• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington’s disease and involvement of heme oxygenase-1

    2018-05-05 06:47:13LauraFoucaultFruchardClaireTronelSylvieBodardZuhalGulhanJulieBussonSylvieChalonDanielAntier

    Laura Foucault-Fruchard , Claire Tronel Sylvie Bodard Zuhal Gulhan Julie Busson Sylvie Chalon Daniel Antier

    1 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

    2 CHRU de Tours, H?pital Bretonneau, Tours, France

    Introduction

    Epidemiological studies have shown that smokers have a lower risk of neurodegenerative diseases than non-smokers.These effects seem to be related to the activation of nicotinic receptors by nicotine, which is a nonselective agonist of alpha 7 nicotinic receptor (α7nAChR) (Gotti and Clementi, 2004; O’Reilly et al., 2005; Thacker et al., 2007). Several studies have reported the beneficial effects of α7nAChR activation on neuronal survival and neuroinflammation in animal models of neurodegenerative diseases (Medeiros et al., 2014; Sérrière et al., 2015). These homopentameric ligand-gated cation channel receptors are widely expressed on neurons and non-neuronal cells (microglia, astroglia,oligodendrocytes and endothelial cells) (Bertrand et al.,2015). In peripheral macrophages, cholinergic anti-in fl ammatory mechanisms through stimulation of α7nAChR are well documented (Egea et al., 2015; Han et al., 2017). Shytle et al. (2004) reported that both activated microglia and macrophages can mediate the inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) release.Accordingly, it was hypothesized that the cholinergic anti-inflammatory pathway (CAP) identified in the periphery has a brain counterpart in the central nervous system (CNS)that could regulate microglial activation.

    Referring to the CNS, it has been previously stated that α7nAChR stimulation was associated with the activation of the Jak2/PI3K/AKT cascade, which promotes translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus (Parada et al., 2010). By analogy with the mechanism observed in periphery, Nrf2 activation could promote the overexpression of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1). The end products of HO-1 activity are known for their ability to reduce the inflammatory response (Egea et al., 2015). To date, there is little evidence related to the participation of this CAP in the brain. Additional experiments are necessary to confirm this hypothesis.

    We have recently shown that repeated administrations of a potent agonist of α7nAChR, PHA 543613, decreased microglial activation in a dose-dependent manner and significantly improved neuronal survival in anin vivoneuroinflammatory excitotoxic rat model (Foucault-Fruchard et al., 2017). PHA 543613, also known as [N-(3R)-1-azabicyclo[2.2.2]-Oct-3-yl-furo [2,3-c]pyridine-5-carboxamide hydrochloride], is characterized by rapid brain penetration(Acker et al., 2008). Published data about this compound provide additional support for the hypothesis that it represents a potential drug in the management of neurodegenerative diseases. This agonist was shown to improve cognitive function in a model of Schizophrenia (Wishka et al., 2006). It has also demonstrated neuroprotective and anti-inflammatory effects in different intracerebral haemorrhage models and in neurodegenerative rodent models such as models of Parkinson’s and Alzheimer’s diseases (Kraキ et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). Therefore, the purpose of the present study was to assess the participation of HO-1 in the modulation of neuronal loss and neuroinflammation mediated by α7nAChR activation in a rat model of brain excitotoxicity. The model of acute neuroinflammation chosen, admitted as an animal model mimicking the early-stage Huntington’s disease, is obtained by unilateral striatal injection of quinolinic acid(QA). QA is an agonist of glutamate N-methyl-D-aspartate (NMDA) receptors with excitotoxic properties. This heterocyclic amino acid increases the expression of various enzymes (proteases, lipases, and endonucleases) that leads to neuronal death (Schwarcz and Kohler, 1983; Estrada Sanchez et al., 2008). Dysfunction of neuronal activity related to the QA injection induces a pro-inflammatory environment leading to the activation of surrounding microglial cells (Estrada Sanchez et al., 2008).

    Material and Methods

    Animals

    Experiments were conducted on 10-week-old normotensive male Wistar rats (n= 12) (Janvier Labs, Le Genest-Saint-Isle,France), housed in a temperature (21 ± 1°C)- and humidity-controlled (55 ± 5%) environment in a 12-hour light/dark cycle (food and waterad libitum). All procedures were carried out according to the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Excitotoxic neuroinflammation model mimicking early-stage Huntington’s disease

    Rats were anesthetized with isoflurane (4% for induction and 2% for maintenance, gas anesthetizing box, AerraneTM,Baxter, France) and placed in a stereotaxic David Kopf apparatus (Phymep, Paris, France) to be lesioned in the right striatum with QA (150 nmol, 2 μL, Sigma Aldrich, Lyon,France) at the following stereotaxic coordinates according to the Atlas of Paxinos and Watson (Paxinos and Watson,2008): anterior-posterior (AP): +0.7 mm; medial-lateral(ML): –3 mm; dorsal-ventral (DV): –5.5 mm from bregma.

    PHA 543613 injection

    Western blot assay

    On day 4, the rats were killed by decapitation and both ipsilateral and contralateral striata were dissected from brain tissue. These hemispheres were homogenized with lysis buffer and supplemented with sodium fluoride (NaF), phenylmethane sulfonyl fluoride (PMSF), protease and phosphatase inhibitor cocktails (Couturier et al., 2012). Lysates were centrifuged at 15,000 ×gfor 15 minutes at 4°C. The resulting supernatants were collected to measure the quantity of total protein using the Bradford method. After denaturation(100°C, 5 minutes), beta mercaptoethanol and bromophenol blue were added to 30 μg of samples. Proteins were separated on a SDS gel electrophoresis (40 minutes, 200 V) and were transferred onto a nitrocellulose membrane (Biorad,Marnes-la-Coquette, France). The blots were blocked for 3 hours at room temperature with 5% (v/v) nonfat dried milk in Tris-buffered saline containing 0.05% Tween 20 and then incubated with primary antibodies anti-HO-1 (1:300, rabbit antibody, ab68477, Abcam, Paris, France) or anti-α7nAChR(1:200, rabbit antibody, ab10096, Abcam, Paris, France) in blocking buffer overnight at 4°C. Membranes were incubated with a horseradish peroxidase-conjugated secondary polyclonal antibody at room temperature (1:7500, goat antibody, 111-033-144, Jackson Immunoresearch, West Grove,PA, USA) for 2 hours. Mouse polyclonal antibody against β-actin was used as housekeeping protein (Sigma Aldrich,Saint-Quentin Fallavier, France). Immunoreactive proteins were exposed to the enhanced chemiluminescence western blotting detection system and the signals were captured using the Gbox system and the GeneSys image capture soft-ware (Syngene, Ozyme, Saint Quentin en Yvelines, France).The densitometry relative difference between HO-1/α7nAChR and β-actin was analyzed with ImageJ software(National Institutes of Health, Bethesda, Maryland, USA).The expression levels of HO-1 and α7nAChR proteins in all rats were quantified independently of each other on the same nitrocellulose membrane. Each protein was quantified in all rats (n= 12) under the same condition and at the same time.

    Statistical analysis

    Results were analyzed using GraphPad Prism software v.5,San Diego, California, USA and expressed as the mean ±SEM(Standard error of the mean). Comparisons between groups were performed using the Mann-WhitneyUtest and comparisons between ipsilateral and contralateral striata were conducted using the Wilcoxon one-tailed test. The level of significance wasP< 0.05.

    Results

    Effect of PHA 543613 treatment on HO-1 expression in the striatum

    Figure 1 Effects of PHA 543613 treatment on HO-1 expression in the striatum of rats using western blot assay

    HO-1 expression was evaluated in ipsilateral and contralateral striata in the QA-vehicle (n= 6) and QA-PHA (n=6) groups. The results are illustrated in Figure 1. Western blot assay results revealed that HO-1 protein expression was significantly decreased in both groups (P< 0.05), and there was a significant difference in the decrease of HO-1 protein expression between the ipsilateral and contralateral striata in each group (HO-1/β-actin ratio in the QA-vehicle group:0.69 ± 0.13 in the contralateral striatumvs. 0.37 ± 0.09 in the ipsilateral striatum; HO-1/β-actin ratio in the QA-PHA group: 1.20 ± 0.20 in the contralateral striatumvs. 0.91 ± 0.18 in the ipsilateral striatum;P= 0.03). However, HO-1 expression in the ipsilateral striatum of rats in the QA-PHA group was significantly higher than in the QA-vehicle group (+146%;P= 0.02). HO-1 expression level in the contralateral striatum was also higher in the QA-PHA group than in the QA-vehicle group (+74%, not statistically significant).

    Effect of PHA 543613 on α7nAChR expression in the striatum

    Quantification of α7nAChR expression was performed on ipsilateral and contralateral striata in the QA-vehicle (n= 6)and QA-PHA (n= 6) groups. The results are illustrated in Figure 2. The overall level of α7nAChR in the contralateral and ipsilateral striata was determined using western blotting(QA-vehicle group: 0.60 ± 0.05 in the contralateral striatumvs. 0.60 ± 0.09 in the ipsilateral striatum; QA-PHA group:0.50 ± 0.01 in the contralateral striatumvs. 0.52 ± 0.06 in the ipsilateral striatum). No significant difference was observed between the animals (P> 0.05).

    Discussion

    Figure 2 Effect of PHA 543613 on α7nAChR expression in the striatum of rats using western blot assay

    PHA 543613 has already demonstrated neuroprotective and anti-inflammatory effects in rodent models of neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases (Krafft et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). We have recently highlighted that PHA 543613 decreased microglial activation with a dose effect and improved neuronal survival in a rat model of Huntington’s disease and we recently confirmed the agonist properties of PHA 543613 on α7nAChR expression in neuron and astrocyte cultures (Foucault-Fruchard et al., 2017).However, the pathways activated following the stimulation of α7nAChR in the brain are poorly understood. The present study aimed to add knowledge about the expression of a key component of the cholinergic anti-inflammatory pathway,HO-1, after repeated administrations of α7nAChR agonist.HO-1 end products generated from heme degradation may modulate inflammation. First, carbon monoxide (CO)released from HO activity may modulate apoptotic, proliferative, and inflammatory cellular programs. CO can downregulate the production of pro-inflammatory mediators(interleukin-6, tumor necrosis factor, inducible nitric oxide synthase…) and upregulate the anti-inflammatory cytokines(interleukin-1, interleukin-10…)viathe mitogen-activated protein kinase (MAPK) pathway. CO can also stimulate the production of reactive oxygen species, which can downregulate pro-inflammatory transcription (transforming growth factor-β, Egr-1…). Bilirubin, another product of heme degradation, may also exert anti-inflammatory and anti-proliferative effects. However, the degree of HO-1 activation should be regulated because a third end product of HO-1,Fe2+may be deleterious in the case of excess activation (Ryter et al., 2015).

    In our study, we observed a significant decrease of HO-1 expression in ipsilateral striatum compared with contralateral striatum in both groups (–86% and –33% in the QA-vehicle and QA-PHA groups respectively). Tasset et al. (2010)performed anin vitrostudy and demonstrated that QA exerted a pro-oxidant effect and decreased Nrf2 expression on rat striatal slices. Consequently, it is possible to speculate that this phenomenon is associated with a decrease of transcription of anti-oxidant genes such as HO-1. Colin-Gonzales et al. (2013) also investigated the effects of QA infused intrastriatally on HO-1 expression in rats. Contrary to our experimentation, they observed an increase in a time-dependent manner at 1, 3, 5 and 7 days post QA lesion compared with control animals. However, it is important to highlight that the experimental procedure was different from ours.The dose of QA used (240 nmol) was higher than in our surgical lesion technique, and the stereotaxic coordinates were different (AP: +0.5 mm; ML: 2.6 mm from bregma;DV: 4.5 mm from dura). In addition, HO-1 expression was only quantified in the ipsilateral striatum of QA and control animals lesioned with isotonic saline solution.

    In the present study, we revealed for the first time that repeated administrations of the α7nAChR agonist, PHA 543613, significantly increased HO-1 expression in the ipsilateral striatum of the QA-PHA group compared with QA-vehicle. Increased HO-1 expression was also observed in the contralateral striatum. Several studies have already highlighted a correlation between HO-1 expression and HO-1 activity in the CNS (Colín-González et al., 2013; Lin et al.,2017). The ipsilateral side represents the region of interest in our QA lesion model. These observations correspond to a protective action of HO-1 activation as described previously(Suttner and Dennery, 1999). The dual behavior, protective(formation of anti-oxidant compounds) or toxic (production of Fe2+), of this enzyme is widely reported and the protein expression level depends on the neuroinflammation model and drug exposure methods (Colín-González et al., 2013;Tronel et al., 2013). Increased HO-1 expression, 10 times higher than the basal value, seems to be toxic whereas 2-fold to 10-fold increase in HO-1 expression seems to be protective (1.7-fold and 2.4-fold increases in HO-1 expression in ipsilateral striatum relative to contralateral striatum in the QA-vehicle and QA-PHA groups respectively) (Suttner and Dennery, 1999). After activation, the α7nAChR theoretically undergoes rapid desensitization to limit the influx of Ca2+into the cell which can lead to excitotoxicity. A compensating mechanism characterized by an increased number of α7nAChR binding sites in several brain regions, particularly in the prefrontal cortex, can be initiated (Christensen et al.,2010). However, 4-day treatment with PHA 543613 did not lead to a significant modification of α7nAChR expression.This finding suggests that HO-1 expression is not associated with an increase of α7nAChR density.

    Increased HO-1 expression in our study seems to underlie the neuroprotective and anti-inflammatory effects associated with α7nAChR activation observed under excitotoxic conditions. Other studies have supported the correlation between the neuroprotective effects and the induction of HO-1 expression in neurodegenerative models (Parada et al., 2014; Buendia et al., 2015). Taken together, these observations reinforce the hypothesis that the cholinergic anti-inflammatory pathway identified in the periphery has a brain counterpart in the CNS. However, other signaling pathways such as Nrf2 (i.e., activator protein 1, nuclear factor kappa B or hypoxia inducible factor-1) can regulate HO-1 expression(Alam and Cook, 2003; Ferrándiz and Devesa, 2008) and further investigations have to be performed to confirm our hypothesis.

    Author contributions:LFF contributed to the conception, design,definition of the intellectual content, literature retrieval, experimental studies, data acquisition and analysis, statistical analysis, manuscript preparation and editing and was the guarantor of the paper. CT contributed to the conception, design, definition of intellectual content, experimental studies, and manuscript review. SB, ZG and JB contributed to the experimentation. SC and DA contributed to the conception, design,and definition of the intellectual content, and manuscript review. They contributed equally to this work and approved the final version of this paper for publication.

    Conflicts of interest:The authors declare that there is no conflict of interest regarding the publication of this paper.

    Financial support:This work was supported by the Région Centre-Val de Loire (2014 00094049 – AP 2014-850) and the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°278850 (INMiND). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

    Research ethics:All procedures were carried out according the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA, Tinholt PM, Walters RR, Olson BA, Fitzgerald L, Staton BA, Raub TJ,Krause M, Li KS, Hoffmann WE, Hajos M, et al. (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18:3611-3615.

    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response pathway. Curr Pharm Des 9:2499-2511.

    Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D (2015)Therapeutic potential of alpha7 nicotinic acetylcholine receptors.Pharmacol Rev 67:1025-1073.

    Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI,López MG (2015) The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci 6:288-296.

    Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS (2010)Repeated administration of alpha7 nicotinic acetylcholine receptor(nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem 114:1205-1216.

    Colín-González AL, Orozco-Ibarra M, Chánez-Cárdenas ME, Rangel-López E, Santamaría A, Pedraza-Chaverri J, Barrera-Oviedo D,Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91-101.

    Couturier J, Paccalin M, Lafay-Chebassier C, Chalon S, Ingrand I,Pinguet J, Pontcharraud R, Guillard O, Fauconneau B, Page G(2012) Pharmacological inhibition of PKR in APPswePS1dE9 mice transiently prevents inflammation at 12 months of age but increases Aβ42 levels in the late stages of the Alzheimer’s disease. Curr Alzheimer Res 9:344-360.

    Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG (2015)Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 97:463-472.

    Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265-276.

    Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473-486.

    Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Doll, F, Damont A, Buron F, Routier S, Chalon S, Antier D (2017) Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 356:52-63.

    Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363-396.

    Han B, Li X, Hao J (2017) The cholinergic anti-inflammatory pathway:An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 77:358-368.

    Kraキ PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH(2012) α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke 43:844-850.

    Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2013)PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke J Cereb Circ 44:1743-1747.

    Kraキ PR, McBride D, Rolland WB, Lekic T, Flores JJ, Zhang JH (2017)α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage. Biomed Res Int 2017:8134653.

    Lin CC, Yang CC, Chen YW, Hsiao LD, Yang CM (2017) Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat BrainAstrocytes. Mol Neurobiol doi: 10.1007/s12035-017-0590-7.

    Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, Esbenshade TA, Bitner RS, Decker MW, LaFerla FM (2014) α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 184:520-529.

    O’Reilly EJ, McCullough ML, Chao A, Jane Henley S, Calle EE, Thun MJ, Ascherio A (2005) Smokeless tobacco use and the risk of Parkinson’s disease mortality. Mov Disord 20:1383-1384.

    Parada E, Egea J, Romero A, del Barrio L, García AG, López MG (2010)Poststress treatment with PNU282987 can rescue SH-SY5Y cells undergoing apoptosis via α7 nicotinic receptors linked to a Jak2/Akt/HO-1 signaling pathway. Free Radic Biol Med 49:1815-1821.

    Parada E, Buendia I, León R, Negredo P, Romero A, Cuadrado A,López MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56:204-212.

    Paxinos G, Watson C (2008) The Rat Brain in Stereotaxic Coordinates:Compact. 6thed. Academic Press/Elsevier, Amsterdam.

    Ryter SW, Choi AM (2016) Targetingheme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7-34.

    Sérrière S, Doméné A, Vercouillie J, Mothes C, Bodard S, Rodrigues N, Guilloteau D, Routier S, Page G, Chalon S (2015) Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, pha 543613 using [18F]lbt-999 in a Parkinson’s disease rat model. Front Med 2:61.

    Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D(2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30:736-742.

    Schwarcz R, K?hler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85-90.

    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337-343.

    Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J 13:1800-1809.

    Tasset I, Pérez-De La Cruz V, Elinos-Calderón D, Carrillo-Mora P, González-Herrera IG, Luna-López A, Konigsberg M, Pedraza-Chaverrí J, Maldonado PD, Ali SF, Túnez I, Santamaría A (2010)Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway. Neurosignals 18:24-31.

    Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA,McCullough ML, Calle EE, Thun MJ, Ascherio A (2007) Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68:764-768.

    Tronel C, Rochefort GY, Arlicot N, Bodard S, Chalon S, Antier D (2013)Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatoryrat model. Oxid Med Cell Longev 2013:264935.

    Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, et al. (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem 49:4425-4436.

    www国产在线视频色| 中出人妻视频一区二区| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 色综合欧美亚洲国产小说| 久久精品综合一区二区三区| 欧美日本亚洲视频在线播放| 中文在线观看免费www的网站| 欧美日韩福利视频一区二区| 国产精品九九99| 91字幕亚洲| 亚洲va日本ⅴa欧美va伊人久久| 欧美国产日韩亚洲一区| 18美女黄网站色大片免费观看| 精品乱码久久久久久99久播| 岛国在线观看网站| 国产探花在线观看一区二区| 欧美日韩福利视频一区二区| 成在线人永久免费视频| 亚洲乱码一区二区免费版| 日本黄大片高清| av福利片在线观看| 麻豆一二三区av精品| 国产精品永久免费网站| 真人一进一出gif抽搐免费| 搡老妇女老女人老熟妇| 国产免费av片在线观看野外av| 999久久久精品免费观看国产| 天天一区二区日本电影三级| 高潮久久久久久久久久久不卡| 特大巨黑吊av在线直播| 久久久国产成人免费| 99riav亚洲国产免费| 国产精品自产拍在线观看55亚洲| 伊人久久大香线蕉亚洲五| 国产精品久久久久久久电影 | а√天堂www在线а√下载| 亚洲熟妇中文字幕五十中出| 五月伊人婷婷丁香| 婷婷精品国产亚洲av在线| 国内少妇人妻偷人精品xxx网站 | 欧美一区二区国产精品久久精品| 在线观看一区二区三区| 亚洲美女黄片视频| 久久久久久人人人人人| 丁香六月欧美| 特大巨黑吊av在线直播| 18禁黄网站禁片午夜丰满| 中亚洲国语对白在线视频| 亚洲国产精品成人综合色| 国产一区二区在线av高清观看| 欧美日韩黄片免| 欧美精品啪啪一区二区三区| 亚洲人成网站高清观看| 欧美一级毛片孕妇| 亚洲欧美激情综合另类| 日韩有码中文字幕| 俺也久久电影网| 亚洲国产欧美一区二区综合| 岛国视频午夜一区免费看| 国产成年人精品一区二区| 国产成人系列免费观看| 国产精品99久久99久久久不卡| 少妇的逼水好多| 亚洲在线自拍视频| 精品电影一区二区在线| 亚洲成人久久爱视频| 午夜福利视频1000在线观看| 色播亚洲综合网| 91在线精品国自产拍蜜月 | 人妻夜夜爽99麻豆av| av福利片在线观看| 在线观看66精品国产| 亚洲av五月六月丁香网| 九九热线精品视视频播放| 日韩欧美一区二区三区在线观看| 久久欧美精品欧美久久欧美| 日本黄大片高清| 国产视频一区二区在线看| 无限看片的www在线观看| 欧美另类亚洲清纯唯美| 成人性生交大片免费视频hd| 岛国在线免费视频观看| 88av欧美| 最好的美女福利视频网| 日韩国内少妇激情av| 午夜久久久久精精品| 国产精品美女特级片免费视频播放器 | 丰满人妻熟妇乱又伦精品不卡| 久久久国产成人免费| 欧美成人性av电影在线观看| 婷婷六月久久综合丁香| 成人特级黄色片久久久久久久| 伦理电影免费视频| 99在线视频只有这里精品首页| 亚洲,欧美精品.| 婷婷精品国产亚洲av在线| 小说图片视频综合网站| 淫妇啪啪啪对白视频| 老司机午夜十八禁免费视频| 51午夜福利影视在线观看| 91麻豆精品激情在线观看国产| 美女免费视频网站| 国内少妇人妻偷人精品xxx网站 | 舔av片在线| 亚洲狠狠婷婷综合久久图片| 亚洲av免费在线观看| 99re在线观看精品视频| www日本黄色视频网| 日韩精品青青久久久久久| 国产极品精品免费视频能看的| 亚洲av五月六月丁香网| 欧美绝顶高潮抽搐喷水| 麻豆一二三区av精品| 国产激情偷乱视频一区二区| 夜夜躁狠狠躁天天躁| 两个人看的免费小视频| 中文字幕最新亚洲高清| 欧美一级毛片孕妇| 国产精品亚洲av一区麻豆| 成人亚洲精品av一区二区| 一卡2卡三卡四卡精品乱码亚洲| 一卡2卡三卡四卡精品乱码亚洲| 一个人免费在线观看的高清视频| 欧美黑人欧美精品刺激| 91麻豆精品激情在线观看国产| 日韩欧美精品v在线| www.自偷自拍.com| 国产精品综合久久久久久久免费| 动漫黄色视频在线观看| 亚洲人成网站在线播放欧美日韩| 小说图片视频综合网站| 亚洲电影在线观看av| 老熟妇仑乱视频hdxx| 人妻夜夜爽99麻豆av| 精品国产亚洲在线| 不卡一级毛片| 午夜福利在线观看免费完整高清在 | 两性夫妻黄色片| 嫩草影院入口| 欧美黑人巨大hd| 亚洲五月婷婷丁香| 别揉我奶头~嗯~啊~动态视频| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久| 中文在线观看免费www的网站| 中文字幕久久专区| 波多野结衣巨乳人妻| 99久久精品一区二区三区| 国产成人精品久久二区二区免费| 国产熟女xx| 久久精品亚洲精品国产色婷小说| 中文资源天堂在线| 色老头精品视频在线观看| 国产乱人伦免费视频| 亚洲熟女毛片儿| 午夜福利高清视频| 亚洲精品在线观看二区| 欧美日本亚洲视频在线播放| 在线观看一区二区三区| 岛国视频午夜一区免费看| 国产亚洲欧美在线一区二区| 精品久久久久久久毛片微露脸| 免费观看的影片在线观看| 国产亚洲精品久久久com| 99精品久久久久人妻精品| 国产日本99.免费观看| 人妻久久中文字幕网| 最新美女视频免费是黄的| 国产伦精品一区二区三区四那| 亚洲一区二区三区不卡视频| 又紧又爽又黄一区二区| 久久久久久九九精品二区国产| 少妇人妻一区二区三区视频| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 天天添夜夜摸| 淫秽高清视频在线观看| 亚洲国产欧美人成| 久久中文字幕人妻熟女| 两个人视频免费观看高清| 欧美黑人巨大hd| 欧美成人一区二区免费高清观看 | 亚洲国产日韩欧美精品在线观看 | 99久久国产精品久久久| 狂野欧美白嫩少妇大欣赏| 国产视频内射| 国产激情久久老熟女| 亚洲av成人精品一区久久| 一级毛片高清免费大全| 亚洲中文日韩欧美视频| 91九色精品人成在线观看| 无限看片的www在线观看| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av| 亚洲成人久久性| 亚洲精品在线观看二区| 色噜噜av男人的天堂激情| 男女做爰动态图高潮gif福利片| 热99在线观看视频| 亚洲国产欧洲综合997久久,| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 亚洲国产精品成人综合色| 亚洲成av人片免费观看| 中文字幕精品亚洲无线码一区| 亚洲国产中文字幕在线视频| 精品久久久久久久久久久久久| 中文在线观看免费www的网站| 久久精品国产99精品国产亚洲性色| 在线观看免费午夜福利视频| 黄频高清免费视频| 俄罗斯特黄特色一大片| 日韩高清综合在线| 操出白浆在线播放| 婷婷丁香在线五月| 伦理电影免费视频| 成人一区二区视频在线观看| 不卡av一区二区三区| 精品不卡国产一区二区三区| 亚洲av成人不卡在线观看播放网| 免费看a级黄色片| 久久国产乱子伦精品免费另类| 亚洲片人在线观看| 亚洲熟妇中文字幕五十中出| 国产成人精品久久二区二区91| 午夜精品在线福利| 久久久久国产一级毛片高清牌| 怎么达到女性高潮| 香蕉久久夜色| 亚洲精品在线美女| 2021天堂中文幕一二区在线观| 在线观看一区二区三区| 亚洲中文av在线| 欧美在线一区亚洲| 在线观看午夜福利视频| 嫁个100分男人电影在线观看| 欧美日韩一级在线毛片| 精品久久蜜臀av无| 精品久久久久久久久久免费视频| 亚洲无线观看免费| 中文资源天堂在线| 欧美绝顶高潮抽搐喷水| 老司机深夜福利视频在线观看| 国语自产精品视频在线第100页| 女同久久另类99精品国产91| 午夜影院日韩av| 亚洲乱码一区二区免费版| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| 国产真人三级小视频在线观看| 久久天堂一区二区三区四区| 国产真实乱freesex| 成人18禁在线播放| 中文资源天堂在线| ponron亚洲| 久久这里只有精品中国| 嫩草影院精品99| 熟女电影av网| 午夜免费成人在线视频| www日本黄色视频网| 成年女人永久免费观看视频| 十八禁人妻一区二区| 欧美中文日本在线观看视频| 亚洲在线自拍视频| 亚洲自偷自拍图片 自拍| 熟女电影av网| 色在线成人网| 天堂√8在线中文| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 国产高清videossex| 成人欧美大片| 亚洲中文字幕日韩| 一区福利在线观看| 午夜福利免费观看在线| www.www免费av| 色综合欧美亚洲国产小说| 日韩欧美在线乱码| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 亚洲五月天丁香| 亚洲欧美激情综合另类| 国产探花在线观看一区二区| 日韩精品中文字幕看吧| 999久久久国产精品视频| 宅男免费午夜| 日本a在线网址| 欧美日韩一级在线毛片| 蜜桃久久精品国产亚洲av| 亚洲国产日韩欧美精品在线观看 | 日韩精品中文字幕看吧| 2021天堂中文幕一二区在线观| 国产午夜精品久久久久久| 日本一二三区视频观看| 国产精品久久电影中文字幕| 一个人看视频在线观看www免费 | 伊人久久大香线蕉亚洲五| 床上黄色一级片| 真人一进一出gif抽搐免费| 最新美女视频免费是黄的| 国产乱人伦免费视频| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 婷婷丁香在线五月| 国产午夜精品论理片| 最好的美女福利视频网| 中文字幕熟女人妻在线| 很黄的视频免费| 久久精品国产综合久久久| 嫩草影视91久久| 亚洲熟妇熟女久久| 青草久久国产| 精品一区二区三区av网在线观看| 国产亚洲av高清不卡| 九九久久精品国产亚洲av麻豆 | 国产成人aa在线观看| 怎么达到女性高潮| 精品国产亚洲在线| 十八禁网站免费在线| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 国产99白浆流出| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 热99在线观看视频| 老鸭窝网址在线观看| 在线播放国产精品三级| h日本视频在线播放| 男女做爰动态图高潮gif福利片| cao死你这个sao货| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 亚洲中文字幕日韩| 日韩欧美三级三区| 亚洲色图 男人天堂 中文字幕| 国产av麻豆久久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲狠狠婷婷综合久久图片| 97超级碰碰碰精品色视频在线观看| 无限看片的www在线观看| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 欧美丝袜亚洲另类 | 人妻丰满熟妇av一区二区三区| 亚洲熟女毛片儿| 长腿黑丝高跟| 午夜激情欧美在线| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 桃色一区二区三区在线观看| 搞女人的毛片| 一区福利在线观看| 在线观看午夜福利视频| 最新美女视频免费是黄的| 国产99白浆流出| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 两个人看的免费小视频| 国内精品美女久久久久久| 亚洲中文av在线| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看 | 精华霜和精华液先用哪个| 69av精品久久久久久| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 在线免费观看的www视频| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩无卡精品| 国产一区二区激情短视频| 99久久无色码亚洲精品果冻| 精品久久蜜臀av无| 在线十欧美十亚洲十日本专区| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 99精品久久久久人妻精品| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站 | 国产精品永久免费网站| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 俺也久久电影网| 91老司机精品| 欧美日韩黄片免| 免费高清视频大片| 香蕉国产在线看| 国产成人精品久久二区二区免费| 婷婷精品国产亚洲av在线| 欧美激情在线99| 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| 国产精品一及| 久久久国产成人免费| 欧美高清成人免费视频www| 村上凉子中文字幕在线| 国产成人精品无人区| 伦理电影免费视频| 午夜视频精品福利| or卡值多少钱| 成年女人毛片免费观看观看9| 国产毛片a区久久久久| 美女黄网站色视频| 熟女人妻精品中文字幕| netflix在线观看网站| 巨乳人妻的诱惑在线观看| 69av精品久久久久久| www.精华液| 99视频精品全部免费 在线 | 成熟少妇高潮喷水视频| 三级国产精品欧美在线观看 | 91老司机精品| 嫩草影视91久久| 免费大片18禁| www.精华液| 女同久久另类99精品国产91| 19禁男女啪啪无遮挡网站| 亚洲欧美激情综合另类| 岛国在线观看网站| 精品国产美女av久久久久小说| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 99久久成人亚洲精品观看| 国产一级毛片七仙女欲春2| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 久久久水蜜桃国产精品网| 久久这里只有精品19| 中文字幕高清在线视频| 国产一区二区在线观看日韩 | 91av网一区二区| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 国产私拍福利视频在线观看| 最新在线观看一区二区三区| 欧美三级亚洲精品| 国产精品自产拍在线观看55亚洲| 国产激情久久老熟女| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 丁香六月欧美| 日韩成人在线观看一区二区三区| 午夜免费激情av| 99热精品在线国产| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 91在线观看av| 亚洲av美国av| 色av中文字幕| 此物有八面人人有两片| 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 午夜免费观看网址| 首页视频小说图片口味搜索| 国内精品美女久久久久久| 两个人视频免费观看高清| 一级毛片精品| 国产免费av片在线观看野外av| 欧美色欧美亚洲另类二区| 国产极品精品免费视频能看的| 最近最新中文字幕大全免费视频| 欧美乱色亚洲激情| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 俺也久久电影网| 成人永久免费在线观看视频| 亚洲精品国产精品久久久不卡| 国产久久久一区二区三区| 男女午夜视频在线观看| 久久久国产成人免费| 亚洲色图av天堂| 天天添夜夜摸| 欧美一级a爱片免费观看看| 久久精品aⅴ一区二区三区四区| 久久久久性生活片| 两个人的视频大全免费| 这个男人来自地球电影免费观看| 天天一区二区日本电影三级| 琪琪午夜伦伦电影理论片6080| 欧美大码av| 亚洲国产看品久久| 欧美色欧美亚洲另类二区| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 超碰成人久久| 亚洲av电影在线进入| 国内精品久久久久精免费| 久久精品aⅴ一区二区三区四区| 精品无人区乱码1区二区| 国产99白浆流出| 美女cb高潮喷水在线观看 | 特级一级黄色大片| 国产精品,欧美在线| 性欧美人与动物交配| 国产乱人视频| 一本一本综合久久| 在线观看66精品国产| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 亚洲国产欧洲综合997久久,| 久久伊人香网站| 91av网一区二区| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 久久人妻av系列| 久久亚洲精品不卡| 狂野欧美激情性xxxx| 国产三级中文精品| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 桃色一区二区三区在线观看| 日韩人妻高清精品专区| 日本一二三区视频观看| 曰老女人黄片| 黄频高清免费视频| 91九色精品人成在线观看| 久久香蕉国产精品| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 美女扒开内裤让男人捅视频| 美女大奶头视频| 国产69精品久久久久777片 | 国产成人影院久久av| 黄色日韩在线| 欧美在线一区亚洲| 欧美日韩瑟瑟在线播放| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 视频区欧美日本亚洲| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 国产综合懂色| 香蕉av资源在线| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩 | 综合色av麻豆| 一级毛片精品| 国产一区二区在线av高清观看| 99热精品在线国产| 99在线人妻在线中文字幕| xxx96com| 国产精品免费一区二区三区在线| svipshipincom国产片| 午夜影院日韩av| 午夜免费激情av| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 最好的美女福利视频网| 欧美丝袜亚洲另类 | 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 久久久久亚洲av毛片大全| 在线看三级毛片| 男女午夜视频在线观看| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 久久伊人香网站| 国产伦精品一区二区三区视频9 | 免费搜索国产男女视频| 国产精品一区二区精品视频观看| 免费看十八禁软件| 亚洲成人免费电影在线观看| 久久性视频一级片| 三级国产精品欧美在线观看 | 九九在线视频观看精品| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| bbb黄色大片| 日本与韩国留学比较| 中出人妻视频一区二区| 热99在线观看视频| svipshipincom国产片| 色吧在线观看| 亚洲人成网站高清观看| 99在线人妻在线中文字幕| 麻豆一二三区av精品| 国产一区二区三区在线臀色熟女| 黑人操中国人逼视频| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 国产三级中文精品|