• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2and HO3Systems

    2018-05-07 02:04:06JunxiangZuoXixiHuDaiqianXie
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年2期

    Jun-xiang ZuoXi-xi HuDai-qian Xie

    Institute of Theoretical and Computational Chemistry,Key Laboratory of Mesoscopic Chemistry,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093,China

    I.INTRODUCTION

    Molecular reaction dynamics,which focuses on the fundamental law and nature of the chemical reaction at the level of atom and molecule,is one of the most important branches of theoretical and computational chemistry.Due to the quantum mechanical nature of the motion of electron and nucleus,only quantum treatments can provide the definitive characterisation of the reaction dynamics.The quantum dynamical theories have achieved great success during the past 40 years[1–11]since the first quantum state-resolved dynamical calculation for the simplest H+H2system was carried out[1].Quantum state-resolved dynamical study can provide the most detailed microscopic mechanism for chemical reactions and has become a major tool for understanding the multi-dimensional dynamics,tunneling,isotopic effect,mode selectivity,nonadiabatic effect,and reaction resonance state.The close collaboration between theory and experiment has uncovered some important dynamical characteristics for many important elementary reactions,such as F+H2/HD[6,8,12],Cl+H2/HD[10,13],and HD+OH[14].

    Bimolecular reactions accompanied by the formation of reaction intermediates have attracted much attention due to their crucial role in combustion,atmosphere,and interstellar media.These reactions are usually barrierless in the entrance channel and involve at least one potential well along the reaction path,which are called as complex-forming reactions.The kinetic and dynamic characteristics of complex-forming reactions are much different from those in direct reaction which has only one potential barrier.Experiments can provide a lot of valuable information but cannot present very clear and complete understanding of the detailed microscopic mechanism for these reactions.So,the accurate theoretical studies are highly demanded.Both quasi classical trajectory(QCT)and quantum dynamic methods can provide detailed information on reaction dynamics,such as cross sections,product state distributions,and rate constants.The QCT method is less expensive but cannot describe the quantum effects correctly.Accurate quantum dynamical calculations for complexforming reaction are still difficult,because of the large basises or grids required for converged quantum description in potential well(s)and long-range electrostatic interaction range[15].

    FIG.1 Schematic illustration of the reaction pathways for(a)HO2and(b)HO3reaction systems.The energies are taken from the results of Li et al.[92]in eV relative to the ground state reactant asymptotes for HO2and the results from the calulations by using MRCI-F12 method with VDZ-F12 basis in eV relative to the global minimum for HO3,respectively.

    There actions O+HO2→HO+O2andO+OH→H+O2are elementary reaction processes that govern HOxradical concentration in the upper stratosphere[16]and mesosphere[17,18]and play significant roles in the cycle for ozone depletion.The O+HO2is also a chain-breaking step in combustion processes.Substantial experimental and theoretical interest have been attracted focusing on the kinetic and dynamic characteristics of these reactions.However,HO2and HO3are still regarded as dynamically “elusive”,presenting as yet unresolved challenges for rigorous quantum theoretical treatment.In this review,we give a detailed presentation in the advance of kinetic and dynamic investigations of these complex-forming reactions and attempt to reveal some potential characteristics of complex-forming reaction.

    II.THE HO2SYSTEM

    The endothermic reaction between hydrogen atom(H)and oxygen molecule(O2)

    is long known as the most important combustion reaction[19]because of its crucial role in chain breaking of hydrogen oxidation and molecular oxygen consuming step.Such reaction also represents an important prototype complex-forming reaction with deep well(2.32 eV,as shown in FIG.1(a)).The reverse reaction betweenand O(3P)also plays an important role in atmospheric chemistry[17]as well as in interstellar chemistry[20].

    To understand the mechanism of such reactions,considerable attentions have been attracted in theoretical studies on the adiabatic potential energy surface(PES).Since Melius and Blint[21]constructed the first analytic PES(MB PES)of the system in 1979,PES for the ground electronic stateof HO2has been developed by several groups at differentab initiolevels of theory.Earlier PESs include the double many-body expansion(DMBE)IV PES[22]which combinedab initioand experimental data simultaneously,the diatomicsin-molecules(DIM)surface[23]which utilized the diatomics in molecules model to fitab initiodata,and an analytical representation[24](TU PES)of anab initiopotential focusing on the minimum energy path(MEP)and the anisotropies in its vicinity.Among the aforementioned PESs,DMBE IV PES is probably the most popular and widely used in dynamical studies for the reasonable behavior in describing global properties of the reaction.Besides,several deficiencies of the semi-empirical PES have been reported[24–30],which may signi ficantly affect the accuracy of kinetics.For instance,the reaction was suggested to process a direct reaction channel by the dynamic study on the DMBE IV PES[27],which conflicts with the experimental complex-forming mechanism.To better understand the vibrational spectrum and dynamics of the system,Xuet al.[31,32]recently calculated about 18000ab initiopoints using multi-reference con figuration interaction method with Davidson correction and an augmented quadruple zeta correlation consistent basis set(MRCI+Q/AVQZ).They constructed a new global PES(XXZLG PES)ofby three-dimensional cubic spline interpolation.

    Due to the nature of complex-forming reaction with a deep well,most theoretical dynamics studies ofreaction have been carried out by using QCT[33–39]or statistical models[31,40–43].Serious deficiencies have been pointed out,despite some reasonable results have been obtained by the heroic efforts.Dynamic bottleneck in energy transfer of the system[15]was proposed due to the observations of many back trajectories violating zero point energy(ZPE)of the OH product[35]and non-statistical limit of the H+O2reaction[37].The statistical approach was found to reproduce only a few total reaction probabilities and led to serious discrepances with exact total reactive integral cross-sections(ICS)[42–44].Several observations have con firmed that the H+O2reaction is not completely statistical[39,44–46].The dynamics of the reverse OH+O reaction are also extensively investigated utilizing QCT method[22,24,38,47–54].Like in the H+O2reaction,it is also not completely perfect when QCT approach was used in treating the dynamics of the OH+O reaction and dynamic bottleneck still exists in spite of using different PESs[36–38].Therefore,a quantum treatment is very necessary.It is still a controversial issue that whether or not the OH+O reaction is statistical.The signi ficant non-reactive scattering was found in earlier QCT studies[22,38,47–50],implying that the reaction has a non-statistical component,while latter work revealed that the non-statistical channel is unimportant[24].Some evidences have manifested that the origin of the non-statistical behavior could be attributed to the relative short living HO2complex and the inefficient intramolecular vibrational energy redistribution(IVR)[29,30,43,44,54,55].

    The quantum mechanical characterization of the HO2system has been reported by many groups on various PESs since the end of last century.TheJ=0 total reaction probability was reported by Packet al.[56,57]using time-independent quantum mechanical(TIQM)method on DMBE PES at several collision energies and a threshold was found,which is consistent with the endothermicity of the H+O2reaction.It was confirmed later by quantum dynamical studies[55,58,59].Numerous sharp resonances were shown in total reaction probability[55,58–61],revealing the complex for ming mechanism.TIQM calculations on H+O2reaction are extended to total angular momentumJ>0 and Coriolis coupling was explicitly included[27,62–64],which revealed that the importance of Coriolis coupling increases withJincreasing.Due to its extensive Coriolis coupling,HO2system served as a rigorous benchmark for helicity conserving method andJ-shifting models[65–68].Poirieret al.[69–71]addressed approximated quantum dynamics calculations on the HO2bound rovibrational state using various theorybasedJ-shifting schemes.They found that the rovibrational energy levels were extremely well performed even up to largeJvalues where Coriolis coupling cannot be ignored by so-called “modified Effective Potential”(modEP)method[71].

    The XXZLG PES has been widely used in quantum dynamical studies.Both time-dependent quantum mechanical(TDQM)and TIQM methods were used to calculate the total and state-to-state quantum mechanical reaction probability.Remarkably dynamic difference was found,comparing with the results on DMBE PES,especially at collision energies larger than 1.2 eV[59].The reactivity of the H+O2reaction was significantly enhanced by the effect of the vibrational excitation[72],as expected in terms of the Polanyi rule[73].The initial rotational excitation on the O2reactant was later carried out by using Chebyshev wave packet calculations and the higher rotational states of O2seem to bring better agreement with experiments[74].The quantum rate constants[72,74]were found to be significantly improved on the XXZLG PES compared with those obtained on the DMBE PES,and the temperature dependence of Arrihenius type was reasonably produced.Even though,the calculated values still underestimated compared with the experimental values and the influence factors were not ascertained.Regarding to the reaction,the quantum rate constants[75]on the XXZLG PES were qualitatively consistent with a low-temperature extrapolation of earlier experimental values but smaller than the most recent experiments at the lowest temperatures reported by Cartyet al.[45],which may stem from the particularly vulnerable region of the channel with difficulty in the long-range interaction fitted by splines[32,76,77].It has been demonstrated[15,78,79]that the long-range force plays an important role at low-temperature.Two reproducing kernel Hilbert space(RKHS)PESs[80]were designed in order to better elucidate the dynamics and accurately describe the potential well corresponding to the bound state of HO2.

    To remedy the deficiencies in the fitting,especially at long-range interaction region,of XXZLG PES,Varandaset al.[81]have very recently developed a new PES for HO2(X2A′′),commonly known as Combined-Hyperbolic-Inverse-Power-Representation(CHIPR)PES,which employed the slightly correctedab initiodata of Xuet al.[32]using the novel Varandas CHIPR method[82].The main topographical features of CHIPR PES are in good agreement with XXZLG PES,as shown in FIG.2.However,some differences in long-range region,such as the undulations visible of XXZLG PES,may lead to distinguished behavior in the OH+O dynamics.Rate constants calculated by QCT method on this new PES are in general agreement with the XXZLG results from moderate temperatures upwards,but the disparity can be up to 25%at low temperatures[81].It is thus con firmed that long-range forces in the barrierless OH+O reaction could dominate the rate constants[83,84].Time-independent quantum scattering calculations have been performed on the CHIPR PES and thermal rate coefficients are reported,as shown in FIG.3,by using theJ-shifting approximation[85].It is a remarkable fact that the most recent experimental values of Cartyet al.[45]showed a distinct trend from other early experiments but close to the calculated ones.The quantum rate constants considering the influence of quantum effects in the intermediate complex were somewhat larger than the QCT results[81],although a similar pattern was reproduced.Meanwhile,the hydrogen isotopic substitution(X=Mu,H,D and T)reactions were performed by employing time-independent method and the effect of isotopic substitution on state specified rate constants was investigated[86].Rate constants of the reactions with H,D,and T presented quite similar behavior while the Mu+O2rate constants were smaller than others over the entire temperature range,especially at low temperature.Reaction probabilities for different initial rovibrational states of the OH radical were reported on both CHIPR and DMBE PESs using 3D time-dependent quantum wave-packet method[87].As is visible from the reaction probabilities forJ=0,the reactivity of OH(v=0,J=0?5)+O reaction does not always increase with the rotational excitation of OH.As presented in FIG.3,all theoretical rate constants have a negative temperature dependence over~50 K and deviate substantially from the experiments of Cartyet al.[45]at lower temperature.It may conclude thatJ-shifting method can only be utilized to determine thermal rate coefficients correctly.Full quantum mechanical calculations with largerJvalues are required for low temperatures.However,it is still difficult for the deep well reaction with large number of coupled states.

    FIG.2 Topographical features of CHIPR(a)and XXZLG(b)PESs for an oxygen atom moving around a partially relaxed OH such as to cover the range between the optimum value at the saddle point and the one at the asymptote.Adapted with permission from Ref.[81](Copyright 2013 American Institute of Physics).

    The first excited electronic state ofis degenerated with its ground state ofat linear geometries and correlated to the same product of OH+O,which is associated with the reaction between the H atom and the singlet molecular oxygen molecule,

    FIG.3 Comparison of the theoretical rate coefficients for O+OH→H+O2reaction.Adapted with permission from Ref.[87](Copyright 2017 Elsevier B.V.).

    TABLE I Recommended rate constants for product channels of reaction.

    TABLE I Recommended rate constants for product channels of reaction.

    also exists.The investigation of intersystem crossing between the second doublet PES and the lowest quartet PES is thus necessary,which should provide the possibility of considering the nonadiabatic transition between theand

    Furthermore,at high pressures,third-body collision is important in the following recombination reaction[96],

    where Mis a third molecule.This reaction can lead to the formation of the active complexand stabilize it subsequently,making the reaction a chain-termination step.Indeed,represents all the low energy resonances occurring in the scattering process of

    Despite the long history of the research in thereaction[46,92,94–101],the intrinsic mechanism of the reaction is still ambiguous. Recently,Chukalovskyet al. [102]carried out a comprehensive analysis of all available data evaluated from experiments,modeling,and theoretical estimations on the rate constants of possible channels.They argued that the non-adiabatic transition of the HO2complex from the first excited state(2A′′)to the ground quartet state(4A′),assumed by Sharipov and Starik[95],was unable to interpret the discrepancy between experimental and theoretical rate constants ofand the high probability for reaction channel(3).It was known that the lowest doublet electronic states(2A′′)and(2A′)of HO2are degenerated in collinear geometries and rovibronically coupling leads to Renner-Teller effect[15,103].The Renner-Teller coupling between ground state(2A′′)and first excited state(2A′)of HO2provides the probability of opening an additional dissociation channel of the excitedcomplex via atomic H and triplet molecularformation,which was suggested to account for the mechanism of thereaction[102].It revealed that the IVR process of excited HO2(2A′)is crucial in product channels.Ab initiocalculations,taking into account both the lowest doublet states,may provide detailed information on both reaction and quenching channels.However,no such calculations have been performed yet.Thus,further extensiveab initiostudy is highly desirable.Based on those available data,the temperature dependence ofreaction rate constants was reproduced and the approximate Arrhenius expressions of the reactions were recommended(see Table I)[102]. The activation energy of thechannel,3040 K,was close to the entrance energy barrier,3017 K(0.26 eV),of recent HO2(2A′)PES[92].In addition,the pressure dependence of thereaction was investigated by shock tube experiments[102],and the recommended expression is also shown in Table I.

    Besides,three conical intersections exist between the ground stateand the excited statePESs of HO2,including one occurring at C2vgeometry(that is,O?H?O)and the other two occur at linear geometries(that is,H?O?O and O?O?H).And it was found that the HO2PES around C2vconical intersection lies lower in energy and could be easily encircled by low energy trajectories.The geometric phase(GP)effect[104,105],also known as Berry’s phase[106],stemming from the sign change of the Born-Oppenheimer adiabatic electronic wave function when the nuclei encircle a close path around a conical intersection,was shown to control the outcome of an ultracold(<1 mK)chemical reaction in the HO2system.Kendricket al.[107–112]have performed numerous theoretical studies on GP effect by taking H+O2reaction as a prototype.In order to include GP effect in three-dimension quantum scattering calculations,Kendrick and Pack[107]have presented a general vector potential approach in hyperspherical coordinates and a hybrid discrete variable representation and finite basis representation(DVR/FBR)numerical technique for C2vconical intersection in HO2.Subsequently,these methods were applied to include GP effect in H+O2scattering calculations for zero total angular momentum[108].The results of signi ficant shift in the resonance spectrum and significant changes in state-to-state transition probabilities manifest explicitly the key role of GP effect.These differences clearly demonstrated that GP effect should be crucial for H+O2scattering calculations and cannot be ignored even at low collision energy.Bound state spectrum of HO2was also calculated with and without GP effect[109].However,GP effect makes no difference in the vibrational energies even for extremely highlying states near dissociation.To further understand the mechanism and the rotationally and vibrationally resolved reaction rates in ultracold chemistry due to GP effect,scattering calculations of the O+OH(v=0,j=0)→H+O2(v′,j′)reaction forJ=0?5 have been carried out very recently[111,112].They draw an interference mechanism that the GP effect arises from the interference of the two scattering amplitudes between the direct and looping pathways.Both rotationally resolved reaction rates and vibrationally ones can be enhanced or suppressed nearly two orders of magnitude when the GP effect is included in calculations,as shown in Table II.For instance,reaction rate of 2.1×10?14cm3/s forj′=3 at 1 μK with GP is about sixty times smaller than the corresponding one without GP(1.2×10?12cm3/s),while the GP result(8.4×10?13cm3/s)is over forty times larger than that without the GP(2.0×10?14cm3/s)forj′=1.The external electric field was demonstrated to significantly modulate the GP effect,and it offers a probability that the GP effect can switch on or off the reactivity and play a role of“quantum switch” owning to the changed sign of the interference term[111].Confusingly,the number of bound state structure in electric field does not switch between extreme values,+1 and?1,as expected.The real mechanism for Stark effect on GP effects still remains elusive.A more detailed investigation on GP effect with external electric field is highly demanded.

    III.THE HO3SYSTEM

    The hydrogen trioxy radical(HO3)has been known as an important participant in the combustion[113–117],atmosphere chemistry[118–125],and biological processes[126–131].It is also a very important open shell species in the atmosphere,formed by adduct of OH and O2.In organic chemistry,HO3has been implicated as an intermediate in ozonation reactions[116,132].Two exothermic reactions

    TABLE II Ultracold(1μK)rates forO+OH(v=0,j=0)→H+O2(v′,j′)reaction with(GP)and without(NGP)geometric phase effect.Data are extracted from Ref.[112].

    The HO3radical was first detected by Cacaceet al.using neutralization-reionization mass spectrometry[133].Its IR spectra have been reported in argon matrices[134]and in irradiated H2O/O2ice mixtures[120,135].Rotational transitions fortrans-HO3andtrans-DO3in the gas phase were observed by Sumaet al.using Fourier-transform microwave spectroscopy,but thecisones were not observed[136].Based on the derived rotational constants and theoretical calculations of dipole moments,they concluded that thetransplanar isomer is a weakly bound molecule with a fairly long central O?O bond.In 2008,Derroet al.[137]measured the fundamental frequencies for each vibrational mode of HO3and DO3in the gas phase using IR-UV double resonance technique.The observed frequencies are significantly different from previous experimental and theoretical results.Harmonic vibrational frequencies have been calculated by Zhouet al.[138]using the explicitly correlated RCCSD(T)-F12,RS2(LS/IPEA),MRCI+Q,and MR-AQCC methods. However,the an harmonic effect is hard to be conclusive due to highly demanding inab initiocalculations.Braams and Yu[139]have done rigorous ro-vibrational calculations,based on a local PES calculated at HCTH/aug-cc-pVTZ level.Unfortunately,the vibrational energy levels show large discrepancies with experimental values[119,137],due to the inaccuracy of the PES.To do the force field calculations,hundreds of points at the vicinity of thetrans-andcis-HO3minima were calculated at MRCI+Q/AVQZ level by Sumaet al.[140].The calculated vibrational frequencies well reproduce the available experimental values,as shown in Table III.The elusive HO3radical,which is a very difficult system forab initiocharacterization,has been characterized systematically using various benchmarkab initiomethods,as reviewed in Ref.[141,142].However,there remain significant discrepancies between experiment and theory with respectto its structural properties and stability,as summarized in Table IV.For example,the bond length of the central O?O bond ranges from 1.4 ?A to 1.7 ?A by differentab initiomethods[117,122,136,139,143–151],while the experimental value is 1.688?A[136]or 1.684?A[152].Numerous high-levelab initioresults suggested that multi-reference methods predicted longer central O?O bond length.Besides,the relative stability betweentrans-andcis-HO3is different with different theoretical method.Some earlyab initiotheoretical work and DFT studies predicted a non-planar structure,while recent calculations reached consensus that HO3intermediate is planar with bothtransandcisgeometries.In 2011,Varandas[147]explored the MEP for isomerization of HO3using high-levelab initiomethods with extrapolation to the complete basis set limit,as shown in FIG.4.The results showed that,for single reference methods,thecis-HO3is slightly more stable than thetrans-HO3.In turn,the multi-reference calculations predicted that thetrans-HO3is more stable,which is in agreement with the available experimental evidence.

    TABLE III Fundamental frequencies of HO3obtained from several experimental and theoretical studies.

    In addition,there has been much debate on the binding energy of HO3,as shown in Table IV.An upper limit of the dissociation energy was estimated to be 5.31 or 6.12 kcal/mol from experiments using infrared action spectroscopy[118,119,137,153].In 2010,Le Picardet al.[154]derived a value of(2.9±0.07)kcal/mol on the basis of experimental kinetic studies,in which the OH concentration was measured in the presence of excess O2using laser-induced fluorescence.A number of theoretical investigations at different levels of theory and basis set predicted 4?10 kcal/mol for the binding energy of HO3[139,148,150,155,156].Most recently,Varandas[151]calculated the dissociation energiesDe,which are 4.5 and 4.7 kcal/mol for thecisandtransisomers,respectively.TheD0value fortrans-HO3is in good agreement with the commonly accepted value(2.9±0.07)kcal/mol from the low-temperature CRESU experiment.FIG.5 shows the dissociation curves for the reaction HO3→HO+O2at different levels of theory.The EOMIP-CCSD curve[148]predicted a significant barrier which is about 5 kcal/mol above thetransminimum and then drops steeply to reach the asymptote at 2.5 kcal/mol.The existence of such a barrierconflicts with the experimental evidence,in which a strong negative temperature dependence[154]for the reversed association reaction suggests a barrier-free reaction.This observation suggests that the commonly used single-reference CCSD approach might not be able to provide an accurate global PES,due apparently to the multi-reference characters of the system.

    TABLE IV A comparison of classical dissociation energies(Dein kcal/mol)for HO3→OH+O2,dissociation energies at 0 K(D0in kcal/mol)and central O?O bond lengths(rO?Oin ?A)for trans-HO3from different theoretical and experimental studies.

    FIG.4The isomerization path of Adapted with permission from Ref.[147](Copyright 2011 Royal Society of Chemistry).

    FIG.5 Dissociation curves for the reaction as it progresses from the trans-and cis-HO3geometries(energies taken relative to the trans-HO3minimum).

    The first global PES for the ground state HO3(DMBE I)was constructed by Varandas and Yu[157]using UCISD method.The PES predicts a metastable HO3structure,which conflicts with the experimental evidence and high-levelab initiocalculations.In 2001,Varandaset al.[145]obtained a new PES for this system using the QCISD(T)/CBS method,named DMBE II.This PES has a dissociation barrier,which is inconsistent with the available experimental evidence,and two stable planar HO3isomers,in which thecis-HO3is more stable than thetransone.These PESs are not sufficiently accurate due to the low level ofab initiotheory and to the relatively small number ofab initiopoints.Another analytical PES in the many body expansion form was obtained by fitting to about 28000 HCTH/aug-cc-pVTZ points[139].The PES predicts aD0of 6.15 kcal/mol,and implies a central O?O bond length of 1.610?A fortrans-HO3,which is shorter than the commonly accepted value of 1.688?A.And the vibrational frequencies carried out on this PES have large discrepancies with the experimental results[119,137].

    Several kinetic measurements have been conducted to determine the rate constants for the O+HO2reaction[158–162],which can be used to simulate the concentrations of OH,HO2,and O3in the upper stratosphere and lower mesosphere. The reported rate coefficients of this exothermic reaction have a negative temperature dependence at low temperatures. The measured rate constant for the reaction O+HO2→HO+O2was found to be independent with N2pressure from 10 torr to 500 torr with a mean value of(6.2±1.1)×10?11cm3/(molecule·s)at 298 K by Ravishankaraet al.[162],which is in good agreement with the value of(6.1±0.4)×10?11cm3/(molecule·s)reported by Keyser[158]. Bruneet al. [160]and Sridharanet al.[163]reported that the rate constants for this reaction at 300 K are(5.2±0.8)×10?11and~5.7×10?11cm3/(molecule·s),respectively.In 1987,Nicovichet al.[161]employed a pulsed laser photolysis technique to investigate the kinetic of this reaction over the range of 266?391 K at 80 torr of N2.Their results followed the Arrhenius expression:k(T)=(2.91±0.7)×10?11exp[(228±75)/T]cm3/(molecule·s).The rate constant recommended by the NASA kinetic data evaluation panel is an average of these five studies.However,the atmosphere chemistry reaction model using the recommended value for this reaction underestimated the ozone concentration in the mesosphere[17,18].Based on the DMBE I PES,the rate constant,product distributions,and differencial cross sections for the reaction O+HO2→HO+O2by employing the QCT method[164]and a reduced three-dimensional quantum dynamic method[165]showed large differences between themselves and the available experimental data.In the reduced-dimensional quantum mechanical study,the reaction was treated as coplanar and the in finite-order sudden approximation was applied,which gave too low values of rate constants and cross sections. In 2004,Silveiraet al.[166]found that the vibrational excitation has minor effect on the dynamics based on the QCT calculations on the DMBE I and DMBE II PESs,respectively.In addition to the complex-forming pathway,this reaction can also proceed via a direct hydrogen abstraction pathway on two doublet(2A′′and2A′)and two quadruplet(4A′′and4A′)states.The abstraction barriers are approximately 2?4 kcal/mol based onab initiocalculations[117,143].As a result,this pathway will become viable at high temperatures and contribute to the rate constant.

    Neither the complex-forming nor abstraction pathway was accurately described by the existing HO3PESs.To better understand the kinetics and dynamics of the relevant reactions,we suggested to map out new accurate global PESs of the ground and excited electronic states for this system using the MRCI-F12 approach and the permutation invariant polynomial neural network(PIP-NN) fitting approach[167].The spin orbital couplings should also be included.The PESs will include the OH+O2,O+HO2,and H+O3channels,as well as the complex-forming and direct abstraction pathways.The PESs will greatly advance our under-standing of the HO3system and associated reactions.We are particularly keen on obtaining accurate theoretical rate constants for the related reactions,which can be used to reduce uncertainties in combustion and atmosphere kinetic models.In addition,a full-dimensional quantum mechanical characterization for this system has not been accomplished due to the involvement of three heavy atoms and the deep potential wells.Further theoretical improvements on decreasing the number of basis and improving computational efficiency in quantum dynamic method are very desirable.

    IV.SUMMARY

    In this review,we have presented an overview of the recent progresses in two prototypical oxyhydrogen complex-forming reactions of the HO2and HO3systems.A number of achievements have been obtained from the unremitting efforts of numerous researchers,whereas there are still many questions to be illuminated.For HO2,several global PESs for the ground electronic state have been constructed,and the predicted rate constants are in reasonable agreement with the available observed values,while some major discrepancies still exist.The nonadiabatic effect has been found to be crucial in the HO2system and nonadiabatic quantum dynamical calculations with excited PESs,including electronic states of 12A′′,12A′,22A′′and4A′′,are necessary.In particular,the influence of the GP effect on the reaction dynamics ofneeds to be further addressed.Besides,different PESs predicted disparity state-to-state dynamics for the reaction of H+O2,especially at higher collision energies,so that molecular beam experiment is very demanding to con firm the detailed reaction mechanism.For HO3,only the minimum energy path on the ground electronic state has been widely investigated,but no reliable reaction dynamics for the related reactions are performed due to the absence of an accurate global PES and to the difficulty of carrying out quantum dynamics for such complex-forming reactions.

    Thanks to the rapid development of the computing method and program of quantum chemistry,it is now feasible to perform high levelab initiocalculation using MRCI-F12 for the electronic ground and excited states for the HO2and HO3systems.The artificial neural network(NN)method,which has been found to be the most efficient approach to fitting high dimensional PES[168],can be applied to generate the global PES for the ground and excited electronic states.Based on the accurate PESs,it is possible to perform the detailed quantum dynamics by employing the efficient wave packet propagation method.Although such dynamics calculations are still hard to implement for complex-forming reactions with a deep well,such as the reactions related to the HO3system,the computational efficiency could be remarkably improved by using the optimized coordinates and suitable absorption in the boundary.With the close interplay between theory and experiment,it is anticipated that the detailed reaction dynamics for the reactions related to the HO2and HO3systems could be revealed in the near further.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.91641104,No.21733006,and No.21590802).

    [1]G.C.Schatz and A.Kuppermann,J.Chem.Phys.65,4642(1976).

    [2]G.C.Schatz,Annu.Rev.Phys.Chem.39,317(1988).

    [3]S.C.Althorpe and D.C.Clary,Annu.Rev.Phys.Chem.54,493(2003).

    [4]S.C.Althorpe,F.Fernándezalonso,B.D.Bean,J.D.Ayers,A.E.Pomerantz,R.N.Zare,and E.Wrede,Nature416,67(2002).

    [5]S.A.Harich,D.X.Dai,C.C.Wang,X.M.Yang,S.D.Chao,and R.T.Skodje,Nature419,281(2002).

    [6]M.Qiu,Z.Ren,L.Che,D.Dai,S.A.Harich,X.Wang,X.Yang,C.Xu,D.Xie,and M.Gustafsson,Science311,1440(2006).

    [7]D.C.Clary,Science321,789(2008).

    [8]W.Dong,C.Xiao,T.Wang,D.Dai,X.Yang,and D.H.Zhang,Science327,1501(2010).

    [9]Z.Sun,L.Liu,S.Y.Lin,R.Schinke,H.Guo,and D.H.Zhang,Proc.Nat.Acad.Sci.USA107,555(2010).

    [10]T.Yang,J.Chen,L.Huang,T.Wang,C.Xiao,Z.Sun,D.Dai,X.Yang,and D.H.Zhang,Science347,60(2015).

    [11]X.Hu,L.Zhou,and D.Xie,WIRES Comput.Mol.Sci.8,e1350(2018).

    [12]T.Yang,L.Huang,Y.Xie,T.Wang,C.Xiao,Z.Sun,D.Dai,M.Chen,D.H.Zhang,and X.Yang,Chin.J.Chem.Phys.28,471(2015).

    [13]X.Wang,W.Dong,C.Xiao,L.Che,Z.Ren,D.Dai,X.Wang,P.Casavecchia,X.Yang,B.Jiang,D.Xie,Z.Sun,S.Y.Lee,D.H.Zhang,H.J.Werner,and M.H.Alexander,Science322,573(2008).

    [14]C.Xiao,X.Xu,S.Liu,T.Wang,W.Dong,T.Yang,Z.Sun,D.Dai,X.Xu,D.H.Zhang,and X.Yang,Science333,440(2011).

    [15]H.Guo,Int.Rev.Phys.Chem.31,1(2012).

    [16]K.W.Jucks,D.G.Johnson,K.V.Chance,W.A.Traub,J.J.Margitan,G.B.Osterman,R.J.Salawitch,and Y.Sasano,Geophys.Res.Lett.25,3935(1998).

    [17]M.E.Summers,R.R.Conway,D.E.Siskind,M.H.Stevens,D.Offermann,M.Riese,P.Preusse,D.F.Strobel,and J.M.Russell,Science277,1967(1997).

    [18]P.Crutzen,Science277,1951(1997).

    [19]J.A.Miller,R.J.K.And,and C.K.Westbrook,Annu.Rev.Phys.Chem.41,345(1990).

    [20]I.W.M.Smith,E.Herbst,and Q.Chang,Mon.Not.R.Astron.Soc.350,323(2004).

    [21]C.F.Melius and R.J.Blint,Chem.Phys.Lett.64,183(1979).

    [22]M.R.Pastrana,L.A.M.Quintales,J.Brandao,and A.J.C.Varandas,J.Phys.Chem.92,4552(1990).

    [23]B.Kendrick and R.T.Pack,J.Chem.Phys.102,1994(1995).

    [24]J.Troe and V.G.Ushakov,J.Chem.Phys.115,3621(2001).

    [25]A.J.Dobbyn,M.Stumpf,H.M.Keller,and R.Schinke,J.Chem.Phys.103,9947(1995).

    [26]R.Schinke,H.M.Keller,H.Flothmann,M.Stumpf,C.Beck,D.H.Mordaunt,A.J.Dobbyn,S.A.Rice,R.A.Marcus,J.Troe,D.M.Neumark,and M.E.Kellman,inChemical Reactions and Their Control on the Femtosecond Time Scale Xxth Solvay Conference on Chemistry,P.Gaspard and I.Burghardt Eds.,745(1997).

    [27]A.J.H.M.Meijer and E.M.Gold field,J.Chem.Phys.108,5404(1998).

    [28]L.B.Harding,A.I.Maergoiz,J.Troe,and V.G.Ushakov,J.Chem.Phys.113,11019(2000).

    [29]S.Y.Lin,D.Xie,and H.Guo,J.Chem.Phys.125,091103(2006).

    [30]C.Xu,B.Jiang,D.Xie,S.C.Farantos,S.Y.Lin,and H.Guo,J.Phys.Chem.A111,10353(2007).

    [31]C.Xu,D.Xie,D.H.Zhang,S.Y.Lin,and H.Guo,J.Chem.Phys.122,244305(2005).

    [32]C.Xu,D.Xie,P.Honvault,S.Y.Lin,and H.Guo,J.Chem.Phys.127,024304(2007).

    [33]J.A.Miller,J.Chem.Phys.74,5120(1981).

    [34]A.J.C.Varandas,J.Brand?o,and M.R.Pastrana,J.Chem.Phys.96,5137(1992).

    [35]A.J.C.Varandas,J.Chem.Phys.99,1076(1993).

    [36]C.Y.Yang and S.J.Klippenstein,J.Chem.Phys.103,7287(1995).

    [37]J.A.Miller and B.C.Garrett,Int.J.Chem.Kinet.29,275(1997).

    [38]J.A.Miller and S.J.Klippenstein,Int.J.Chem.Kinet.31,753(1999).

    [39]G.Lendvay,D.Xie,and H.Guo,Chem.Phys.349,181(2008).

    [40]S.Y.Lin,E.J.Rackham,and H.Guo,J.Phys.Chem.A110,1534(2006).

    [41]T.González-Lezana,Int.Rev.Phys.Chem.26,29(2007).

    [42]P.Bargueno,T.Gonzalez-Lezana,P.Larrégaray,L.Bonnet,and J.Claude Rayez,Phys.Chem.Chem.Phys.9,1127(2007).

    [43]P.Bargue?o,T.González-Lezana,P.Larrégaray,L.Bonnet,J.C.Rayez,M.Hankel,S.C.Smith,and A.J.H.M.Meijer,J.Chem.Phys.128,244308(2008).

    [44]Z.Sun,D.H.Zhang,C.Xu,S.Zhou,D.Xie,G.Lendvay,S.Y.Lee,S.Y.Lin,and H.Guo,J.Am.Chem.Soc.130,14962(2008).

    [45]D.Carty,A.Goddard,S.P.K.K?hler,I.R.Sims,and I.W.M.Smith,J.Phys.Chem.A110,3101(2006).

    [46]J.Ma,H.Guo,C.Xie,A.Li,and D.Xie,Phys.Chem.Chem.Phys.13,8407(2011).

    [47]J.A.Miller,J.Chem.Phys.84,6170(1986).

    [48]L.A.M.Quintales,A.J.C.Varandas,and J.M.Alvarino,J.Phys.Chem.92,4552(1988).

    [49]J.Davidsson and G.Nyman,J.Chem.Phys.92,2407(1990).

    [50]G.Nyman and J.Davidsson,J.Chem.Phys.92,2415(1990).

    [51]A.I.Maergoiz,E.E.Nikitin,J.Troe,and V.G.Ushakov,J.Chem.Phys.108,5265(1998).

    [52]L.B.Harding,J.Troe,and V.G.Ushakov,Phys.Chem.Chem.Phys.2,631(2000).

    [53]M.Jor fi,P.Honvault,P.Halvick,S.Y.Lin,and H.Guo,Chem.Phys.Lett.462,53(2008).

    [54]M.Jor fi,P.Honvault,P.Bargue?o,T.González-Lezana,P.Larrégaray,L.Bonnet,and P.Halvick,J.Chem.Phys.130,184301(2009).

    [55]P.Honvault,S.Y.Lin,D.Xie,and H.Guo,J.Phys.Chem.A111,5349(2007).

    [56]R.T.Pack,E.A.Butcher,and G.A.Parker,J.Chem.Phys.99,9310(1993).

    [57]R.T.Pack,E.A.Butcher,and G.A.Parker,J.Chem.Phys.102,5998(1995).

    [58]D.H.Zhang and J.Z.H.Zhang,J.Chem.Phys.101,3671(1994).

    [59]S.Y.Lin,H.Guo,P.Honvault,and D.Xie,J.Phys.Chem.B110,23641(2006).

    [60]M.Hankel,S.C.Smith,and A.J.H.M.Meijer,J.Chem.Phys.127,064316(2007).

    [61]G.Quéméner,B.K.Kendrick,and N.Balakrishnan,J.Chem.Phys.132,014302(2010).

    [62]A.J.H.M.Meijer and E.M.Gold field,J.Chem.Phys.110,870(1999).

    [63]E.M.Gold field and A.J.H.M.Meijer,J.Chem.Phys.113,11055(2000).

    [64]A.J.H.M.Meijer and E.M.Gold field,Phys.Chem.Chem.Phys.3,2811(2001).

    [65]H.Zhang and S.C.Smith,J.Chem.Phys.118,10042(2003).

    [66]H.Zhang and S.C.Smith,J.Chem.Phys.120,9583(2004).

    [67]H.Zhang and S.C.Smith,J.Chem.Phys.123,014308(2005).

    [68]H.Zhang,and S.C.Smith,J.Phys.Chem.A110,3246(2006).

    [69]W.Chen and B.Poirier,J.Theor.Comput.Chem.09,435(2010).

    [70]C.Petty,W.Chen,and B.Poirier,J.Phys.Chem.A117,7280(2013).

    [71]C.Petty and B.Poirier,Chem.Phys.Lett.605-606,16(2014).

    [72]S.Y.Lin,Z.Sun,H.Guo,D.H.Zhang,P.Honvault,D.Xie,and S.Y.Lee,J.Phys.Chem.A112,602(2008).

    [73]M.G.Evans,and M.Polanyi,Trans.Faraday Soc.35,178(1939).

    [74]S.Y.Lin,H.Guo,G.Lendvay,and D.Xie,Phys.Chem.Chem.Phys.11,4715(2009).

    [75]F.Lique,M.Jor fi,P.Honvault,P.Halvick,S.Y.Lin,H.Guo,D.Q.Xie,P.J.Dagdigian,J.K Klos,and M.H.Alexander,J.Chem.Phys.131,221104(2009).

    [76]G.Quéméner,N.Balakrishnan,and B.K.Kendrick,Phys.Rev.A79,022703(2009).

    [77]J.C.Juanes-Marcos,G.Quemener,B.K.Kendrick,and N.Balakrishnan,Phys.Chem.Chem.Phys.13,19067(2011).

    [78]J.M.C.Marques and A.J.C.Varandas,Phys.Chem.Chem.Phys.3,505(2001).

    [79]P.F.Weck and N.Balakrishnan,Int.Rev.Phys.Chem.25,283(2006).

    [80]D.Xie,C.Xu,T.S.Ho,H.Rabitz,G.Lendvay,S.Y.Lin,and H.Guo,J.Chem.Phys.126,074315(2007).

    [81]A.J.C.Varandas,J.Chem.Phys.138,134117(2013).

    [82]A.J.C.Varandas,J.Chem.Phys.138,054120(2013).

    [83]D.C.Clary and H.J.Werner,Chem.Phys.Lett.112,346(1984).

    [84]D.C.Clary and J.P.Henshaw,Faraday Discuss.Chem.Soc.84,333(1987).

    [85]M.M.Teixidor and A.J.C.Varandas,J.Chem.Phys.142,014309(2015).

    [86]M.M.Teixidor and A.J.C.Varandas,Chem.Phys.Lett.638,61(2015).

    [87]S.Ghosh,R.Sharma,S.Adhikari,and A.J.C.Varandas,Chem.Phys.Lett.675,85(2017).

    [88]H.Du and J.P.Hessler,J.Chem.Phys.96,1077(1992).

    [89]K.Ke?ler and K.Kleinermanns,J.Chem.Phys.97,374(1992).

    [90]P.Jensen,R.J.Buenker,J.P.Gu,G.Osmann,and P.R.Bunker,Can.J.Phys.79,641(2001).

    [91]J.A.K Klos,F.Lique,M.H.Alexander,and P.J.Dagdigian,J.Chem.Phys.129,064306(2008).

    [92]A.Li,D.Xie,R.Dawes,A.W.Jasper,J.Ma,and H.Guo,J.Chem.Phys.133,144306(2010).

    [93]J.Ma,S.Y.Lin,H.Guo,Z.Sun,D.H.Zhang,and D.Xie,J.Chem.Phys.133,054302(2010).

    [94]P.Szabó and G.Lendvay,J.Phys.Chem.A119,7180(2015).

    [95]A.S.Sharipov and A.M.Starik,Phys.Scr.88,058305(2013).

    [96]A.Starik and A.Sharipov,Phys.Chem.Chem.Phys.13,16424(2011).

    [97]R.L.Brown,J.Geophys.Res.75,3935(1970).

    [98]C.Schmidt and H.I.Schiff,Chem.Phys.Lett.23,339(1973).

    [99]L.T.Cupitt,G.A.Takacs,and G.P.Glass,Int.J.Chem.Kinet.14,487(1982).

    [100]W.Hack and H.Kurzke,J.Phys.Chem.90,1900(1986).

    [101]P.Szabó and G.Lendvay,J.Phys.Chem.A119,12485(2015).

    [102]A.A.Chukalovsky,K.S.Klopovsky,A.P.Palov,A.M.Yu,and T.V.Rakhimova,J.Phys.D:Appl.Phys.49,485202(2016).

    [103]V.V.Melnikov,T.E.Odaka,P.Jensen,and T.Hirano,J.Chem.Phys.128,114316(2008).

    [104]H.C.Longuethiggins,U.Opik,M.H.L.Pryce,and R.A.Sack,Proc.R.Soc.London,Ser.A244,1(1958).

    [105]G.Herzberg and H.C.Longuet-Higgins,Discuss.Faraday Soc.35,77(1963).

    [106]F.R.S.M.V.Berry,Proc.R.Soc.London,Ser.A392,45(1984).

    [107]B.Kendrick and R.T.Pack,J.Chem.Phys.104,7475(1996).

    [108]B.Kendrick and R.T.Pack,J.Chem.Phys.104,7502(1996).

    [109]B.Kendrick and R.T.Pack,J.Chem.Phys.106,3519(1997).

    [110]B.K.Kendrick,J.Phys.Chem.A107,6739(2003).

    [111]J.Hazra,B.K.Kendrick,and N.Balakrishnan,J.Phys.Chem.A119,12291(2015).

    [112]B.K.Kendrick,J.Hazra,and N.Balakrishnan,Nat.Commun.6,7918(2015).

    [113]J.Yang,Q.S.Li,and S.Zhang,Phys.Chem.Chem.Phys.9,466(2007).

    [114]J.P.Le Crane,M.T.Rayez,J.C.Rayez,and E.Villenave,Phys.Chem.Chem.Phys.8,2163(2006).

    [115]N.K.Srinivasan,M.C.Su,J.W.Sutherland,and J.V.Michael,J.Phys.Chem.A109,7902(2005).

    [116]J.Cerkovnik,E.Erzen,J.Koller,and B.Plesnicar,J.Am.Chem.Soc.124,404(2002).

    [117]O.Setokuchi,M.Sato,and S.Matuzawa,J.Phys.Chem.A104,3204(2000).

    [118]C.Murray,E.L.Derro,T.D.Sechler,and M.I.Lester,J.Phys.Chem.A111,4727(2007).

    [119]E.L.Derro,C.Murray,T.D.Sechler,and M.I.Lester,J.Phys.Chem.A111,11592(2007).

    [120]P.D.Cooper,M.H.Moore,and R.L.Hudson,J.Phys.Chem.A110,7985(2006).

    [121]S.Chalmet and M.F.Ruiz-Lopez,J.Chem.Phys.124,194502(2006).

    [122]W.M.F.Fabian,J.Kalcher,and R.Janoschek,Theor.Chem.Acc.114,182(2005).

    [123]A.J.C.Varandas,J.Phys.Chem.A108,758(2004).

    [124]H.Szichman and A.J.C.Varandas,J.Phys.Chem.A103,1967(1999).

    [125]H.G.Yu and A.J.C.Varandas,J.Chem.Soc.Faraday Trans.93,2651(1997).

    [126]B.Plesnicar,Acta Chimica Slovenica52,1(2005).

    [127]A.N.Wu,D.Cremer,and B.Plesnicar,J.Am.Chem.Soc.125,9395(2003).

    [128]X.Xu and W.A.Goddard,Proc.Nat.Acad.Sci.USA99,15308(2002).

    [129]A.Engdahl and B.Nelander,Science295,482(2002).

    [130]P.Wentworth,L.H.Jones,A.D.Wentworth,X.Y.Zhu,N.A.Larsen,I.A.Wilson,X.Xu,W.A.Goddard,K.D.Janda,A.Eschenmoser,and R.A.Lerner,Science293,1806(2001).

    [131]S.Aloisio and J.S.Francisco,J.Am.Chem.Soc.121,8592(1999).

    [132]B.Plesni?ar,T.Tuttle,J.Cerkovnik,J.Koller,and D.Cremer,J.Am.Chem.Soc.125,11553(2003).

    [133]F.Cacace,G.de Petris,F.Pepi,and A.Troiani,Science285,81(1999).

    [134]B.Nelander,A.Engdahl,and T.Svensson,Chem.Phys.Lett.339,295(2001).

    [135]W.Zheng,D.Jewitt,and R.I.Kaiser,Phys.Chem.Chem.Phys.9,2556(2007).

    [136]K.Suma,Y.Sumiyoshi,and Y.Endo,Science308,1885(2005).

    [137]E.L.Derro,T.D.Sechler,C.Murray,and M.I.Lester,J.Chem.Phys.128,244313(2008).

    [138]Y.Zhou,H.Hu,L.Li,H.Hou,and B.Wang,Comput.Theor.Chem.1026,24(2013).

    [139]B.J.Braams and H.G.Yu,Phys.Chem.Chem.Phys.10,3150(2008).

    [140]K.Suma,Y.Sumiyoshi,and Y.Endo,J.Chem.Phys.139,094301(2013).

    [141]C.Murray,E.L.Derro,T.D.Sechler,and M.I.Lester,Acc.Chem.Res.42,419(2009).

    [142]A.J.C.Varandas,Int.J.Quantum Chem.114,1327(2014).

    [143]M.Dupuis,G.Fitzgerald,B.Hammond,W.A.Lester,and H.F.Schaefer,J.Chem.Phys.84,2691(1986).

    [144]T.P.W.Jungkamp and J.H.Seinfeld,Chem.Phys.Lett.257,15(1996).

    [145]H.G.Yu and A.J.C.Varandas,Chem.Phys.Lett.334,173(2001).

    [146]A.Mansergas,J.M.Anglada,S.Olivella,M.F.Ruiz-Lopez,and M.Martins-Costa,Phys.Chem.Chem.Phys.9,5865(2007).

    [147]A.J.C.Varandas,Phys.Chem.Chem.Phys.13,9796(2011).

    [148]M.E.Varner,M.E.Harding,J.Vazquez,J.Gauss,and J.F.Stanton,J.Phys.Chem.A113,11238(2009).

    [149]M.E.Varner,M.E.Harding,J.Gauss,and J.F.Stanton,Chem.Phys.346,53(2008).

    [150]J.M.Anglada,S.Olivella,and A.Solé,J.Chem.Theory Comput.6,2743(2010).

    [151]A.J.C.Varandas,J.Chem.Theory Comput.8,428(2012).

    [152]M.C.McCarthy,V.Lattanzi,D.Kokkin,O.Martinez Jr.,and J.F.Stanton,J.Chem.Phys.136,034303(2012).

    [153]E.L.Derro,T.D.Sechler,C.Murray,and M.I.Lester,J.Phys.Chem.A112,9269(2008).

    [154]S.D.Le Picard,M.Tizniti,A.Canosa,I.R.Sims,and I.W.M.Smith,Science328,1258(2010).

    [155]P.A.Denis and F.R.Ornellas,J.Phys.Chem.A113,499(2009).

    [156]P.A.Denis,M.Kieninger,O.N.Ventura,R.E.Cachau,and G.H.F.Diercksen,Chem.Phys.Lett.365,Pii s0009-2614(02)01432-x 440(2002).

    [157]A.J.C.Varandas and H.G.Yu,Mol.Phys.91,301(1997).

    [158]L.F.Keyser,J.Phys.Chem.86,3439(1982).

    [159]U.C.Sridharan,L.X.Qiu,and F.Kaufman,J.Phys.Chem.86,4569(1982).

    [160]W.H.Brune,J.J.Schwab,and J.G.Anderson,J.Phys.Chem.87,4503(1983).

    [161]J.M.Nicovich and P.H.Wine,J.Phys.Chem.91,5118(1987).

    [162]A.R.Ravishankara,P.H.Wine,and J.M.Nicovich,J.Chem.Phys.78,6629(1983).

    [163]U.C.Sridharan,F.S.Klein,and F.Kaufman,J.Chem.Phys.82,592(1985).

    [164]W.Wang,R.Gonzalez-Jonte,and A.J.C.Varandas,J.Phys.Chem.A102,6935(1998).

    [165]A.J.C.Varandas and H.Szichman,Chem.Phys.Lett.295,113(1998).

    [166]D.M.Silveira,P.Caridade,and A.J.C.Varandas,J.Phys.Chem.A108,8721(2004).

    [167]B.Jiang and H.Guo,J.Chem.Phys.139,054112(2013).

    [168]Y.L.Zhang,X.Y.Zhou,and B.Jiang,Chin.J.Chem.Phys.30,727(2017).

    亚洲精品亚洲一区二区| 18禁在线播放成人免费| 99久久精品国产国产毛片| 日本撒尿小便嘘嘘汇集6| 国产乱人偷精品视频| 亚洲国产日韩欧美精品在线观看| 又粗又爽又猛毛片免费看| 久久中文看片网| 国产成人a∨麻豆精品| 成年免费大片在线观看| 欧美激情国产日韩精品一区| 午夜福利在线在线| 色综合站精品国产| 在线免费观看不下载黄p国产| 亚洲国产精品国产精品| 九九在线视频观看精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲性夜色夜夜综合| 国产真实乱freesex| 国产高清三级在线| 寂寞人妻少妇视频99o| 国产精品一及| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 日韩av不卡免费在线播放| 免费高清视频大片| 久99久视频精品免费| 久久久精品大字幕| 91久久精品电影网| 亚洲国产欧洲综合997久久,| 久99久视频精品免费| 青春草视频在线免费观看| 午夜福利在线观看免费完整高清在 | 联通29元200g的流量卡| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 中文字幕熟女人妻在线| 一级黄片播放器| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 欧美成人一区二区免费高清观看| 人人妻人人澡人人爽人人夜夜 | 色综合色国产| 日韩欧美精品v在线| 舔av片在线| 少妇熟女欧美另类| 特级一级黄色大片| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 韩国av在线不卡| 国产av麻豆久久久久久久| 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄 | 亚洲熟妇中文字幕五十中出| 欧美一区二区亚洲| 三级毛片av免费| 欧美潮喷喷水| 亚洲精品在线观看二区| 国产精品精品国产色婷婷| 99热6这里只有精品| 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 亚洲18禁久久av| 久久午夜亚洲精品久久| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 国产精品野战在线观看| 亚洲精品在线观看二区| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 国产毛片a区久久久久| av国产免费在线观看| 99国产精品一区二区蜜桃av| 欧美另类亚洲清纯唯美| 人人妻人人澡人人爽人人夜夜 | 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 悠悠久久av| 精品久久国产蜜桃| 日本黄色片子视频| 亚洲最大成人中文| 久久精品久久久久久噜噜老黄 | 美女黄网站色视频| 最后的刺客免费高清国语| 亚洲第一电影网av| 两个人的视频大全免费| 欧美性猛交黑人性爽| 国产淫片久久久久久久久| 观看免费一级毛片| 永久网站在线| 国产精品,欧美在线| 俄罗斯特黄特色一大片| 亚洲av不卡在线观看| 国产亚洲精品综合一区在线观看| 2021天堂中文幕一二区在线观| 听说在线观看完整版免费高清| 午夜爱爱视频在线播放| 99久久精品一区二区三区| 黄色日韩在线| 亚洲国产欧洲综合997久久,| 久久99热6这里只有精品| 国产午夜精品论理片| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 如何舔出高潮| 国产精品亚洲一级av第二区| 亚洲av成人av| 国产69精品久久久久777片| 亚洲无线观看免费| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 亚洲欧美日韩高清在线视频| 久久热精品热| 校园人妻丝袜中文字幕| 日本在线视频免费播放| 日韩欧美 国产精品| 国产黄a三级三级三级人| 久99久视频精品免费| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 1000部很黄的大片| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 黄色日韩在线| 国国产精品蜜臀av免费| 成人亚洲精品av一区二区| 免费av不卡在线播放| 免费av毛片视频| 春色校园在线视频观看| 久久久欧美国产精品| av在线观看视频网站免费| 69人妻影院| 别揉我奶头 嗯啊视频| 熟女电影av网| 亚洲国产欧洲综合997久久,| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区 | 又粗又爽又猛毛片免费看| 我要搜黄色片| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 国产av不卡久久| 中文字幕精品亚洲无线码一区| 18+在线观看网站| 人人妻人人澡欧美一区二区| 美女内射精品一级片tv| 青春草视频在线免费观看| 午夜影院日韩av| 美女内射精品一级片tv| 日韩一区二区视频免费看| 日日啪夜夜撸| 最后的刺客免费高清国语| 99精品在免费线老司机午夜| 久久国产乱子免费精品| 最近在线观看免费完整版| 联通29元200g的流量卡| 深夜a级毛片| 亚洲精品影视一区二区三区av| av黄色大香蕉| 日产精品乱码卡一卡2卡三| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 成人av一区二区三区在线看| 一夜夜www| 亚洲国产精品久久男人天堂| 国产乱人视频| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 午夜福利在线在线| 国产精华一区二区三区| 国产探花极品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲,欧美,日韩| 91午夜精品亚洲一区二区三区| 99九九线精品视频在线观看视频| 亚洲美女搞黄在线观看 | 国产亚洲欧美98| 色综合色国产| 久久精品影院6| 亚洲成a人片在线一区二区| 国产毛片a区久久久久| 国产亚洲91精品色在线| 亚洲国产精品久久男人天堂| 嫩草影视91久久| 亚洲av熟女| 精品久久久久久久久久免费视频| 欧美日韩精品成人综合77777| 一级毛片我不卡| 午夜日韩欧美国产| 成人国产麻豆网| 国内精品宾馆在线| av在线亚洲专区| 午夜a级毛片| 国产精品嫩草影院av在线观看| 小蜜桃在线观看免费完整版高清| 久久婷婷人人爽人人干人人爱| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 久久久久久伊人网av| 国产成人aa在线观看| 不卡视频在线观看欧美| 国产亚洲91精品色在线| 欧美高清性xxxxhd video| 22中文网久久字幕| videossex国产| 国产精品野战在线观看| 精品久久久久久久久亚洲| 好男人在线观看高清免费视频| 免费av观看视频| 精品国产三级普通话版| 中国美女看黄片| 国产激情偷乱视频一区二区| 热99在线观看视频| 欧美色欧美亚洲另类二区| 人人妻人人澡人人爽人人夜夜 | 国产aⅴ精品一区二区三区波| 国产女主播在线喷水免费视频网站 | 又爽又黄无遮挡网站| 欧美日韩综合久久久久久| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 波多野结衣巨乳人妻| 成人国产麻豆网| 久久久国产成人免费| 精品少妇黑人巨大在线播放 | 成人高潮视频无遮挡免费网站| 深夜精品福利| 欧美高清性xxxxhd video| 日韩精品青青久久久久久| av卡一久久| 国产色婷婷99| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 99久久精品热视频| 成人二区视频| 免费在线观看影片大全网站| 亚洲高清免费不卡视频| 搞女人的毛片| 我要看日韩黄色一级片| 久久人妻av系列| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久av| 直男gayav资源| 免费观看在线日韩| 男女视频在线观看网站免费| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 亚洲四区av| 国产黄片美女视频| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| av国产免费在线观看| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| 日韩成人av中文字幕在线观看 | 天美传媒精品一区二区| 成人欧美大片| 久久久久久久久久黄片| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 人妻制服诱惑在线中文字幕| 舔av片在线| 成人综合一区亚洲| 精品乱码久久久久久99久播| 亚洲图色成人| 国产午夜精品久久久久久一区二区三区 | 日本三级黄在线观看| 国产三级中文精品| 久99久视频精品免费| 99视频精品全部免费 在线| 一夜夜www| 波多野结衣巨乳人妻| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 国产淫片久久久久久久久| 在线a可以看的网站| 99九九线精品视频在线观看视频| 午夜日韩欧美国产| 天堂动漫精品| 又黄又爽又刺激的免费视频.| 国内揄拍国产精品人妻在线| 久久久国产成人精品二区| 国产高潮美女av| 色播亚洲综合网| 国产精品野战在线观看| 亚洲内射少妇av| 在线播放国产精品三级| 国产一区二区在线观看日韩| 最近的中文字幕免费完整| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 免费观看精品视频网站| 日韩三级伦理在线观看| 级片在线观看| 热99在线观看视频| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 俺也久久电影网| 网址你懂的国产日韩在线| 亚洲av一区综合| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 国产精品国产三级国产av玫瑰| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| a级毛色黄片| 午夜福利高清视频| 亚洲成人久久爱视频| 亚洲av第一区精品v没综合| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 精品日产1卡2卡| 大型黄色视频在线免费观看| 能在线免费观看的黄片| 日本-黄色视频高清免费观看| 欧美成人a在线观看| 搡老熟女国产l中国老女人| 国产精品三级大全| 成人欧美大片| 一级毛片电影观看 | 给我免费播放毛片高清在线观看| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 伦理电影大哥的女人| 在线观看美女被高潮喷水网站| 亚洲人成网站在线观看播放| 日本精品一区二区三区蜜桃| 精品久久久久久久久久久久久| av国产免费在线观看| 桃色一区二区三区在线观看| 国产精品一区二区性色av| 99riav亚洲国产免费| 亚洲专区国产一区二区| 18禁在线无遮挡免费观看视频 | 亚洲精品久久国产高清桃花| h日本视频在线播放| 亚洲最大成人av| 成人精品一区二区免费| 九九热线精品视视频播放| 99热精品在线国产| 国产精品三级大全| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 中文资源天堂在线| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 天堂网av新在线| 久久久久久久久久黄片| 久久人妻av系列| 精品乱码久久久久久99久播| 男女那种视频在线观看| 国产高清视频在线观看网站| 中文字幕久久专区| 日日撸夜夜添| 天堂影院成人在线观看| 一区福利在线观看| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 卡戴珊不雅视频在线播放| 久久精品国产亚洲av涩爱 | 桃色一区二区三区在线观看| 美女大奶头视频| 一级av片app| 人人妻人人澡欧美一区二区| 国产精品一二三区在线看| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区精品| 身体一侧抽搐| 国模一区二区三区四区视频| 欧美+日韩+精品| 黄色视频,在线免费观看| 99久久精品一区二区三区| 成人国产麻豆网| 欧美中文日本在线观看视频| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| avwww免费| 日本在线视频免费播放| 99久久中文字幕三级久久日本| 老师上课跳d突然被开到最大视频| 色综合亚洲欧美另类图片| 内地一区二区视频在线| 日日撸夜夜添| 久久人妻av系列| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| 又爽又黄a免费视频| 久久久久久久久大av| 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 国产 一区 欧美 日韩| 久久中文看片网| av在线老鸭窝| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 中文字幕熟女人妻在线| 日本熟妇午夜| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 久99久视频精品免费| 欧美又色又爽又黄视频| 国产单亲对白刺激| 精品国产三级普通话版| 级片在线观看| 精品午夜福利在线看| 国产精品野战在线观看| 我要搜黄色片| 国产高清不卡午夜福利| 简卡轻食公司| 国产男靠女视频免费网站| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品国产精品| 国产成人福利小说| 伦精品一区二区三区| 狠狠狠狠99中文字幕| 波野结衣二区三区在线| 日本欧美国产在线视频| 中文字幕av成人在线电影| 国产亚洲欧美98| 国产不卡一卡二| 日本三级黄在线观看| 黑人高潮一二区| av专区在线播放| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 91精品国产九色| 国产精品久久久久久精品电影| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 卡戴珊不雅视频在线播放| 熟女电影av网| 国产黄色视频一区二区在线观看 | 99久久久亚洲精品蜜臀av| 在线免费观看不下载黄p国产| 国产 一区精品| 久久精品国产鲁丝片午夜精品| 国产高清视频在线观看网站| 中文资源天堂在线| 天天躁日日操中文字幕| 国产午夜福利久久久久久| 最近的中文字幕免费完整| 亚洲精品成人久久久久久| 九九爱精品视频在线观看| 深夜精品福利| 中文资源天堂在线| videossex国产| 日韩欧美 国产精品| 色视频www国产| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 乱人视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 最近在线观看免费完整版| 亚洲精品一区av在线观看| 亚洲久久久久久中文字幕| 深夜精品福利| 搡老熟女国产l中国老女人| 天天躁日日操中文字幕| 成人av一区二区三区在线看| 男人狂女人下面高潮的视频| 久久精品国产清高在天天线| 亚洲人成网站在线观看播放| 丝袜美腿在线中文| 三级国产精品欧美在线观看| 色视频www国产| 日韩欧美一区二区三区在线观看| 看片在线看免费视频| 亚洲最大成人av| 人妻久久中文字幕网| 久久婷婷人人爽人人干人人爱| 国产成人a区在线观看| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 精品久久久久久久末码| 国内精品美女久久久久久| 日本黄色片子视频| 国产私拍福利视频在线观看| 久久亚洲国产成人精品v| 狠狠狠狠99中文字幕| 精品熟女少妇av免费看| 久久99热6这里只有精品| 色综合亚洲欧美另类图片| 看片在线看免费视频| 欧美激情在线99| 麻豆久久精品国产亚洲av| 国产视频内射| 精品一区二区免费观看| 日日摸夜夜添夜夜添小说| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 欧美性猛交黑人性爽| 91狼人影院| 插阴视频在线观看视频| 91午夜精品亚洲一区二区三区| 亚洲人成网站在线播| 精品久久久久久久久av| 看十八女毛片水多多多| 1024手机看黄色片| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 搡女人真爽免费视频火全软件 | 99热网站在线观看| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 好男人在线观看高清免费视频| 国产 一区精品| 真实男女啪啪啪动态图| 狂野欧美激情性xxxx在线观看| 免费无遮挡裸体视频| 亚洲国产精品成人久久小说 | 国产精品女同一区二区软件| 一级黄色大片毛片| 国产精品一区www在线观看| 91av网一区二区| 亚洲人成网站高清观看| 免费观看人在逋| 国产视频一区二区在线看| a级毛色黄片| 日韩三级伦理在线观看| 亚洲,欧美,日韩| 国内精品宾馆在线| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 日韩成人伦理影院| 禁无遮挡网站| 午夜福利18| 淫妇啪啪啪对白视频| 欧美日韩乱码在线| 国产午夜福利久久久久久| 成人鲁丝片一二三区免费| 丰满的人妻完整版| 赤兔流量卡办理| 亚洲五月天丁香| 日本免费一区二区三区高清不卡| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 国产白丝娇喘喷水9色精品| 午夜激情福利司机影院| 91麻豆精品激情在线观看国产| 中文资源天堂在线| 亚洲精品国产av成人精品 | 亚洲图色成人| 91久久精品国产一区二区三区| 国产视频一区二区在线看| 干丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 99久久精品国产国产毛片| 搡老岳熟女国产| 联通29元200g的流量卡| 欧美成人a在线观看| 国产av在哪里看| 亚洲天堂国产精品一区在线| 日本免费a在线| 两个人的视频大全免费| 国产久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 日本-黄色视频高清免费观看| 老司机福利观看| 九九热线精品视视频播放| 日本成人三级电影网站| 韩国av在线不卡| 国产精品免费一区二区三区在线| 伊人久久精品亚洲午夜| 国产精品美女特级片免费视频播放器| 免费av毛片视频| 久久精品国产亚洲av涩爱 | 久久久久久久久中文| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 国产精品电影一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产一区二区三区av在线 |