区久久 | 欧美中文综合在线视频| 免费在线观看影片大全网站| 久久亚洲真实| 国产熟女午夜一区二区三区| 美女 人体艺术 gogo| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 91av网站免费观看| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 一夜夜www| 国产片内射在线| 老司机靠b影院| 黄色视频,在线免费观看| 亚洲avbb在线观看| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 精品国产国语对白av| 久久亚洲精品不卡| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三| 精品熟女少妇八av免费久了| 国语自产精品视频在线第100页| 深夜精品福利| 久久久久国产一级毛片高清牌| 久久国产精品影院| 日韩欧美免费精品| 精品久久久久久成人av| av在线天堂中文字幕| 如日韩欧美国产精品一区二区三区| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 日韩大尺度精品在线看网址 | 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 国产三级在线视频| 国产av又大| 一本综合久久免费| 国产一区二区三区综合在线观看| 国产成人啪精品午夜网站| 一区二区三区高清视频在线| 又大又爽又粗| 99国产精品一区二区三区| 男女床上黄色一级片免费看| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 淫妇啪啪啪对白视频| 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 亚洲激情在线av| 久久这里只有精品19| 少妇 在线观看| 天天添夜夜摸| 久久人妻av系列| 波多野结衣高清无吗| 最近最新免费中文字幕在线| 精品国产国语对白av| 1024香蕉在线观看| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 国产高清有码在线观看视频 | 久久久久国内视频| 国产亚洲精品av在线| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 人人妻人人澡欧美一区二区 | 涩涩av久久男人的天堂| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 亚洲av成人av| 欧美大码av| 欧美日本亚洲视频在线播放| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 老鸭窝网址在线观看| 精品久久久久久久人妻蜜臀av | 老司机福利观看| 动漫黄色视频在线观看| 亚洲伊人色综图| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| 亚洲国产精品成人综合色| e午夜精品久久久久久久| 亚洲天堂国产精品一区在线| 99国产精品一区二区三区| 手机成人av网站| 一进一出抽搐gif免费好疼| 欧美在线黄色| 亚洲av成人不卡在线观看播放网| 无限看片的www在线观看| 日韩精品青青久久久久久| 性色av乱码一区二区三区2| 自拍欧美九色日韩亚洲蝌蚪91| 激情在线观看视频在线高清| 久久中文看片网| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 男女下面进入的视频免费午夜 | 国产又爽黄色视频| av网站免费在线观看视频| www.熟女人妻精品国产| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 国产一区二区三区综合在线观看| av福利片在线| 国产免费男女视频| 精品人妻在线不人妻| 国产精品 国内视频| 大码成人一级视频| 99国产极品粉嫩在线观看| 成人手机av| 日韩精品中文字幕看吧| 18禁美女被吸乳视频| 久久 成人 亚洲| 亚洲第一青青草原| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 97碰自拍视频| 国产成人av教育| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 女同久久另类99精品国产91| 国产精品久久久久久人妻精品电影| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 日本 av在线| av片东京热男人的天堂| 精品人妻1区二区| av福利片在线| 国产欧美日韩一区二区三区在线| 在线观看日韩欧美| ponron亚洲| 给我免费播放毛片高清在线观看| 亚洲欧美日韩另类电影网站| 夜夜爽天天搞| 亚洲一区中文字幕在线| 大型av网站在线播放| av电影中文网址| 亚洲精品国产精品久久久不卡| 国产精品一区二区免费欧美| 88av欧美| 国产人伦9x9x在线观看| 欧美午夜高清在线| 黄色丝袜av网址大全| 免费少妇av软件| 免费不卡黄色视频| 久久欧美精品欧美久久欧美| 很黄的视频免费| 亚洲成人久久性| 成人手机av| 一边摸一边做爽爽视频免费| 午夜免费激情av| 免费无遮挡裸体视频| 久久中文字幕一级| 国产成人精品久久二区二区免费| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| www.999成人在线观看| 亚洲精品国产色婷婷电影| 99re在线观看精品视频| 多毛熟女@视频| 国产精品影院久久| 91av网站免费观看| 久久这里只有精品19| 久久久久国内视频| 制服人妻中文乱码| 一级a爱视频在线免费观看| 婷婷六月久久综合丁香| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 欧美精品亚洲一区二区| 丝袜美腿诱惑在线| 不卡av一区二区三区| 国产精品精品国产色婷婷| 久久久久久久久中文| 亚洲中文av在线| 国内精品久久久久精免费| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 最近最新中文字幕大全免费视频| 黄频高清免费视频| 操出白浆在线播放| 可以免费在线观看a视频的电影网站| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女 | 一夜夜www| 国产精品亚洲美女久久久| 淫秽高清视频在线观看| 9191精品国产免费久久| 免费观看人在逋| 精品久久久精品久久久| 亚洲九九香蕉| 天天一区二区日本电影三级 | 亚洲国产高清在线一区二区三 | 很黄的视频免费| 97碰自拍视频| 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 欧美丝袜亚洲另类 | 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3 | 国产一区二区三区在线臀色熟女| 91在线观看av| 久久人妻福利社区极品人妻图片| 熟妇人妻久久中文字幕3abv| 欧美在线一区亚洲| 亚洲五月色婷婷综合| www.www免费av| 又紧又爽又黄一区二区| 亚洲人成电影观看| 欧美日韩黄片免| 久久九九热精品免费| 999久久久精品免费观看国产| 大香蕉久久成人网| 国产成人欧美| 国产亚洲av嫩草精品影院| 成人国产综合亚洲| 亚洲欧美精品综合一区二区三区| 国产av在哪里看| 高清黄色对白视频在线免费看| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩无卡精品| 精品国产一区二区久久| 999精品在线视频| 国产精品久久视频播放| 欧美乱色亚洲激情| 免费高清视频大片| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 成人av一区二区三区在线看| aaaaa片日本免费| 国产av在哪里看| 亚洲成国产人片在线观看| 波多野结衣av一区二区av| 欧美一级毛片孕妇| 精品国产美女av久久久久小说| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 香蕉久久夜色| 亚洲一码二码三码区别大吗| 国产精品免费视频内射| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 91精品三级在线观看| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 国产成人精品久久二区二区免费| а√天堂www在线а√下载| 国产精品国产高清国产av| 亚洲五月天丁香| 国产视频一区二区在线看| 91国产中文字幕| 黄色 视频免费看| 操出白浆在线播放| 亚洲国产毛片av蜜桃av| 亚洲国产精品久久男人天堂| 亚洲精品美女久久久久99蜜臀| 国产激情欧美一区二区| av在线天堂中文字幕| 亚洲国产精品合色在线| 午夜福利视频1000在线观看 | 好男人在线观看高清免费视频 | 视频区欧美日本亚洲| 亚洲国产日韩欧美精品在线观看 | 亚洲avbb在线观看| 88av欧美| 久久精品国产综合久久久| 国产高清有码在线观看视频 | 国产成人av激情在线播放| 日韩三级视频一区二区三区| 韩国av一区二区三区四区| 男女下面插进去视频免费观看| 国产精品一区二区精品视频观看| 给我免费播放毛片高清在线观看| 波多野结衣高清无吗| 99久久综合精品五月天人人| 黄片小视频在线播放| 99精品在免费线老司机午夜| 午夜亚洲福利在线播放| 国产精品免费视频内射| 99精品久久久久人妻精品| 国产xxxxx性猛交| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 亚洲色图综合在线观看| 欧美日韩亚洲综合一区二区三区_| 老熟妇乱子伦视频在线观看| 久久性视频一级片| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 久久精品国产清高在天天线| 99国产精品99久久久久| 51午夜福利影视在线观看| av免费在线观看网站| 香蕉国产在线看| 亚洲av成人不卡在线观看播放网| 美女扒开内裤让男人捅视频| 亚洲av成人av| 熟妇人妻久久中文字幕3abv| 午夜免费激情av| 嫩草影视91久久| 婷婷丁香在线五月| 亚洲久久久国产精品| 亚洲国产日韩欧美精品在线观看 | 91大片在线观看| 国产精品日韩av在线免费观看 | 久久九九热精品免费| 神马国产精品三级电影在线观看 | 国产亚洲欧美98| 婷婷六月久久综合丁香| 国产成人免费无遮挡视频| 亚洲七黄色美女视频| 夜夜看夜夜爽夜夜摸| 热99re8久久精品国产| 日本欧美视频一区| 夜夜躁狠狠躁天天躁| 精品一区二区三区四区五区乱码| 亚洲国产看品久久| 黄色a级毛片大全视频| 亚洲性夜色夜夜综合| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 欧美在线黄色| 中文字幕久久专区| 日日干狠狠操夜夜爽| 又紧又爽又黄一区二区| 又大又爽又粗| 咕卡用的链子| 日韩中文字幕欧美一区二区| av超薄肉色丝袜交足视频| 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 可以在线观看毛片的网站| 在线永久观看黄色视频| 两人在一起打扑克的视频| 国产精品综合久久久久久久免费 | 国产成人av激情在线播放| 久久中文字幕一级| 亚洲国产高清在线一区二区三 | 国产高清videossex| 国产精品九九99| 欧美激情久久久久久爽电影 | 一级a爱片免费观看的视频| 久久久久久久久免费视频了| 少妇裸体淫交视频免费看高清 | 精品国产乱子伦一区二区三区| 欧美日韩乱码在线| 国产一级毛片七仙女欲春2 | 欧美日韩瑟瑟在线播放| 久久久国产成人免费| 啦啦啦免费观看视频1| 啦啦啦观看免费观看视频高清 | 日本黄色视频三级网站网址| 成人国语在线视频| 亚洲久久久国产精品| 超碰成人久久| 国产熟女午夜一区二区三区| 久久狼人影院| 亚洲 欧美一区二区三区| 大型av网站在线播放| 国产精品综合久久久久久久免费 | 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| 黄频高清免费视频| 悠悠久久av| 校园春色视频在线观看| 在线天堂中文资源库| 手机成人av网站| bbb黄色大片| 亚洲精品久久成人aⅴ小说| 99国产精品99久久久久| 亚洲精品久久国产高清桃花| 最好的美女福利视频网| 亚洲天堂国产精品一区在线| 日韩欧美免费精品| 亚洲精品国产区一区二| 中出人妻视频一区二区| 日韩三级视频一区二区三区| 国产精品一区二区精品视频观看| 亚洲人成电影观看| 一区二区三区高清视频在线| 亚洲人成伊人成综合网2020| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 亚洲精品国产色婷婷电影| 午夜福利,免费看| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 国产精品野战在线观看| 国产精品自产拍在线观看55亚洲| 香蕉久久夜色| 色播亚洲综合网| 成人特级黄色片久久久久久久| 一级作爱视频免费观看| 人人妻人人澡欧美一区二区 | 女人被躁到高潮嗷嗷叫费观| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 国产精品野战在线观看| 91av网站免费观看| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 此物有八面人人有两片| 大码成人一级视频| 亚洲激情在线av| 91精品国产国语对白视频| 久久人妻熟女aⅴ| 侵犯人妻中文字幕一二三四区| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 一个人免费在线观看的高清视频| 久久精品91蜜桃| 精品欧美一区二区三区在线| 女性生殖器流出的白浆| 一级黄色大片毛片| 老司机午夜福利在线观看视频| 久久久久久国产a免费观看| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 视频区欧美日本亚洲| 动漫黄色视频在线观看| 亚洲男人的天堂狠狠| 久久中文字幕人妻熟女| 身体一侧抽搐| www.精华液| 精品国产乱码久久久久久男人| 午夜视频精品福利| 亚洲天堂国产精品一区在线| 日日干狠狠操夜夜爽| 神马国产精品三级电影在线观看 | 高清在线国产一区| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品国产一区二区电影| 高清在线国产一区| 亚洲精品中文字幕一二三四区| 日韩欧美国产一区二区入口| 我的亚洲天堂|