• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington’s disease and involvement of heme oxygenase-1

    2018-05-05 06:47:13LauraFoucaultFruchardClaireTronelSylvieBodardZuhalGulhanJulieBussonSylvieChalonDanielAntier

    Laura Foucault-Fruchard , Claire Tronel Sylvie Bodard Zuhal Gulhan Julie Busson Sylvie Chalon Daniel Antier

    1 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

    2 CHRU de Tours, H?pital Bretonneau, Tours, France

    Introduction

    Epidemiological studies have shown that smokers have a lower risk of neurodegenerative diseases than non-smokers.These effects seem to be related to the activation of nicotinic receptors by nicotine, which is a nonselective agonist of alpha 7 nicotinic receptor (α7nAChR) (Gotti and Clementi, 2004; O’Reilly et al., 2005; Thacker et al., 2007). Several studies have reported the beneficial effects of α7nAChR activation on neuronal survival and neuroinflammation in animal models of neurodegenerative diseases (Medeiros et al., 2014; Sérrière et al., 2015). These homopentameric ligand-gated cation channel receptors are widely expressed on neurons and non-neuronal cells (microglia, astroglia,oligodendrocytes and endothelial cells) (Bertrand et al.,2015). In peripheral macrophages, cholinergic anti-in fl ammatory mechanisms through stimulation of α7nAChR are well documented (Egea et al., 2015; Han et al., 2017). Shytle et al. (2004) reported that both activated microglia and macrophages can mediate the inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) release.Accordingly, it was hypothesized that the cholinergic anti-inflammatory pathway (CAP) identified in the periphery has a brain counterpart in the central nervous system (CNS)that could regulate microglial activation.

    Referring to the CNS, it has been previously stated that α7nAChR stimulation was associated with the activation of the Jak2/PI3K/AKT cascade, which promotes translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus (Parada et al., 2010). By analogy with the mechanism observed in periphery, Nrf2 activation could promote the overexpression of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1). The end products of HO-1 activity are known for their ability to reduce the inflammatory response (Egea et al., 2015). To date, there is little evidence related to the participation of this CAP in the brain. Additional experiments are necessary to confirm this hypothesis.

    We have recently shown that repeated administrations of a potent agonist of α7nAChR, PHA 543613, decreased microglial activation in a dose-dependent manner and significantly improved neuronal survival in anin vivoneuroinflammatory excitotoxic rat model (Foucault-Fruchard et al., 2017). PHA 543613, also known as [N-(3R)-1-azabicyclo[2.2.2]-Oct-3-yl-furo [2,3-c]pyridine-5-carboxamide hydrochloride], is characterized by rapid brain penetration(Acker et al., 2008). Published data about this compound provide additional support for the hypothesis that it represents a potential drug in the management of neurodegenerative diseases. This agonist was shown to improve cognitive function in a model of Schizophrenia (Wishka et al., 2006). It has also demonstrated neuroprotective and anti-inflammatory effects in different intracerebral haemorrhage models and in neurodegenerative rodent models such as models of Parkinson’s and Alzheimer’s diseases (Kraキ et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). Therefore, the purpose of the present study was to assess the participation of HO-1 in the modulation of neuronal loss and neuroinflammation mediated by α7nAChR activation in a rat model of brain excitotoxicity. The model of acute neuroinflammation chosen, admitted as an animal model mimicking the early-stage Huntington’s disease, is obtained by unilateral striatal injection of quinolinic acid(QA). QA is an agonist of glutamate N-methyl-D-aspartate (NMDA) receptors with excitotoxic properties. This heterocyclic amino acid increases the expression of various enzymes (proteases, lipases, and endonucleases) that leads to neuronal death (Schwarcz and Kohler, 1983; Estrada Sanchez et al., 2008). Dysfunction of neuronal activity related to the QA injection induces a pro-inflammatory environment leading to the activation of surrounding microglial cells (Estrada Sanchez et al., 2008).

    Material and Methods

    Animals

    Experiments were conducted on 10-week-old normotensive male Wistar rats (n= 12) (Janvier Labs, Le Genest-Saint-Isle,France), housed in a temperature (21 ± 1°C)- and humidity-controlled (55 ± 5%) environment in a 12-hour light/dark cycle (food and waterad libitum). All procedures were carried out according to the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Excitotoxic neuroinflammation model mimicking early-stage Huntington’s disease

    Rats were anesthetized with isoflurane (4% for induction and 2% for maintenance, gas anesthetizing box, AerraneTM,Baxter, France) and placed in a stereotaxic David Kopf apparatus (Phymep, Paris, France) to be lesioned in the right striatum with QA (150 nmol, 2 μL, Sigma Aldrich, Lyon,France) at the following stereotaxic coordinates according to the Atlas of Paxinos and Watson (Paxinos and Watson,2008): anterior-posterior (AP): +0.7 mm; medial-lateral(ML): –3 mm; dorsal-ventral (DV): –5.5 mm from bregma.

    PHA 543613 injection

    Western blot assay

    On day 4, the rats were killed by decapitation and both ipsilateral and contralateral striata were dissected from brain tissue. These hemispheres were homogenized with lysis buffer and supplemented with sodium fluoride (NaF), phenylmethane sulfonyl fluoride (PMSF), protease and phosphatase inhibitor cocktails (Couturier et al., 2012). Lysates were centrifuged at 15,000 ×gfor 15 minutes at 4°C. The resulting supernatants were collected to measure the quantity of total protein using the Bradford method. After denaturation(100°C, 5 minutes), beta mercaptoethanol and bromophenol blue were added to 30 μg of samples. Proteins were separated on a SDS gel electrophoresis (40 minutes, 200 V) and were transferred onto a nitrocellulose membrane (Biorad,Marnes-la-Coquette, France). The blots were blocked for 3 hours at room temperature with 5% (v/v) nonfat dried milk in Tris-buffered saline containing 0.05% Tween 20 and then incubated with primary antibodies anti-HO-1 (1:300, rabbit antibody, ab68477, Abcam, Paris, France) or anti-α7nAChR(1:200, rabbit antibody, ab10096, Abcam, Paris, France) in blocking buffer overnight at 4°C. Membranes were incubated with a horseradish peroxidase-conjugated secondary polyclonal antibody at room temperature (1:7500, goat antibody, 111-033-144, Jackson Immunoresearch, West Grove,PA, USA) for 2 hours. Mouse polyclonal antibody against β-actin was used as housekeeping protein (Sigma Aldrich,Saint-Quentin Fallavier, France). Immunoreactive proteins were exposed to the enhanced chemiluminescence western blotting detection system and the signals were captured using the Gbox system and the GeneSys image capture soft-ware (Syngene, Ozyme, Saint Quentin en Yvelines, France).The densitometry relative difference between HO-1/α7nAChR and β-actin was analyzed with ImageJ software(National Institutes of Health, Bethesda, Maryland, USA).The expression levels of HO-1 and α7nAChR proteins in all rats were quantified independently of each other on the same nitrocellulose membrane. Each protein was quantified in all rats (n= 12) under the same condition and at the same time.

    Statistical analysis

    Results were analyzed using GraphPad Prism software v.5,San Diego, California, USA and expressed as the mean ±SEM(Standard error of the mean). Comparisons between groups were performed using the Mann-WhitneyUtest and comparisons between ipsilateral and contralateral striata were conducted using the Wilcoxon one-tailed test. The level of significance wasP< 0.05.

    Results

    Effect of PHA 543613 treatment on HO-1 expression in the striatum

    Figure 1 Effects of PHA 543613 treatment on HO-1 expression in the striatum of rats using western blot assay

    HO-1 expression was evaluated in ipsilateral and contralateral striata in the QA-vehicle (n= 6) and QA-PHA (n=6) groups. The results are illustrated in Figure 1. Western blot assay results revealed that HO-1 protein expression was significantly decreased in both groups (P< 0.05), and there was a significant difference in the decrease of HO-1 protein expression between the ipsilateral and contralateral striata in each group (HO-1/β-actin ratio in the QA-vehicle group:0.69 ± 0.13 in the contralateral striatumvs. 0.37 ± 0.09 in the ipsilateral striatum; HO-1/β-actin ratio in the QA-PHA group: 1.20 ± 0.20 in the contralateral striatumvs. 0.91 ± 0.18 in the ipsilateral striatum;P= 0.03). However, HO-1 expression in the ipsilateral striatum of rats in the QA-PHA group was significantly higher than in the QA-vehicle group (+146%;P= 0.02). HO-1 expression level in the contralateral striatum was also higher in the QA-PHA group than in the QA-vehicle group (+74%, not statistically significant).

    Effect of PHA 543613 on α7nAChR expression in the striatum

    Quantification of α7nAChR expression was performed on ipsilateral and contralateral striata in the QA-vehicle (n= 6)and QA-PHA (n= 6) groups. The results are illustrated in Figure 2. The overall level of α7nAChR in the contralateral and ipsilateral striata was determined using western blotting(QA-vehicle group: 0.60 ± 0.05 in the contralateral striatumvs. 0.60 ± 0.09 in the ipsilateral striatum; QA-PHA group:0.50 ± 0.01 in the contralateral striatumvs. 0.52 ± 0.06 in the ipsilateral striatum). No significant difference was observed between the animals (P> 0.05).

    Discussion

    Figure 2 Effect of PHA 543613 on α7nAChR expression in the striatum of rats using western blot assay

    PHA 543613 has already demonstrated neuroprotective and anti-inflammatory effects in rodent models of neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases (Krafft et al., 2012, 2013, 2017; Sadigh-Eteghad et al., 2015; Sérrière et al., 2015). We have recently highlighted that PHA 543613 decreased microglial activation with a dose effect and improved neuronal survival in a rat model of Huntington’s disease and we recently confirmed the agonist properties of PHA 543613 on α7nAChR expression in neuron and astrocyte cultures (Foucault-Fruchard et al., 2017).However, the pathways activated following the stimulation of α7nAChR in the brain are poorly understood. The present study aimed to add knowledge about the expression of a key component of the cholinergic anti-inflammatory pathway,HO-1, after repeated administrations of α7nAChR agonist.HO-1 end products generated from heme degradation may modulate inflammation. First, carbon monoxide (CO)released from HO activity may modulate apoptotic, proliferative, and inflammatory cellular programs. CO can downregulate the production of pro-inflammatory mediators(interleukin-6, tumor necrosis factor, inducible nitric oxide synthase…) and upregulate the anti-inflammatory cytokines(interleukin-1, interleukin-10…)viathe mitogen-activated protein kinase (MAPK) pathway. CO can also stimulate the production of reactive oxygen species, which can downregulate pro-inflammatory transcription (transforming growth factor-β, Egr-1…). Bilirubin, another product of heme degradation, may also exert anti-inflammatory and anti-proliferative effects. However, the degree of HO-1 activation should be regulated because a third end product of HO-1,Fe2+may be deleterious in the case of excess activation (Ryter et al., 2015).

    In our study, we observed a significant decrease of HO-1 expression in ipsilateral striatum compared with contralateral striatum in both groups (–86% and –33% in the QA-vehicle and QA-PHA groups respectively). Tasset et al. (2010)performed anin vitrostudy and demonstrated that QA exerted a pro-oxidant effect and decreased Nrf2 expression on rat striatal slices. Consequently, it is possible to speculate that this phenomenon is associated with a decrease of transcription of anti-oxidant genes such as HO-1. Colin-Gonzales et al. (2013) also investigated the effects of QA infused intrastriatally on HO-1 expression in rats. Contrary to our experimentation, they observed an increase in a time-dependent manner at 1, 3, 5 and 7 days post QA lesion compared with control animals. However, it is important to highlight that the experimental procedure was different from ours.The dose of QA used (240 nmol) was higher than in our surgical lesion technique, and the stereotaxic coordinates were different (AP: +0.5 mm; ML: 2.6 mm from bregma;DV: 4.5 mm from dura). In addition, HO-1 expression was only quantified in the ipsilateral striatum of QA and control animals lesioned with isotonic saline solution.

    In the present study, we revealed for the first time that repeated administrations of the α7nAChR agonist, PHA 543613, significantly increased HO-1 expression in the ipsilateral striatum of the QA-PHA group compared with QA-vehicle. Increased HO-1 expression was also observed in the contralateral striatum. Several studies have already highlighted a correlation between HO-1 expression and HO-1 activity in the CNS (Colín-González et al., 2013; Lin et al.,2017). The ipsilateral side represents the region of interest in our QA lesion model. These observations correspond to a protective action of HO-1 activation as described previously(Suttner and Dennery, 1999). The dual behavior, protective(formation of anti-oxidant compounds) or toxic (production of Fe2+), of this enzyme is widely reported and the protein expression level depends on the neuroinflammation model and drug exposure methods (Colín-González et al., 2013;Tronel et al., 2013). Increased HO-1 expression, 10 times higher than the basal value, seems to be toxic whereas 2-fold to 10-fold increase in HO-1 expression seems to be protective (1.7-fold and 2.4-fold increases in HO-1 expression in ipsilateral striatum relative to contralateral striatum in the QA-vehicle and QA-PHA groups respectively) (Suttner and Dennery, 1999). After activation, the α7nAChR theoretically undergoes rapid desensitization to limit the influx of Ca2+into the cell which can lead to excitotoxicity. A compensating mechanism characterized by an increased number of α7nAChR binding sites in several brain regions, particularly in the prefrontal cortex, can be initiated (Christensen et al.,2010). However, 4-day treatment with PHA 543613 did not lead to a significant modification of α7nAChR expression.This finding suggests that HO-1 expression is not associated with an increase of α7nAChR density.

    Increased HO-1 expression in our study seems to underlie the neuroprotective and anti-inflammatory effects associated with α7nAChR activation observed under excitotoxic conditions. Other studies have supported the correlation between the neuroprotective effects and the induction of HO-1 expression in neurodegenerative models (Parada et al., 2014; Buendia et al., 2015). Taken together, these observations reinforce the hypothesis that the cholinergic anti-inflammatory pathway identified in the periphery has a brain counterpart in the CNS. However, other signaling pathways such as Nrf2 (i.e., activator protein 1, nuclear factor kappa B or hypoxia inducible factor-1) can regulate HO-1 expression(Alam and Cook, 2003; Ferrándiz and Devesa, 2008) and further investigations have to be performed to confirm our hypothesis.

    Author contributions:LFF contributed to the conception, design,definition of the intellectual content, literature retrieval, experimental studies, data acquisition and analysis, statistical analysis, manuscript preparation and editing and was the guarantor of the paper. CT contributed to the conception, design, definition of intellectual content, experimental studies, and manuscript review. SB, ZG and JB contributed to the experimentation. SC and DA contributed to the conception, design,and definition of the intellectual content, and manuscript review. They contributed equally to this work and approved the final version of this paper for publication.

    Conflicts of interest:The authors declare that there is no conflict of interest regarding the publication of this paper.

    Financial support:This work was supported by the Région Centre-Val de Loire (2014 00094049 – AP 2014-850) and the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°278850 (INMiND). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

    Research ethics:All procedures were carried out according the European Community Council Directive 2010/63/EU for laboratory animal care and the experimental procedure was approved by the Regional Ethical Committee (Authorization N°2015022011523044).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA, Tinholt PM, Walters RR, Olson BA, Fitzgerald L, Staton BA, Raub TJ,Krause M, Li KS, Hoffmann WE, Hajos M, et al. (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18:3611-3615.

    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response pathway. Curr Pharm Des 9:2499-2511.

    Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D (2015)Therapeutic potential of alpha7 nicotinic acetylcholine receptors.Pharmacol Rev 67:1025-1073.

    Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI,López MG (2015) The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci 6:288-296.

    Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS (2010)Repeated administration of alpha7 nicotinic acetylcholine receptor(nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem 114:1205-1216.

    Colín-González AL, Orozco-Ibarra M, Chánez-Cárdenas ME, Rangel-López E, Santamaría A, Pedraza-Chaverri J, Barrera-Oviedo D,Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91-101.

    Couturier J, Paccalin M, Lafay-Chebassier C, Chalon S, Ingrand I,Pinguet J, Pontcharraud R, Guillard O, Fauconneau B, Page G(2012) Pharmacological inhibition of PKR in APPswePS1dE9 mice transiently prevents inflammation at 12 months of age but increases Aβ42 levels in the late stages of the Alzheimer’s disease. Curr Alzheimer Res 9:344-360.

    Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG (2015)Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 97:463-472.

    Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265-276.

    Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14:473-486.

    Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Doll, F, Damont A, Buron F, Routier S, Chalon S, Antier D (2017) Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 356:52-63.

    Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363-396.

    Han B, Li X, Hao J (2017) The cholinergic anti-inflammatory pathway:An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 77:358-368.

    Kraキ PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH(2012) α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke 43:844-850.

    Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2013)PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke J Cereb Circ 44:1743-1747.

    Kraキ PR, McBride D, Rolland WB, Lekic T, Flores JJ, Zhang JH (2017)α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage. Biomed Res Int 2017:8134653.

    Lin CC, Yang CC, Chen YW, Hsiao LD, Yang CM (2017) Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat BrainAstrocytes. Mol Neurobiol doi: 10.1007/s12035-017-0590-7.

    Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, Esbenshade TA, Bitner RS, Decker MW, LaFerla FM (2014) α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 184:520-529.

    O’Reilly EJ, McCullough ML, Chao A, Jane Henley S, Calle EE, Thun MJ, Ascherio A (2005) Smokeless tobacco use and the risk of Parkinson’s disease mortality. Mov Disord 20:1383-1384.

    Parada E, Egea J, Romero A, del Barrio L, García AG, López MG (2010)Poststress treatment with PNU282987 can rescue SH-SY5Y cells undergoing apoptosis via α7 nicotinic receptors linked to a Jak2/Akt/HO-1 signaling pathway. Free Radic Biol Med 49:1815-1821.

    Parada E, Buendia I, León R, Negredo P, Romero A, Cuadrado A,López MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56:204-212.

    Paxinos G, Watson C (2008) The Rat Brain in Stereotaxic Coordinates:Compact. 6thed. Academic Press/Elsevier, Amsterdam.

    Ryter SW, Choi AM (2016) Targetingheme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7-34.

    Sérrière S, Doméné A, Vercouillie J, Mothes C, Bodard S, Rodrigues N, Guilloteau D, Routier S, Page G, Chalon S (2015) Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, pha 543613 using [18F]lbt-999 in a Parkinson’s disease rat model. Front Med 2:61.

    Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D(2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30:736-742.

    Schwarcz R, K?hler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85-90.

    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337-343.

    Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J 13:1800-1809.

    Tasset I, Pérez-De La Cruz V, Elinos-Calderón D, Carrillo-Mora P, González-Herrera IG, Luna-López A, Konigsberg M, Pedraza-Chaverrí J, Maldonado PD, Ali SF, Túnez I, Santamaría A (2010)Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway. Neurosignals 18:24-31.

    Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA,McCullough ML, Calle EE, Thun MJ, Ascherio A (2007) Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68:764-768.

    Tronel C, Rochefort GY, Arlicot N, Bodard S, Chalon S, Antier D (2013)Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatoryrat model. Oxid Med Cell Longev 2013:264935.

    Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, et al. (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem 49:4425-4436.

    黄色成人免费大全| 久久久久久免费高清国产稀缺| 一个人免费在线观看电影 | 亚洲一区高清亚洲精品| 91国产中文字幕| cao死你这个sao货| 岛国在线免费视频观看| 亚洲av电影在线进入| 色综合站精品国产| 丝袜美腿诱惑在线| 中文字幕熟女人妻在线| 国产精品自产拍在线观看55亚洲| 亚洲精品美女久久av网站| 亚洲熟妇熟女久久| 久久久水蜜桃国产精品网| 午夜福利免费观看在线| 久久久精品国产亚洲av高清涩受| 怎么达到女性高潮| 日韩欧美 国产精品| 香蕉av资源在线| 欧美成人性av电影在线观看| 在线观看午夜福利视频| 成年免费大片在线观看| 色综合婷婷激情| 老汉色∧v一级毛片| 黄片小视频在线播放| a级毛片在线看网站| 精品久久久久久成人av| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 毛片女人毛片| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 午夜激情福利司机影院| 真人做人爱边吃奶动态| 999久久久国产精品视频| 十八禁网站免费在线| 日韩大码丰满熟妇| 久久久精品大字幕| 精品国产超薄肉色丝袜足j| 免费av毛片视频| cao死你这个sao货| 久久午夜综合久久蜜桃| 黄色 视频免费看| 在线免费观看的www视频| 精品久久久久久久末码| 久久午夜综合久久蜜桃| 99久久久亚洲精品蜜臀av| 亚洲国产欧洲综合997久久,| 日本一区二区免费在线视频| 91在线观看av| 色在线成人网| 制服丝袜大香蕉在线| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 午夜福利18| 久久久久久大精品| 国内精品久久久久久久电影| 亚洲精品av麻豆狂野| 我的老师免费观看完整版| 99精品欧美一区二区三区四区| 这个男人来自地球电影免费观看| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 国产高清激情床上av| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3| 变态另类成人亚洲欧美熟女| 99热6这里只有精品| 久久 成人 亚洲| 999久久久国产精品视频| 欧美一区二区国产精品久久精品 | 久久香蕉精品热| 亚洲成人国产一区在线观看| 一本久久中文字幕| 中文字幕av在线有码专区| 亚洲 国产 在线| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 香蕉久久夜色| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 制服人妻中文乱码| 欧美一区二区精品小视频在线| 免费高清视频大片| 在线看三级毛片| 久久久久免费精品人妻一区二区| 在线观看一区二区三区| 亚洲国产欧美一区二区综合| 精品国内亚洲2022精品成人| 午夜影院日韩av| 51午夜福利影视在线观看| 婷婷丁香在线五月| 一区二区三区激情视频| videosex国产| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 免费看十八禁软件| 国产精品电影一区二区三区| 村上凉子中文字幕在线| 老鸭窝网址在线观看| 在线播放国产精品三级| 国产乱人伦免费视频| 人人妻,人人澡人人爽秒播| 欧美性猛交╳xxx乱大交人| 最新在线观看一区二区三区| 亚洲欧美日韩东京热| 99久久精品热视频| 国产真实乱freesex| 中文字幕高清在线视频| 男女下面进入的视频免费午夜| 免费搜索国产男女视频| 怎么达到女性高潮| 美女免费视频网站| 91国产中文字幕| 黄色毛片三级朝国网站| 久久人人精品亚洲av| 国产亚洲精品久久久久5区| 欧美成人免费av一区二区三区| 又紧又爽又黄一区二区| 淫秽高清视频在线观看| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | 淫秽高清视频在线观看| √禁漫天堂资源中文www| 国产精品亚洲一级av第二区| 九色成人免费人妻av| 很黄的视频免费| 亚洲自偷自拍图片 自拍| 亚洲片人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 国产主播在线观看一区二区| av福利片在线| 99国产精品一区二区三区| 午夜a级毛片| 99riav亚洲国产免费| 中文字幕久久专区| 丁香欧美五月| 高清毛片免费观看视频网站| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 91九色精品人成在线观看| 无遮挡黄片免费观看| 国产三级黄色录像| av视频在线观看入口| 国产麻豆成人av免费视频| 在线播放国产精品三级| 在线a可以看的网站| 999久久久国产精品视频| 男人舔女人下体高潮全视频| 亚洲熟妇熟女久久| 久久天躁狠狠躁夜夜2o2o| 国产真实乱freesex| www.熟女人妻精品国产| 色综合婷婷激情| av福利片在线观看| 伊人久久大香线蕉亚洲五| 久久久久久久久久黄片| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清专用| 日韩欧美在线乱码| 1024香蕉在线观看| 在线观看免费午夜福利视频| 日韩精品中文字幕看吧| 琪琪午夜伦伦电影理论片6080| 国产单亲对白刺激| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放 | cao死你这个sao货| 看黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 男人的好看免费观看在线视频 | 狠狠狠狠99中文字幕| 高清在线国产一区| 99国产极品粉嫩在线观看| av超薄肉色丝袜交足视频| 国产99久久九九免费精品| 亚洲国产精品sss在线观看| 免费看十八禁软件| 熟妇人妻久久中文字幕3abv| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 精品国产亚洲在线| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 他把我摸到了高潮在线观看| 久久精品国产99精品国产亚洲性色| 午夜两性在线视频| 黄频高清免费视频| 丁香六月欧美| 国产精品,欧美在线| 三级毛片av免费| 欧美精品亚洲一区二区| 香蕉丝袜av| 级片在线观看| 日韩欧美精品v在线| 久久精品成人免费网站| 一本大道久久a久久精品| 国产精品,欧美在线| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| 一级毛片精品| 免费在线观看完整版高清| 在线看三级毛片| 亚洲人成网站在线播放欧美日韩| 少妇裸体淫交视频免费看高清 | 久久精品夜夜夜夜夜久久蜜豆 | 妹子高潮喷水视频| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 久久99热这里只有精品18| 久久这里只有精品19| 国产精品98久久久久久宅男小说| 九九热线精品视视频播放| 色尼玛亚洲综合影院| 日韩欧美国产一区二区入口| 一本一本综合久久| 国产精品1区2区在线观看.| 国产一区二区激情短视频| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区高清视频在线| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 国产成年人精品一区二区| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 人成视频在线观看免费观看| 香蕉久久夜色| 亚洲av日韩精品久久久久久密| 精品久久久久久成人av| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| av福利片在线观看| 欧美zozozo另类| 麻豆一二三区av精品| 国产主播在线观看一区二区| 中出人妻视频一区二区| www.自偷自拍.com| 成人av在线播放网站| 午夜激情av网站| 嫩草影院精品99| 99热这里只有是精品50| 亚洲激情在线av| 国产单亲对白刺激| 午夜免费成人在线视频| 最近在线观看免费完整版| 国内精品一区二区在线观看| 亚洲性夜色夜夜综合| 久久人妻av系列| 美女大奶头视频| 可以在线观看的亚洲视频| 精品少妇一区二区三区视频日本电影| 最近视频中文字幕2019在线8| 久久久久性生活片| 国产一区二区三区视频了| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 欧美性长视频在线观看| 露出奶头的视频| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 日本 欧美在线| 久久精品亚洲精品国产色婷小说| or卡值多少钱| 人妻丰满熟妇av一区二区三区| 午夜a级毛片| 免费在线观看亚洲国产| 国产高清视频在线播放一区| 俺也久久电影网| 亚洲自偷自拍图片 自拍| 亚洲精品国产精品久久久不卡| 午夜成年电影在线免费观看| 欧美在线黄色| 国产单亲对白刺激| 嫩草影视91久久| 久久久久九九精品影院| 国产黄片美女视频| 久久久久久久精品吃奶| 超碰成人久久| 视频区欧美日本亚洲| 91大片在线观看| 在线观看一区二区三区| 色综合欧美亚洲国产小说| 人人妻,人人澡人人爽秒播| 后天国语完整版免费观看| 欧美不卡视频在线免费观看 | 一级黄色大片毛片| 最近最新中文字幕大全免费视频| 超碰成人久久| 搡老妇女老女人老熟妇| 亚洲专区字幕在线| 国产精品九九99| e午夜精品久久久久久久| 久久久久久久久中文| tocl精华| 久久久精品大字幕| 免费看a级黄色片| 午夜福利在线观看吧| 女人爽到高潮嗷嗷叫在线视频| 久久99热这里只有精品18| 久久性视频一级片| 麻豆一二三区av精品| 搡老岳熟女国产| 国产av不卡久久| 精品无人区乱码1区二区| 中文亚洲av片在线观看爽| 在线观看美女被高潮喷水网站 | 在线观看免费日韩欧美大片| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 69av精品久久久久久| 男女那种视频在线观看| 午夜免费成人在线视频| 日韩欧美免费精品| 日本在线视频免费播放| 欧美日韩精品网址| 久久精品国产清高在天天线| 午夜免费激情av| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 我要搜黄色片| 黄色丝袜av网址大全| 国产午夜福利久久久久久| 亚洲国产欧洲综合997久久,| 国产成人一区二区三区免费视频网站| 九色国产91popny在线| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 一级作爱视频免费观看| 国产亚洲精品av在线| 午夜a级毛片| 最近在线观看免费完整版| 中文字幕高清在线视频| 在线观看一区二区三区| 毛片女人毛片| 香蕉久久夜色| 欧美午夜高清在线| 日韩有码中文字幕| 又黄又粗又硬又大视频| 香蕉av资源在线| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 亚洲精品国产精品久久久不卡| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| xxx96com| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 中文在线观看免费www的网站 | 免费观看精品视频网站| 国产一区二区在线av高清观看| 看免费av毛片| 国产一区二区在线av高清观看| 国产探花在线观看一区二区| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 久久久久久大精品| 国产亚洲精品一区二区www| 久久中文字幕人妻熟女| 日本熟妇午夜| 久久久久久久精品吃奶| 久久国产精品影院| 给我免费播放毛片高清在线观看| 免费在线观看影片大全网站| 黄色片一级片一级黄色片| 91字幕亚洲| 狂野欧美白嫩少妇大欣赏| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 天天躁狠狠躁夜夜躁狠狠躁| 特大巨黑吊av在线直播| 亚洲片人在线观看| 国产又黄又爽又无遮挡在线| 久久中文看片网| 久久人妻av系列| 国产成年人精品一区二区| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 一级毛片高清免费大全| 嫩草影院精品99| 一本综合久久免费| 免费人成视频x8x8入口观看| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 国产av又大| 一区二区三区高清视频在线| 国产日本99.免费观看| av中文乱码字幕在线| 又爽又黄无遮挡网站| 中文字幕人成人乱码亚洲影| 在线播放国产精品三级| 十八禁网站免费在线| 亚洲精品av麻豆狂野| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 大型av网站在线播放| 国产精品1区2区在线观看.| 丝袜人妻中文字幕| 不卡一级毛片| 免费在线观看亚洲国产| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 宅男免费午夜| 日日摸夜夜添夜夜添小说| 国产一区二区三区在线臀色熟女| 天天一区二区日本电影三级| 免费看十八禁软件| 99久久久亚洲精品蜜臀av| 99久久国产精品久久久| 丁香欧美五月| 一卡2卡三卡四卡精品乱码亚洲| 国产高清激情床上av| 国产又黄又爽又无遮挡在线| 99在线人妻在线中文字幕| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 黄色丝袜av网址大全| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 一夜夜www| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲激情在线av| 中文字幕久久专区| 精品国产乱码久久久久久男人| 又黄又爽又免费观看的视频| 禁无遮挡网站| 日韩欧美国产一区二区入口| 一卡2卡三卡四卡精品乱码亚洲| 18禁国产床啪视频网站| 免费一级毛片在线播放高清视频| 国产黄色小视频在线观看| 亚洲色图av天堂| 亚洲成av人片免费观看| 日韩精品青青久久久久久| 久久久国产成人精品二区| avwww免费| 国产久久久一区二区三区| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 一个人观看的视频www高清免费观看 | 97碰自拍视频| 嫁个100分男人电影在线观看| 舔av片在线| 观看免费一级毛片| 精华霜和精华液先用哪个| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 两性夫妻黄色片| 激情在线观看视频在线高清| 欧美日韩亚洲综合一区二区三区_| 成人精品一区二区免费| 岛国视频午夜一区免费看| 国内精品久久久久精免费| 国产精品精品国产色婷婷| 国产黄片美女视频| 99在线视频只有这里精品首页| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 国产91精品成人一区二区三区| 成人欧美大片| 欧美成人性av电影在线观看| 不卡一级毛片| 又爽又黄无遮挡网站| 亚洲激情在线av| 波多野结衣巨乳人妻| 国产成人精品久久二区二区91| 精品久久久久久成人av| 久久久水蜜桃国产精品网| 无限看片的www在线观看| 在线观看午夜福利视频| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 亚洲熟妇中文字幕五十中出| 熟妇人妻久久中文字幕3abv| 午夜福利视频1000在线观看| 亚洲精品在线观看二区| 高清在线国产一区| 亚洲无线在线观看| 欧美精品亚洲一区二区| 一进一出抽搐动态| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 首页视频小说图片口味搜索| 99热只有精品国产| 国产成+人综合+亚洲专区| 99riav亚洲国产免费| 国产精品久久久久久亚洲av鲁大| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲| 18美女黄网站色大片免费观看| 又粗又爽又猛毛片免费看| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 欧美精品啪啪一区二区三区| 久9热在线精品视频| 美女免费视频网站| 看免费av毛片| 欧美zozozo另类| 99久久久亚洲精品蜜臀av| 婷婷丁香在线五月| 变态另类丝袜制服| 日韩精品中文字幕看吧| 亚洲人成电影免费在线| 亚洲精品久久成人aⅴ小说| 可以在线观看毛片的网站| 一夜夜www| 999精品在线视频| 欧美丝袜亚洲另类 | 麻豆av在线久日| 此物有八面人人有两片| 久久久久精品国产欧美久久久| 女生性感内裤真人,穿戴方法视频| 色老头精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产一区在线观看成人免费| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 大型黄色视频在线免费观看| 欧美国产日韩亚洲一区| 91成年电影在线观看| 777久久人妻少妇嫩草av网站| bbb黄色大片| av欧美777| 精品高清国产在线一区| 中国美女看黄片| 免费看a级黄色片| 两个人看的免费小视频| 舔av片在线| 日韩中文字幕欧美一区二区| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| 欧美精品啪啪一区二区三区| 欧美日韩一级在线毛片| 午夜a级毛片| 亚洲中文日韩欧美视频| 日韩高清综合在线| 精品久久久久久,| 男女那种视频在线观看| 久久精品国产亚洲av高清一级| 日韩欧美 国产精品| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线臀色熟女| 日韩中文字幕欧美一区二区| 国产v大片淫在线免费观看| 床上黄色一级片| 亚洲欧美精品综合一区二区三区| 中文字幕精品亚洲无线码一区| 国产av一区二区精品久久| 久久久久久久久中文| 午夜免费激情av| 一级a爱片免费观看的视频| 成人欧美大片| 欧美成人一区二区免费高清观看 | 搡老妇女老女人老熟妇| 欧美一区二区精品小视频在线| 久久伊人香网站| 听说在线观看完整版免费高清| 亚洲精品在线美女| 欧美极品一区二区三区四区| 国产精品爽爽va在线观看网站| 一级黄色大片毛片| 国产精品亚洲av一区麻豆| 亚洲av成人av| 手机成人av网站| aaaaa片日本免费| 欧美黄色片欧美黄色片| 欧美激情久久久久久爽电影| 非洲黑人性xxxx精品又粗又长| 久久中文看片网| 757午夜福利合集在线观看| 亚洲成人久久爱视频| 国产精品一及| www日本在线高清视频| 无人区码免费观看不卡| 免费在线观看完整版高清| 色老头精品视频在线观看| 非洲黑人性xxxx精品又粗又长| 欧美黄色片欧美黄色片| 国产精品一区二区三区四区免费观看 | 久久久久久久午夜电影| 久久香蕉精品热| 91麻豆av在线| 90打野战视频偷拍视频| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| 天天添夜夜摸| 我的老师免费观看完整版| 日韩欧美在线二视频| 91av网站免费观看| 不卡一级毛片| 国产精品永久免费网站| 搡老妇女老女人老熟妇|