• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington’s disease and involvement of heme oxygenase-1

    2018-05-05 06:47:13LauraFoucaultFruchardClaireTronelSylvieBodardZuhalGulhanJulieBussonSylvieChalonDanielAntier

    Laura Foucault-Fruchard , Claire Tronel Sylvie Bodard Zuhal Gulhan Julie Busson Sylvie Chalon Daniel Antier

    1 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

    2 CHRU de Tours, H?pital Bretonneau, Tours, France

    Introduction

    Epidemiological studies have shown that smokers have a lower risk of neurodegenerative diseases than non-smokers.These effects seem to be related to the activation of nicotinic receptors by nicotine, which is a nonselective agonist of alpha 7 nicotinic receptor (α7nAChR) (Gotti and Clementi, 2004; O’Reilly et al., 2005; Thacker et al., 2007). Several studies have reported the beneficial effects of α7nAChR activation on neuronal survival and neuroinflammation in animal models of neurodegenerative diseases (Medeiros et al., 2014; Sérrière et al., 2015). These homopentameric ligand-gated cation channel receptors are widely expressed on neurons and non-neuronal cells (microglia, astroglia,oligodendrocytes and endothelial cells) (Bertrand et al.,2015). In peripheral macrophages, cholinergic anti-in fl ammatory mechanisms through stimulation of α7nAChR are well documented (Egea et al., 2015; Han et al., 2017). Shytle et al. (2004) reported that both activated microglia and macrophages can mediate the inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) release.Accordingly, it was hypothesized that the cholinergic anti-inflammatory pathway (CAP) identified in the periphery has a brain counterpart in the central nervous system (CNS)that could regulate microglial activation.

    Referring to the CNS, it has been previously stated that α7nAChR stimulation was associated with the activation of the Jak2/PI3K/AKT cascade, which promotes translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus (Parada et al., 2010). By analogy with the mechanism observed in periphery, Nrf2 activation could promote the overexpression of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1). The end products of HO-1 activity are known for their ability to reduce the inflammatory response (Egea et al., 2015). To date, there is little evidence related to the participation of this CAP in the brain. Additional experiments are necessary to confirm this hypothesis.

    We have recently shown that repeated administrations of a potent agonist of α7nAChR, PHA 543613, decreased microglial activation in a dose-dependent manner and significantly improved neuronal survival in anin vivoneuroinflammatory excitotoxic rat model (Foucault-Fruchard et al., 2017). PHA 543613, also known as [N-(3R)-1-azabicyclo[2.2.2]-Oct-3-yl-furo [2,3-c]pyridine-5-carboxamide hydrochloride], is characterized by rapid brain penetration(Acker et al., 2008). Published data about this compound provide additional support for the hypothesis that it represents a potential drug in the management of neurodegenerative diseases. This agonist was shown to improve cognitive function in a model of Schizophrenia (Wishka et al., 2006). It has also demonstrated neuroprotective and anti-inflammatory effects in different intracerebral haemorrhage models and in neurodegenerative rodent models such as models of Parkinson’s and Alzheimer’s diseases (Kraキ et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). Therefore, the purpose of the present study was to assess the participation of HO-1 in the modulation of neuronal loss and neuroinflammation mediated by α7nAChR activation in a rat model of brain excitotoxicity. The model of acute neuroinflammation chosen, admitted as an animal model mimicking the early-stage Huntington’s disease, is obtained by unilateral striatal injection of quinolinic acid(QA). QA is an agonist of glutamate N-methyl-D-aspartate (NMDA) receptors with excitotoxic properties. This heterocyclic amino acid increases the expression of various enzymes (proteases, lipases, and endonucleases) that leads to neuronal death (Schwarcz and Kohler, 1983; Estrada Sanchez et al., 2008). Dysfunction of neuronal activity related to the QA injection induces a pro-inflammatory environment leading to the activation of surrounding microglial cells (Estrada Sanchez et al., 2008).

    Material and Methods

    Animals

    Experiments were conducted on 10-week-old normotensive male Wistar rats (n= 12) (Janvier Labs, Le Genest-Saint-Isle,France), housed in a temperature (21 ± 1°C)- and humidity-controlled (55 ± 5%) environment in a 12-hour light/dark cycle (food and waterad libitum). All procedures were carried out according to the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Excitotoxic neuroinflammation model mimicking early-stage Huntington’s disease

    Rats were anesthetized with isoflurane (4% for induction and 2% for maintenance, gas anesthetizing box, AerraneTM,Baxter, France) and placed in a stereotaxic David Kopf apparatus (Phymep, Paris, France) to be lesioned in the right striatum with QA (150 nmol, 2 μL, Sigma Aldrich, Lyon,France) at the following stereotaxic coordinates according to the Atlas of Paxinos and Watson (Paxinos and Watson,2008): anterior-posterior (AP): +0.7 mm; medial-lateral(ML): –3 mm; dorsal-ventral (DV): –5.5 mm from bregma.

    PHA 543613 injection

    Western blot assay

    On day 4, the rats were killed by decapitation and both ipsilateral and contralateral striata were dissected from brain tissue. These hemispheres were homogenized with lysis buffer and supplemented with sodium fluoride (NaF), phenylmethane sulfonyl fluoride (PMSF), protease and phosphatase inhibitor cocktails (Couturier et al., 2012). Lysates were centrifuged at 15,000 ×gfor 15 minutes at 4°C. The resulting supernatants were collected to measure the quantity of total protein using the Bradford method. After denaturation(100°C, 5 minutes), beta mercaptoethanol and bromophenol blue were added to 30 μg of samples. Proteins were separated on a SDS gel electrophoresis (40 minutes, 200 V) and were transferred onto a nitrocellulose membrane (Biorad,Marnes-la-Coquette, France). The blots were blocked for 3 hours at room temperature with 5% (v/v) nonfat dried milk in Tris-buffered saline containing 0.05% Tween 20 and then incubated with primary antibodies anti-HO-1 (1:300, rabbit antibody, ab68477, Abcam, Paris, France) or anti-α7nAChR(1:200, rabbit antibody, ab10096, Abcam, Paris, France) in blocking buffer overnight at 4°C. Membranes were incubated with a horseradish peroxidase-conjugated secondary polyclonal antibody at room temperature (1:7500, goat antibody, 111-033-144, Jackson Immunoresearch, West Grove,PA, USA) for 2 hours. Mouse polyclonal antibody against β-actin was used as housekeeping protein (Sigma Aldrich,Saint-Quentin Fallavier, France). Immunoreactive proteins were exposed to the enhanced chemiluminescence western blotting detection system and the signals were captured using the Gbox system and the GeneSys image capture soft-ware (Syngene, Ozyme, Saint Quentin en Yvelines, France).The densitometry relative difference between HO-1/α7nAChR and β-actin was analyzed with ImageJ software(National Institutes of Health, Bethesda, Maryland, USA).The expression levels of HO-1 and α7nAChR proteins in all rats were quantified independently of each other on the same nitrocellulose membrane. Each protein was quantified in all rats (n= 12) under the same condition and at the same time.

    Statistical analysis

    Results were analyzed using GraphPad Prism software v.5,San Diego, California, USA and expressed as the mean ±SEM(Standard error of the mean). Comparisons between groups were performed using the Mann-WhitneyUtest and comparisons between ipsilateral and contralateral striata were conducted using the Wilcoxon one-tailed test. The level of significance wasP< 0.05.

    Results

    Effect of PHA 543613 treatment on HO-1 expression in the striatum

    Figure 1 Effects of PHA 543613 treatment on HO-1 expression in the striatum of rats using western blot assay

    HO-1 expression was evaluated in ipsilateral and contralateral striata in the QA-vehicle (n= 6) and QA-PHA (n=6) groups. The results are illustrated in Figure 1. Western blot assay results revealed that HO-1 protein expression was significantly decreased in both groups (P< 0.05), and there was a significant difference in the decrease of HO-1 protein expression between the ipsilateral and contralateral striata in each group (HO-1/β-actin ratio in the QA-vehicle group:0.69 ± 0.13 in the contralateral striatumvs. 0.37 ± 0.09 in the ipsilateral striatum; HO-1/β-actin ratio in the QA-PHA group: 1.20 ± 0.20 in the contralateral striatumvs. 0.91 ± 0.18 in the ipsilateral striatum;P= 0.03). However, HO-1 expression in the ipsilateral striatum of rats in the QA-PHA group was significantly higher than in the QA-vehicle group (+146%;P= 0.02). HO-1 expression level in the contralateral striatum was also higher in the QA-PHA group than in the QA-vehicle group (+74%, not statistically significant).

    Effect of PHA 543613 on α7nAChR expression in the striatum

    Quantification of α7nAChR expression was performed on ipsilateral and contralateral striata in the QA-vehicle (n= 6)and QA-PHA (n= 6) groups. The results are illustrated in Figure 2. The overall level of α7nAChR in the contralateral and ipsilateral striata was determined using western blotting(QA-vehicle group: 0.60 ± 0.05 in the contralateral striatumvs. 0.60 ± 0.09 in the ipsilateral striatum; QA-PHA group:0.50 ± 0.01 in the contralateral striatumvs. 0.52 ± 0.06 in the ipsilateral striatum). No significant difference was observed between the animals (P> 0.05).

    Discussion

    Figure 2 Effect of PHA 543613 on α7nAChR expression in the striatum of rats using western blot assay

    PHA 543613 has already demonstrated neuroprotective and anti-inflammatory effects in rodent models of neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases (Krafft et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). We have recently highlighted that PHA 543613 decreased microglial activation with a dose effect and improved neuronal survival in a rat model of Huntington’s disease and we recently confirmed the agonist properties of PHA 543613 on α7nAChR expression in neuron and astrocyte cultures (Foucault-Fruchard et al., 2017).However, the pathways activated following the stimulation of α7nAChR in the brain are poorly understood. The present study aimed to add knowledge about the expression of a key component of the cholinergic anti-inflammatory pathway,HO-1, after repeated administrations of α7nAChR agonist.HO-1 end products generated from heme degradation may modulate inflammation. First, carbon monoxide (CO)released from HO activity may modulate apoptotic, proliferative, and inflammatory cellular programs. CO can downregulate the production of pro-inflammatory mediators(interleukin-6, tumor necrosis factor, inducible nitric oxide synthase…) and upregulate the anti-inflammatory cytokines(interleukin-1, interleukin-10…)viathe mitogen-activated protein kinase (MAPK) pathway. CO can also stimulate the production of reactive oxygen species, which can downregulate pro-inflammatory transcription (transforming growth factor-β, Egr-1…). Bilirubin, another product of heme degradation, may also exert anti-inflammatory and anti-proliferative effects. However, the degree of HO-1 activation should be regulated because a third end product of HO-1,Fe2+may be deleterious in the case of excess activation (Ryter et al., 2015).

    In our study, we observed a significant decrease of HO-1 expression in ipsilateral striatum compared with contralateral striatum in both groups (–86% and –33% in the QA-vehicle and QA-PHA groups respectively). Tasset et al. (2010)performed anin vitrostudy and demonstrated that QA exerted a pro-oxidant effect and decreased Nrf2 expression on rat striatal slices. Consequently, it is possible to speculate that this phenomenon is associated with a decrease of transcription of anti-oxidant genes such as HO-1. Colin-Gonzales et al. (2013) also investigated the effects of QA infused intrastriatally on HO-1 expression in rats. Contrary to our experimentation, they observed an increase in a time-dependent manner at 1, 3, 5 and 7 days post QA lesion compared with control animals. However, it is important to highlight that the experimental procedure was different from ours.The dose of QA used (240 nmol) was higher than in our surgical lesion technique, and the stereotaxic coordinates were different (AP: +0.5 mm; ML: 2.6 mm from bregma;DV: 4.5 mm from dura). In addition, HO-1 expression was only quantified in the ipsilateral striatum of QA and control animals lesioned with isotonic saline solution.

    In the present study, we revealed for the first time that repeated administrations of the α7nAChR agonist, PHA 543613, significantly increased HO-1 expression in the ipsilateral striatum of the QA-PHA group compared with QA-vehicle. Increased HO-1 expression was also observed in the contralateral striatum. Several studies have already highlighted a correlation between HO-1 expression and HO-1 activity in the CNS (Colín-González et al., 2013; Lin et al.,2017). The ipsilateral side represents the region of interest in our QA lesion model. These observations correspond to a protective action of HO-1 activation as described previously(Suttner and Dennery, 1999). The dual behavior, protective(formation of anti-oxidant compounds) or toxic (production of Fe2+), of this enzyme is widely reported and the protein expression level depends on the neuroinflammation model and drug exposure methods (Colín-González et al., 2013;Tronel et al., 2013). Increased HO-1 expression, 10 times higher than the basal value, seems to be toxic whereas 2-fold to 10-fold increase in HO-1 expression seems to be protective (1.7-fold and 2.4-fold increases in HO-1 expression in ipsilateral striatum relative to contralateral striatum in the QA-vehicle and QA-PHA groups respectively) (Suttner and Dennery, 1999). After activation, the α7nAChR theoretically undergoes rapid desensitization to limit the influx of Ca2+into the cell which can lead to excitotoxicity. A compensating mechanism characterized by an increased number of α7nAChR binding sites in several brain regions, particularly in the prefrontal cortex, can be initiated (Christensen et al.,2010). However, 4-day treatment with PHA 543613 did not lead to a significant modification of α7nAChR expression.This finding suggests that HO-1 expression is not associated with an increase of α7nAChR density.

    Increased HO-1 expression in our study seems to underlie the neuroprotective and anti-inflammatory effects associated with α7nAChR activation observed under excitotoxic conditions. Other studies have supported the correlation between the neuroprotective effects and the induction of HO-1 expression in neurodegenerative models (Parada et al., 2014; Buendia et al., 2015). Taken together, these observations reinforce the hypothesis that the cholinergic anti-inflammatory pathway identified in the periphery has a brain counterpart in the CNS. However, other signaling pathways such as Nrf2 (i.e., activator protein 1, nuclear factor kappa B or hypoxia inducible factor-1) can regulate HO-1 expression(Alam and Cook, 2003; Ferrándiz and Devesa, 2008) and further investigations have to be performed to confirm our hypothesis.

    Author contributions:LFF contributed to the conception, design,definition of the intellectual content, literature retrieval, experimental studies, data acquisition and analysis, statistical analysis, manuscript preparation and editing and was the guarantor of the paper. CT contributed to the conception, design, definition of intellectual content, experimental studies, and manuscript review. SB, ZG and JB contributed to the experimentation. SC and DA contributed to the conception, design,and definition of the intellectual content, and manuscript review. They contributed equally to this work and approved the final version of this paper for publication.

    Conflicts of interest:The authors declare that there is no conflict of interest regarding the publication of this paper.

    Financial support:This work was supported by the Région Centre-Val de Loire (2014 00094049 – AP 2014-850) and the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°278850 (INMiND). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

    Research ethics:All procedures were carried out according the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA, Tinholt PM, Walters RR, Olson BA, Fitzgerald L, Staton BA, Raub TJ,Krause M, Li KS, Hoffmann WE, Hajos M, et al. (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18:3611-3615.

    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response pathway. Curr Pharm Des 9:2499-2511.

    Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D (2015)Therapeutic potential of alpha7 nicotinic acetylcholine receptors.Pharmacol Rev 67:1025-1073.

    Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI,López MG (2015) The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci 6:288-296.

    Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS (2010)Repeated administration of alpha7 nicotinic acetylcholine receptor(nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem 114:1205-1216.

    Colín-González AL, Orozco-Ibarra M, Chánez-Cárdenas ME, Rangel-López E, Santamaría A, Pedraza-Chaverri J, Barrera-Oviedo D,Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91-101.

    Couturier J, Paccalin M, Lafay-Chebassier C, Chalon S, Ingrand I,Pinguet J, Pontcharraud R, Guillard O, Fauconneau B, Page G(2012) Pharmacological inhibition of PKR in APPswePS1dE9 mice transiently prevents inflammation at 12 months of age but increases Aβ42 levels in the late stages of the Alzheimer’s disease. Curr Alzheimer Res 9:344-360.

    Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG (2015)Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 97:463-472.

    Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265-276.

    Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473-486.

    Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Doll, F, Damont A, Buron F, Routier S, Chalon S, Antier D (2017) Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 356:52-63.

    Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363-396.

    Han B, Li X, Hao J (2017) The cholinergic anti-inflammatory pathway:An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 77:358-368.

    Kraキ PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH(2012) α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke 43:844-850.

    Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2013)PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke J Cereb Circ 44:1743-1747.

    Kraキ PR, McBride D, Rolland WB, Lekic T, Flores JJ, Zhang JH (2017)α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage. Biomed Res Int 2017:8134653.

    Lin CC, Yang CC, Chen YW, Hsiao LD, Yang CM (2017) Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat BrainAstrocytes. Mol Neurobiol doi: 10.1007/s12035-017-0590-7.

    Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, Esbenshade TA, Bitner RS, Decker MW, LaFerla FM (2014) α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 184:520-529.

    O’Reilly EJ, McCullough ML, Chao A, Jane Henley S, Calle EE, Thun MJ, Ascherio A (2005) Smokeless tobacco use and the risk of Parkinson’s disease mortality. Mov Disord 20:1383-1384.

    Parada E, Egea J, Romero A, del Barrio L, García AG, López MG (2010)Poststress treatment with PNU282987 can rescue SH-SY5Y cells undergoing apoptosis via α7 nicotinic receptors linked to a Jak2/Akt/HO-1 signaling pathway. Free Radic Biol Med 49:1815-1821.

    Parada E, Buendia I, León R, Negredo P, Romero A, Cuadrado A,López MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56:204-212.

    Paxinos G, Watson C (2008) The Rat Brain in Stereotaxic Coordinates:Compact. 6thed. Academic Press/Elsevier, Amsterdam.

    Ryter SW, Choi AM (2016) Targetingheme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7-34.

    Sérrière S, Doméné A, Vercouillie J, Mothes C, Bodard S, Rodrigues N, Guilloteau D, Routier S, Page G, Chalon S (2015) Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, pha 543613 using [18F]lbt-999 in a Parkinson’s disease rat model. Front Med 2:61.

    Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D(2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30:736-742.

    Schwarcz R, K?hler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85-90.

    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337-343.

    Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J 13:1800-1809.

    Tasset I, Pérez-De La Cruz V, Elinos-Calderón D, Carrillo-Mora P, González-Herrera IG, Luna-López A, Konigsberg M, Pedraza-Chaverrí J, Maldonado PD, Ali SF, Túnez I, Santamaría A (2010)Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway. Neurosignals 18:24-31.

    Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA,McCullough ML, Calle EE, Thun MJ, Ascherio A (2007) Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68:764-768.

    Tronel C, Rochefort GY, Arlicot N, Bodard S, Chalon S, Antier D (2013)Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatoryrat model. Oxid Med Cell Longev 2013:264935.

    Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, et al. (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem 49:4425-4436.

    日韩欧美精品免费久久 | 男女视频在线观看网站免费| 高清日韩中文字幕在线| 国产精品一区二区性色av| 久久热精品热| 国产不卡一卡二| 欧美日本亚洲视频在线播放| 亚洲精品日韩av片在线观看| 国产免费av片在线观看野外av| 欧美精品国产亚洲| 亚洲熟妇熟女久久| 99国产精品一区二区蜜桃av| 男插女下体视频免费在线播放| 亚洲欧美日韩高清专用| 亚洲欧美激情综合另类| 亚洲人成网站在线播| 久久国产精品人妻蜜桃| 免费看光身美女| 国内精品美女久久久久久| 久久国产乱子免费精品| 长腿黑丝高跟| 免费搜索国产男女视频| 桃色一区二区三区在线观看| 免费黄网站久久成人精品 | 91字幕亚洲| 亚洲 欧美 日韩 在线 免费| 久久亚洲精品不卡| 中国美女看黄片| 如何舔出高潮| 日韩精品中文字幕看吧| 麻豆久久精品国产亚洲av| 在线a可以看的网站| 久久精品国产亚洲av涩爱 | 国产精品不卡视频一区二区 | 亚洲熟妇熟女久久| 美女黄网站色视频| 亚洲专区国产一区二区| 免费看光身美女| 内射极品少妇av片p| 99久久九九国产精品国产免费| 日韩欧美在线二视频| 麻豆国产97在线/欧美| 欧美区成人在线视频| 婷婷精品国产亚洲av在线| 五月玫瑰六月丁香| 最近在线观看免费完整版| 淫妇啪啪啪对白视频| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区| 亚洲精品在线观看二区| 最近中文字幕高清免费大全6 | 91久久精品国产一区二区成人| 一级av片app| 免费av观看视频| 大型黄色视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 99在线视频只有这里精品首页| 亚洲三级黄色毛片| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 亚洲人成伊人成综合网2020| 99国产精品一区二区三区| 日韩欧美精品v在线| 欧美一区二区亚洲| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 国产欧美日韩一区二区精品| 国产在线男女| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 国产久久久一区二区三区| 激情在线观看视频在线高清| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 免费一级毛片在线播放高清视频| 日本在线视频免费播放| 国产乱人伦免费视频| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 又黄又爽又刺激的免费视频.| 国产免费一级a男人的天堂| 久久人人爽人人爽人人片va | 熟女电影av网| 成人特级av手机在线观看| 国产日本99.免费观看| 一本综合久久免费| 国产精品一及| 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 午夜免费成人在线视频| 免费搜索国产男女视频| 中文字幕久久专区| 午夜福利18| 男女之事视频高清在线观看| 级片在线观看| 91午夜精品亚洲一区二区三区 | 国产午夜精品久久久久久一区二区三区 | 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 高清毛片免费观看视频网站| 脱女人内裤的视频| 国产乱人视频| 69av精品久久久久久| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 天堂√8在线中文| 1024手机看黄色片| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 日韩国内少妇激情av| 午夜a级毛片| 最后的刺客免费高清国语| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 国产一区二区亚洲精品在线观看| 国产单亲对白刺激| 亚洲 欧美 日韩 在线 免费| 亚洲av一区综合| 国产久久久一区二区三区| 亚洲 欧美 日韩 在线 免费| 丰满乱子伦码专区| 亚洲精品乱码久久久v下载方式| 国产亚洲精品久久久久久毛片| 黄片小视频在线播放| 在现免费观看毛片| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 国产成人影院久久av| 窝窝影院91人妻| 久久国产乱子伦精品免费另类| 嫩草影院入口| 丁香六月欧美| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 国产色婷婷99| 18禁黄网站禁片免费观看直播| 久久午夜福利片| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 国产欧美日韩一区二区三| 国产淫片久久久久久久久 | 国产国拍精品亚洲av在线观看| 两人在一起打扑克的视频| 亚洲色图av天堂| 日本熟妇午夜| 国产精品一及| 免费看日本二区| 久久久久国产精品人妻aⅴ院| 欧美午夜高清在线| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 哪里可以看免费的av片| 亚洲美女搞黄在线观看 | 三级男女做爰猛烈吃奶摸视频| 精品午夜福利在线看| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 国产伦精品一区二区三区视频9| 成年人黄色毛片网站| 在线播放无遮挡| 草草在线视频免费看| 亚洲人成电影免费在线| 国产精品99久久久久久久久| www.999成人在线观看| 在线看三级毛片| 黄色日韩在线| 我要看日韩黄色一级片| 观看免费一级毛片| 精华霜和精华液先用哪个| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 精品久久久久久,| 中国美女看黄片| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 88av欧美| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 一区二区三区高清视频在线| 亚洲 国产 在线| 97碰自拍视频| 精品午夜福利在线看| 中国美女看黄片| 国产精品伦人一区二区| 日日夜夜操网爽| 国产乱人伦免费视频| 亚洲精品成人久久久久久| 美女xxoo啪啪120秒动态图 | 亚洲第一区二区三区不卡| 国产高清视频在线观看网站| 日韩亚洲欧美综合| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 国产精品三级大全| 国产亚洲精品久久久com| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 亚洲自拍偷在线| 亚洲熟妇熟女久久| 午夜福利视频1000在线观看| 国产精品久久久久久久久免 | 又紧又爽又黄一区二区| 无遮挡黄片免费观看| 波多野结衣高清作品| 一边摸一边抽搐一进一小说| 如何舔出高潮| 成人永久免费在线观看视频| 欧美+亚洲+日韩+国产| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 男人狂女人下面高潮的视频| 久久久久免费精品人妻一区二区| 男人舔奶头视频| 久久人人爽人人爽人人片va | 亚洲午夜理论影院| 男女床上黄色一级片免费看| 日本三级黄在线观看| 此物有八面人人有两片| 日本一二三区视频观看| 亚洲最大成人中文| 少妇的逼好多水| 老司机午夜福利在线观看视频| 日本黄大片高清| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久| ponron亚洲| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 久久国产乱子免费精品| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| av视频在线观看入口| 波多野结衣巨乳人妻| 我的女老师完整版在线观看| 日韩欧美在线二视频| 午夜免费成人在线视频| 亚洲国产色片| 日本黄色视频三级网站网址| а√天堂www在线а√下载| 麻豆一二三区av精品| 国产免费av片在线观看野外av| 美女高潮的动态| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 午夜精品一区二区三区免费看| 成人三级黄色视频| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 我要看日韩黄色一级片| 少妇的逼水好多| 91麻豆精品激情在线观看国产| 久久久国产成人精品二区| 老熟妇仑乱视频hdxx| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 俄罗斯特黄特色一大片| 午夜日韩欧美国产| 欧美性猛交黑人性爽| 一本精品99久久精品77| 丰满的人妻完整版| 免费黄网站久久成人精品 | 高清在线国产一区| 午夜a级毛片| 成人鲁丝片一二三区免费| 国产精品一区二区性色av| 欧美xxxx黑人xx丫x性爽| 天天一区二区日本电影三级| 欧美一区二区亚洲| 亚洲无线观看免费| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站在线播| 日韩中文字幕欧美一区二区| 日本免费一区二区三区高清不卡| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 久久伊人香网站| 91久久精品电影网| 综合色av麻豆| 欧美3d第一页| 亚洲成人免费电影在线观看| 成年女人永久免费观看视频| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 天堂动漫精品| 在线免费观看不下载黄p国产 | av专区在线播放| 黄色日韩在线| 免费电影在线观看免费观看| 99精品久久久久人妻精品| 免费在线观看日本一区| 国产精品影院久久| 少妇裸体淫交视频免费看高清| 在线播放国产精品三级| 在线观看免费视频日本深夜| 少妇的逼好多水| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 久久精品国产清高在天天线| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 男人的好看免费观看在线视频| 99热这里只有是精品50| 欧美午夜高清在线| 最近最新中文字幕大全电影3| 男女做爰动态图高潮gif福利片| 老司机福利观看| 少妇人妻一区二区三区视频| 如何舔出高潮| 最新中文字幕久久久久| 久久伊人香网站| 婷婷色综合大香蕉| 欧美日韩亚洲国产一区二区在线观看| 亚洲片人在线观看| 日韩欧美在线二视频| 国产一区二区在线观看日韩| 国产成人啪精品午夜网站| 欧美bdsm另类| 欧美国产日韩亚洲一区| 我的女老师完整版在线观看| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 变态另类丝袜制服| 亚洲在线自拍视频| 精品久久久久久久久av| 国产精品野战在线观看| 亚洲av电影在线进入| 在线国产一区二区在线| 国产精品自产拍在线观看55亚洲| 成人永久免费在线观看视频| 日日干狠狠操夜夜爽| 伊人久久精品亚洲午夜| 亚洲黑人精品在线| 国产精品一区二区三区四区免费观看 | 亚洲 国产 在线| 熟女人妻精品中文字幕| 神马国产精品三级电影在线观看| 最新在线观看一区二区三区| 美女大奶头视频| 欧美黄色淫秽网站| 成人三级黄色视频| 免费黄网站久久成人精品 | 日日夜夜操网爽| 变态另类丝袜制服| 日韩欧美在线乱码| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 国产精品久久久久久久电影| 久久九九热精品免费| 国产精品久久久久久久电影| 久9热在线精品视频| av在线蜜桃| 别揉我奶头~嗯~啊~动态视频| 日韩欧美 国产精品| 欧美日韩福利视频一区二区| 人人妻,人人澡人人爽秒播| 狂野欧美白嫩少妇大欣赏| 此物有八面人人有两片| 男人狂女人下面高潮的视频| 在线观看美女被高潮喷水网站 | www日本黄色视频网| 成人亚洲精品av一区二区| 精品国产三级普通话版| 久久国产精品人妻蜜桃| 精品久久久久久久久av| 在线播放无遮挡| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 丝袜美腿在线中文| 在线观看66精品国产| 欧美xxxx黑人xx丫x性爽| 午夜两性在线视频| 简卡轻食公司| 免费看a级黄色片| 一级av片app| 男女下面进入的视频免费午夜| 中文字幕免费在线视频6| 久久精品久久久久久噜噜老黄 | 亚洲精华国产精华精| 在线观看免费视频日本深夜| 精品一区二区三区视频在线| 又粗又爽又猛毛片免费看| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 一级黄片播放器| 国产野战对白在线观看| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看| 久久久久性生活片| 久久精品久久久久久噜噜老黄 | 欧美日韩黄片免| 国产人妻一区二区三区在| 欧美又色又爽又黄视频| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 天堂av国产一区二区熟女人妻| 听说在线观看完整版免费高清| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 好男人在线观看高清免费视频| 久久精品人妻少妇| 国产精品伦人一区二区| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 亚洲精品粉嫩美女一区| 特级一级黄色大片| 午夜老司机福利剧场| 两个人的视频大全免费| 最新在线观看一区二区三区| 久久精品国产亚洲av香蕉五月| 男女那种视频在线观看| 欧美一区二区国产精品久久精品| 99国产精品一区二区三区| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 国产精品亚洲av一区麻豆| 最新中文字幕久久久久| 亚洲在线观看片| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点| 十八禁人妻一区二区| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 白带黄色成豆腐渣| 午夜精品在线福利| 亚洲美女黄片视频| 日韩欧美国产在线观看| a级毛片免费高清观看在线播放| 熟妇人妻久久中文字幕3abv| 99riav亚洲国产免费| 国产免费一级a男人的天堂| xxxwww97欧美| 亚洲美女视频黄频| 亚洲在线观看片| 听说在线观看完整版免费高清| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 国产精品久久久久久亚洲av鲁大| 色综合欧美亚洲国产小说| 美女黄网站色视频| 亚洲成av人片在线播放无| 欧美zozozo另类| 一个人看的www免费观看视频| 两个人视频免费观看高清| 成人高潮视频无遮挡免费网站| 白带黄色成豆腐渣| 亚洲av电影在线进入| 午夜视频国产福利| 国产亚洲欧美在线一区二区| 久久久精品大字幕| 久久婷婷人人爽人人干人人爱| 国产单亲对白刺激| 成人国产一区最新在线观看| 精品人妻熟女av久视频| 日本黄大片高清| 午夜免费激情av| 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 色哟哟·www| 日韩欧美国产在线观看| avwww免费| 首页视频小说图片口味搜索| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区视频在线| 精品国产亚洲在线| 十八禁人妻一区二区| 亚洲中文字幕一区二区三区有码在线看| 我要看日韩黄色一级片| 国产综合懂色| 国产一区二区在线观看日韩| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 久9热在线精品视频| 91字幕亚洲| 国产成人av教育| 国产三级中文精品| 久久久久性生活片| 亚洲欧美日韩无卡精品| 久久草成人影院| 一区福利在线观看| 天堂影院成人在线观看| 亚洲精品色激情综合| 久久国产精品人妻蜜桃| 99久久精品热视频| av黄色大香蕉| 欧美黄色片欧美黄色片| 男女那种视频在线观看| 久久精品影院6| 国产精品野战在线观看| 舔av片在线| 国产亚洲精品av在线| 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 91在线观看av| 最近中文字幕高清免费大全6 | 午夜福利在线观看吧| .国产精品久久| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 日本一二三区视频观看| 国产老妇女一区| 青草久久国产| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 午夜福利在线观看免费完整高清在 | 91久久精品国产一区二区成人| 免费av不卡在线播放| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 我的老师免费观看完整版| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 两人在一起打扑克的视频| avwww免费| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 九色成人免费人妻av| 欧美高清成人免费视频www| av在线天堂中文字幕| 欧美激情国产日韩精品一区| 一区二区三区免费毛片| 永久网站在线| 成人性生交大片免费视频hd| 久久热精品热| xxxwww97欧美| 18禁黄网站禁片免费观看直播| www.熟女人妻精品国产| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 亚洲国产欧美人成| 欧美高清成人免费视频www| 一区二区三区四区激情视频 | 人妻夜夜爽99麻豆av| 久99久视频精品免费| 亚洲美女黄片视频| 别揉我奶头 嗯啊视频| 久久久久久久久大av| 99热精品在线国产| 欧美性感艳星| 亚洲av二区三区四区| 欧美乱妇无乱码| 日韩人妻高清精品专区| 久久久久性生活片| 色在线成人网| 欧美高清性xxxxhd video| 国产成年人精品一区二区| 色5月婷婷丁香| 国产精品久久视频播放| 在线天堂最新版资源| 麻豆国产av国片精品| av中文乱码字幕在线| 午夜福利成人在线免费观看| 国产精品一及| 欧美潮喷喷水| 国产伦人伦偷精品视频| 小说图片视频综合网站| 别揉我奶头~嗯~啊~动态视频| 最好的美女福利视频网| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 9191精品国产免费久久| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| 久99久视频精品免费| 成人三级黄色视频| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 国产精品乱码一区二三区的特点| 国产成人影院久久av| 欧美+亚洲+日韩+国产| 成人亚洲精品av一区二区| 亚洲av免费在线观看|