• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    一夜夜www| 日本在线视频免费播放| 最近最新中文字幕大全电影3| netflix在线观看网站| 国产精品亚洲一级av第二区| 欧美bdsm另类| 两个人视频免费观看高清| 1024手机看黄色片| 免费在线观看日本一区| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 俺也久久电影网| 久久伊人香网站| 国产毛片a区久久久久| 波多野结衣高清无吗| 亚洲内射少妇av| 欧美乱妇无乱码| 午夜久久久久精精品| 在线十欧美十亚洲十日本专区| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站| 日韩高清综合在线| 夜夜躁狠狠躁天天躁| 国产精品久久久久久久电影 | 亚洲天堂国产精品一区在线| 欧美最新免费一区二区三区 | 五月玫瑰六月丁香| 1024手机看黄色片| 国产激情欧美一区二区| 精品一区二区三区人妻视频| 久久久久久大精品| x7x7x7水蜜桃| 国产探花极品一区二区| 男女午夜视频在线观看| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 看免费av毛片| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 国产97色在线日韩免费| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 日本免费a在线| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看| 国产91精品成人一区二区三区| 最后的刺客免费高清国语| 国内久久婷婷六月综合欲色啪| 亚洲精品色激情综合| 久久亚洲真实| 级片在线观看| 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清专用| 少妇的逼水好多| 日韩人妻高清精品专区| 成人特级av手机在线观看| 午夜激情欧美在线| 久久久久免费精品人妻一区二区| av天堂在线播放| 露出奶头的视频| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 精品电影一区二区在线| 制服丝袜大香蕉在线| 女人被狂操c到高潮| 又黄又粗又硬又大视频| 精品久久久久久,| 午夜亚洲福利在线播放| 国产在视频线在精品| 又紧又爽又黄一区二区| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 精品久久久久久,| 69人妻影院| 亚洲男人的天堂狠狠| 黄色日韩在线| 免费电影在线观看免费观看| 一级黄片播放器| 香蕉久久夜色| 草草在线视频免费看| 中国美女看黄片| 日本一本二区三区精品| 神马国产精品三级电影在线观看| 亚洲av熟女| 国产精品久久电影中文字幕| 国产99白浆流出| 99在线人妻在线中文字幕| bbb黄色大片| 欧美高清成人免费视频www| 男女午夜视频在线观看| 欧美成人一区二区免费高清观看| 看免费av毛片| 97碰自拍视频| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| av在线天堂中文字幕| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| 88av欧美| 免费在线观看成人毛片| h日本视频在线播放| 国产91精品成人一区二区三区| 最近在线观看免费完整版| 麻豆一二三区av精品| 女人高潮潮喷娇喘18禁视频| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 成年女人看的毛片在线观看| 特大巨黑吊av在线直播| 在线播放无遮挡| 久久欧美精品欧美久久欧美| 久久香蕉国产精品| 亚洲av免费高清在线观看| 国产高清videossex| 欧美乱码精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 国产精华一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 免费观看人在逋| 日韩有码中文字幕| 色综合欧美亚洲国产小说| 人妻丰满熟妇av一区二区三区| 久久精品亚洲精品国产色婷小说| 全区人妻精品视频| 亚洲成人中文字幕在线播放| 丰满的人妻完整版| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 黄色片一级片一级黄色片| 成熟少妇高潮喷水视频| 国产伦精品一区二区三区四那| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 亚洲av免费高清在线观看| 中文字幕av在线有码专区| 国产真实伦视频高清在线观看 | 99在线人妻在线中文字幕| 国产视频内射| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 日本免费一区二区三区高清不卡| 夜夜爽天天搞| 欧美日本视频| 国产伦精品一区二区三区视频9 | 1000部很黄的大片| 69av精品久久久久久| 国产又黄又爽又无遮挡在线| 在线视频色国产色| 高清毛片免费观看视频网站| 韩国av一区二区三区四区| www日本黄色视频网| 国模一区二区三区四区视频| 91九色精品人成在线观看| 亚洲美女视频黄频| 日韩有码中文字幕| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 久久这里只有精品中国| 99久久精品国产亚洲精品| h日本视频在线播放| 哪里可以看免费的av片| 久久伊人香网站| 日韩人妻高清精品专区| 高清毛片免费观看视频网站| 亚洲天堂国产精品一区在线| 最好的美女福利视频网| 久久久国产成人免费| 无限看片的www在线观看| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 不卡一级毛片| 日本免费a在线| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 日本 欧美在线| 麻豆一二三区av精品| avwww免费| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 精品国产三级普通话版| 国产日本99.免费观看| 欧美不卡视频在线免费观看| 舔av片在线| 精品人妻一区二区三区麻豆 | 99在线视频只有这里精品首页| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 国产免费一级a男人的天堂| 性色av乱码一区二区三区2| 亚洲在线自拍视频| www.色视频.com| 亚洲人成伊人成综合网2020| 三级国产精品欧美在线观看| 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 精品99又大又爽又粗少妇毛片 | 亚洲电影在线观看av| 在线观看美女被高潮喷水网站 | 国产伦一二天堂av在线观看| 亚洲内射少妇av| 法律面前人人平等表现在哪些方面| 久久久久久九九精品二区国产| 久久亚洲真实| 韩国av一区二区三区四区| 丰满人妻一区二区三区视频av | 日韩人妻高清精品专区| 欧美成狂野欧美在线观看| 日本熟妇午夜| 成人特级av手机在线观看| av黄色大香蕉| 久久精品夜夜夜夜夜久久蜜豆| 无人区码免费观看不卡| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看 | 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| e午夜精品久久久久久久| 日本黄色视频三级网站网址| 国产精品久久视频播放| 欧美乱码精品一区二区三区| 亚洲18禁久久av| 婷婷丁香在线五月| 无遮挡黄片免费观看| 日韩亚洲欧美综合| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 露出奶头的视频| 黑人欧美特级aaaaaa片| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| 中文字幕av成人在线电影| 性色avwww在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区在线臀色熟女| 国产伦精品一区二区三区四那| 国产欧美日韩一区二区三| www国产在线视频色| 两个人的视频大全免费| 黄片大片在线免费观看| 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| 国产成人a区在线观看| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免 | 欧美bdsm另类| 老司机午夜福利在线观看视频| 国内少妇人妻偷人精品xxx网站| www.www免费av| 伊人久久精品亚洲午夜| 香蕉丝袜av| 成人欧美大片| 岛国视频午夜一区免费看| 成熟少妇高潮喷水视频| 97人妻精品一区二区三区麻豆| bbb黄色大片| 亚洲精品在线美女| 十八禁人妻一区二区| 日本熟妇午夜| 国产黄色小视频在线观看| 看片在线看免费视频| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆 | 欧美丝袜亚洲另类 | 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 热99re8久久精品国产| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 91在线观看av| 国产一区二区三区在线臀色熟女| 久久久久久久久中文| www.999成人在线观看| 黄色丝袜av网址大全| eeuss影院久久| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 色老头精品视频在线观看| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| 最近视频中文字幕2019在线8| 中文字幕久久专区| 国产成年人精品一区二区| 99久久成人亚洲精品观看| 亚洲成人精品中文字幕电影| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 精品熟女少妇八av免费久了| 12—13女人毛片做爰片一| 久久精品91无色码中文字幕| 欧美最黄视频在线播放免费| 欧美bdsm另类| 婷婷丁香在线五月| 日本免费一区二区三区高清不卡| 母亲3免费完整高清在线观看| 久久久久久久久中文| 国产私拍福利视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久人人做人人爽| 亚洲欧美精品综合久久99| 2021天堂中文幕一二区在线观| 三级毛片av免费| 亚洲成人久久性| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 狠狠狠狠99中文字幕| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 中文字幕熟女人妻在线| 国产午夜精品论理片| 天天添夜夜摸| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 亚洲av熟女| 国产色婷婷99| www日本在线高清视频| 级片在线观看| 又黄又爽又免费观看的视频| 97碰自拍视频| 亚洲av熟女| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 免费观看人在逋| xxx96com| 国产精品影院久久| 免费看十八禁软件| 人人妻人人看人人澡| 日本 av在线| 欧美日韩一级在线毛片| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 人妻夜夜爽99麻豆av| 日韩av在线大香蕉| 窝窝影院91人妻| av欧美777| 最近在线观看免费完整版| 手机成人av网站| 色播亚洲综合网| 白带黄色成豆腐渣| 性色avwww在线观看| 午夜两性在线视频| 精品一区二区三区视频在线 | 成年人黄色毛片网站| 国产99白浆流出| 最近在线观看免费完整版| 一区二区三区高清视频在线| 热99re8久久精品国产| 亚洲av成人不卡在线观看播放网| 国产69精品久久久久777片| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 内地一区二区视频在线| 亚洲激情在线av| 中文在线观看免费www的网站| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 久久久久久国产a免费观看| 看黄色毛片网站| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 精品无人区乱码1区二区| 婷婷精品国产亚洲av在线| 一级黄片播放器| 午夜影院日韩av| 蜜桃亚洲精品一区二区三区| 午夜a级毛片| 精品久久久久久久久久久久久| www.色视频.com| 男女那种视频在线观看| АⅤ资源中文在线天堂| 亚洲国产日韩欧美精品在线观看 | 熟女电影av网| 精品一区二区三区视频在线 | 亚洲avbb在线观看| 香蕉av资源在线| 日本一本二区三区精品| 色综合站精品国产| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 欧美三级亚洲精品| 国产美女午夜福利| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 少妇的逼水好多| 我要搜黄色片| av福利片在线观看| 好男人在线观看高清免费视频| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 午夜a级毛片| 最近最新中文字幕大全电影3| 久久精品影院6| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 免费av不卡在线播放| 99riav亚洲国产免费| 国内精品美女久久久久久| 三级毛片av免费| 精品久久久久久,| 99热这里只有精品一区| 五月玫瑰六月丁香| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 少妇人妻一区二区三区视频| 级片在线观看| 久久久久久久午夜电影| 免费看光身美女| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 日本一二三区视频观看| 一区二区三区高清视频在线| 欧美3d第一页| 久久99热这里只有精品18| 亚洲在线自拍视频| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影| 美女cb高潮喷水在线观看| 日本免费一区二区三区高清不卡| 蜜桃亚洲精品一区二区三区| 宅男免费午夜| 午夜日韩欧美国产| 免费搜索国产男女视频| 国产一区二区三区视频了| 在线免费观看不下载黄p国产 | 亚洲真实伦在线观看| 欧美一级毛片孕妇| 免费电影在线观看免费观看| 小蜜桃在线观看免费完整版高清| 女人十人毛片免费观看3o分钟| 久久香蕉精品热| 亚洲人成电影免费在线| 国产成人系列免费观看| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 国产精品久久久久久久久免 | 黄色视频,在线免费观看| 欧美不卡视频在线免费观看| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 国产久久久一区二区三区| 国产欧美日韩精品亚洲av| 好看av亚洲va欧美ⅴa在| 色精品久久人妻99蜜桃| 国内少妇人妻偷人精品xxx网站| 免费看日本二区| 18禁国产床啪视频网站| 91在线观看av| 亚洲精品久久国产高清桃花| 波多野结衣高清无吗| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区久久| 欧美乱码精品一区二区三区| 免费看十八禁软件| 午夜福利在线在线| 尤物成人国产欧美一区二区三区| 久久香蕉国产精品| 激情在线观看视频在线高清| 国产欧美日韩一区二区精品| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图| 国产精品精品国产色婷婷| av天堂中文字幕网| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| 成人午夜高清在线视频| 两个人的视频大全免费| 狂野欧美激情性xxxx| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 成人国产一区最新在线观看| svipshipincom国产片| 有码 亚洲区| 日韩精品中文字幕看吧| 亚洲国产色片| 最新中文字幕久久久久| 天堂av国产一区二区熟女人妻| 99国产精品一区二区蜜桃av| 人妻夜夜爽99麻豆av| 中出人妻视频一区二区| 久久精品影院6| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 91av网一区二区| 精品一区二区三区av网在线观看| 少妇裸体淫交视频免费看高清| 全区人妻精品视频| 欧美中文日本在线观看视频| 天堂动漫精品| 一个人看视频在线观看www免费 | 成人三级黄色视频| 日韩大尺度精品在线看网址| 亚洲欧美日韩卡通动漫| 老熟妇仑乱视频hdxx| 国产精品久久电影中文字幕| 丰满乱子伦码专区| 女同久久另类99精品国产91| 成年免费大片在线观看| 美女高潮喷水抽搐中文字幕| 97超级碰碰碰精品色视频在线观看| 久久久成人免费电影| 国产亚洲精品综合一区在线观看| 国模一区二区三区四区视频| 2021天堂中文幕一二区在线观| 亚洲国产中文字幕在线视频| 国产一区二区激情短视频| h日本视频在线播放| 美女 人体艺术 gogo| 他把我摸到了高潮在线观看| 亚洲无线观看免费| 午夜精品在线福利| 久久精品国产自在天天线| 国产av麻豆久久久久久久| 丝袜美腿在线中文| 国产三级中文精品| 国产综合懂色| 搡老妇女老女人老熟妇| 国产精品综合久久久久久久免费| 国产精品 欧美亚洲| 最近视频中文字幕2019在线8| 日本黄色视频三级网站网址| 欧美一级毛片孕妇| 成年女人永久免费观看视频| 免费av不卡在线播放| 国产视频内射| 亚洲国产欧洲综合997久久,| 国产精品一区二区三区四区免费观看 | av天堂中文字幕网| 国产视频内射| 国产高清视频在线观看网站| 99久久九九国产精品国产免费| 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 欧美成狂野欧美在线观看| 国产不卡一卡二| 中文字幕高清在线视频| 一区二区三区免费毛片| 日韩欧美精品v在线| 免费人成在线观看视频色| 91久久精品国产一区二区成人 | 麻豆成人午夜福利视频| 久久精品国产亚洲av香蕉五月| 在线播放无遮挡| tocl精华| 热99在线观看视频| 午夜日韩欧美国产| 欧美成狂野欧美在线观看| avwww免费| 亚洲国产日韩欧美精品在线观看 | 少妇人妻一区二区三区视频| av专区在线播放| 精品久久久久久久末码| 国产真实伦视频高清在线观看 | 国产成人av激情在线播放| 亚洲黑人精品在线| 精品人妻1区二区| 日韩大尺度精品在线看网址| 中亚洲国语对白在线视频| 无遮挡黄片免费观看| 国产伦精品一区二区三区四那| 日韩高清综合在线| 中文字幕人成人乱码亚洲影| 亚洲中文日韩欧美视频| 久久九九热精品免费| 久久精品夜夜夜夜夜久久蜜豆| 91九色精品人成在线观看| av女优亚洲男人天堂| 国产精品久久久久久精品电影| 两性午夜刺激爽爽歪歪视频在线观看| 女警被强在线播放| 国产私拍福利视频在线观看| 又黄又爽又免费观看的视频| 日本撒尿小便嘘嘘汇集6|