• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    欧美日韩成人在线一区二区| 亚洲欧美成人综合另类久久久| 欧美中文综合在线视频| 国精品久久久久久国模美| 天天躁日日躁夜夜躁夜夜| 日韩成人av中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 亚洲情色 制服丝袜| 国产人伦9x9x在线观看 | 女性生殖器流出的白浆| 精品福利永久在线观看| 亚洲一级一片aⅴ在线观看| 啦啦啦视频在线资源免费观看| 国产亚洲一区二区精品| 91精品三级在线观看| 亚洲av中文av极速乱| 日韩av免费高清视频| 欧美日韩国产mv在线观看视频| 国产精品蜜桃在线观看| 性高湖久久久久久久久免费观看| 国产欧美日韩综合在线一区二区| 国产一区二区 视频在线| 国产野战对白在线观看| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 成年女人毛片免费观看观看9 | 亚洲成国产人片在线观看| 99久久综合免费| 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 久久久久国产网址| 精品久久蜜臀av无| 伦理电影免费视频| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 亚洲婷婷狠狠爱综合网| 999久久久国产精品视频| 精品少妇黑人巨大在线播放| 欧美日韩精品成人综合77777| 午夜免费鲁丝| 在线观看国产h片| 亚洲精品国产av成人精品| 欧美 日韩 精品 国产| 亚洲第一青青草原| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 在线观看www视频免费| 亚洲精品一二三| 这个男人来自地球电影免费观看 | 九色亚洲精品在线播放| 日韩一区二区视频免费看| 亚洲国产精品一区二区三区在线| 国产精品欧美亚洲77777| 婷婷色综合www| 涩涩av久久男人的天堂| 青青草视频在线视频观看| 成年人午夜在线观看视频| 国产又爽黄色视频| 午夜日本视频在线| 日本爱情动作片www.在线观看| 亚洲av综合色区一区| 老汉色av国产亚洲站长工具| 亚洲综合色惰| 亚洲av免费高清在线观看| 天天影视国产精品| 亚洲欧美一区二区三区黑人 | 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 赤兔流量卡办理| 亚洲一区二区三区欧美精品| 91在线精品国自产拍蜜月| 欧美亚洲日本最大视频资源| 国产精品.久久久| 日韩精品有码人妻一区| 咕卡用的链子| 久久国产精品男人的天堂亚洲| 国产福利在线免费观看视频| 97在线视频观看| 一级a爱视频在线免费观看| 久久婷婷青草| 美女大奶头黄色视频| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 国产精品国产av在线观看| 电影成人av| 欧美中文综合在线视频| 国产乱来视频区| 亚洲国产精品999| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 91aial.com中文字幕在线观看| 免费观看性生交大片5| 成人二区视频| 亚洲中文av在线| 国产成人91sexporn| 午夜老司机福利剧场| 亚洲欧美色中文字幕在线| 亚洲欧美精品自产自拍| 欧美精品av麻豆av| 美女视频免费永久观看网站| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲av中文av极速乱| 久久久久久久久免费视频了| 亚洲av在线观看美女高潮| 成年美女黄网站色视频大全免费| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 边亲边吃奶的免费视频| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 黄频高清免费视频| 精品一区在线观看国产| 自线自在国产av| 欧美日韩一区二区视频在线观看视频在线| 日韩av免费高清视频| 人妻系列 视频| 99re6热这里在线精品视频| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 蜜桃在线观看..| 成人黄色视频免费在线看| 午夜日韩欧美国产| 亚洲人成网站在线观看播放| 日韩不卡一区二区三区视频在线| 久久久久精品性色| 女性生殖器流出的白浆| 欧美另类一区| 蜜桃国产av成人99| 免费女性裸体啪啪无遮挡网站| 色哟哟·www| 久久久久久免费高清国产稀缺| 精品酒店卫生间| 国产97色在线日韩免费| 三级国产精品片| 国产一区二区激情短视频 | 国产成人午夜福利电影在线观看| 日韩制服骚丝袜av| 午夜激情av网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 激情视频va一区二区三区| 国产精品人妻久久久影院| 水蜜桃什么品种好| 亚洲成色77777| xxx大片免费视频| 老司机亚洲免费影院| 国产成人午夜福利电影在线观看| 久久久久久伊人网av| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 精品第一国产精品| 丝瓜视频免费看黄片| 国产成人精品久久二区二区91 | 91精品国产国语对白视频| 丝袜喷水一区| 丝袜人妻中文字幕| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 一区二区日韩欧美中文字幕| 日韩av在线免费看完整版不卡| 看免费av毛片| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 黄频高清免费视频| 国产av国产精品国产| 午夜影院在线不卡| 欧美人与性动交α欧美精品济南到 | 亚洲少妇的诱惑av| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 久久综合国产亚洲精品| 在线观看一区二区三区激情| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 人妻一区二区av| 国产成人免费观看mmmm| 婷婷成人精品国产| 老鸭窝网址在线观看| 91在线精品国自产拍蜜月| 亚洲国产毛片av蜜桃av| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 国产精品.久久久| 国产激情久久老熟女| 如何舔出高潮| av网站免费在线观看视频| 亚洲,一卡二卡三卡| 91成人精品电影| 亚洲一区二区三区欧美精品| 国产免费一区二区三区四区乱码| 欧美人与善性xxx| 久久99精品国语久久久| 久久青草综合色| 欧美av亚洲av综合av国产av | 欧美日韩精品成人综合77777| 在现免费观看毛片| 久久久国产精品麻豆| 欧美中文综合在线视频| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 成年女人在线观看亚洲视频| 亚洲av男天堂| 飞空精品影院首页| 亚洲人成电影观看| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| 久久久久人妻精品一区果冻| 精品视频人人做人人爽| 成人国产av品久久久| 丝袜喷水一区| 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 黄片播放在线免费| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区 | 在线观看美女被高潮喷水网站| 老女人水多毛片| 街头女战士在线观看网站| 最近手机中文字幕大全| 亚洲成色77777| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 日本午夜av视频| 曰老女人黄片| 日本免费在线观看一区| 亚洲国产欧美网| 亚洲欧美成人精品一区二区| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| 香蕉国产在线看| 亚洲一区中文字幕在线| 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 免费少妇av软件| 最新中文字幕久久久久| 999精品在线视频| 人成视频在线观看免费观看| 午夜老司机福利剧场| 欧美人与善性xxx| 国产男女内射视频| 一级爰片在线观看| 国产97色在线日韩免费| av线在线观看网站| 国产熟女午夜一区二区三区| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 亚洲国产精品999| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩视频精品一区| 少妇熟女欧美另类| 天天躁夜夜躁狠狠久久av| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 色哟哟·www| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 两个人免费观看高清视频| 色吧在线观看| 日日啪夜夜爽| 国产一区二区在线观看av| 成人二区视频| 两性夫妻黄色片| 女性被躁到高潮视频| 久久国产精品大桥未久av| 久久久久久久精品精品| 熟女av电影| 熟女少妇亚洲综合色aaa.| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 激情视频va一区二区三区| 中文天堂在线官网| 亚洲av免费高清在线观看| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 精品少妇黑人巨大在线播放| 制服人妻中文乱码| 亚洲欧美成人精品一区二区| 中文字幕最新亚洲高清| 18+在线观看网站| 一二三四在线观看免费中文在| 大片免费播放器 马上看| 日韩一区二区视频免费看| 国产精品亚洲av一区麻豆 | 亚洲久久久国产精品| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 日本vs欧美在线观看视频| 中文字幕亚洲精品专区| 18在线观看网站| av不卡在线播放| 在线天堂中文资源库| 在线观看三级黄色| 日韩视频在线欧美| 性少妇av在线| 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| 美女xxoo啪啪120秒动态图| 亚洲伊人色综图| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 成人毛片a级毛片在线播放| 午夜老司机福利剧场| 日韩熟女老妇一区二区性免费视频| 9色porny在线观看| 午夜免费观看性视频| 免费不卡的大黄色大毛片视频在线观看| 天天躁夜夜躁狠狠躁躁| 免费观看a级毛片全部| 激情视频va一区二区三区| 亚洲激情五月婷婷啪啪| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 亚洲一区中文字幕在线| 成人毛片a级毛片在线播放| 欧美人与性动交α欧美软件| 亚洲欧美一区二区三区黑人 | 视频在线观看一区二区三区| 韩国av在线不卡| 日韩人妻精品一区2区三区| 五月天丁香电影| 黄频高清免费视频| 在线 av 中文字幕| 人成视频在线观看免费观看| 午夜激情av网站| 国产女主播在线喷水免费视频网站| 高清欧美精品videossex| 亚洲人成77777在线视频| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 国产探花极品一区二区| 精品少妇久久久久久888优播| 蜜桃在线观看..| 色哟哟·www| 欧美97在线视频| 日日撸夜夜添| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 免费在线观看黄色视频的| 妹子高潮喷水视频| 成人黄色视频免费在线看| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 一区二区三区激情视频| av免费观看日本| 国产精品蜜桃在线观看| 亚洲欧美成人综合另类久久久| 男人舔女人的私密视频| 日本vs欧美在线观看视频| 精品亚洲乱码少妇综合久久| 桃花免费在线播放| 国产免费又黄又爽又色| 国产激情久久老熟女| 一区福利在线观看| 一级毛片电影观看| 国产伦理片在线播放av一区| 91在线精品国自产拍蜜月| 欧美老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 亚洲男人天堂网一区| 观看美女的网站| 老汉色av国产亚洲站长工具| 国产精品久久久久久av不卡| 香蕉丝袜av| 超碰成人久久| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 大香蕉久久成人网| 999精品在线视频| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 国产麻豆69| 老熟女久久久| av又黄又爽大尺度在线免费看| 美女午夜性视频免费| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 久久久久久久久免费视频了| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 下体分泌物呈黄色| 免费人妻精品一区二区三区视频| 飞空精品影院首页| 色婷婷av一区二区三区视频| 欧美在线黄色| 久久久久人妻精品一区果冻| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 中文字幕最新亚洲高清| 捣出白浆h1v1| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影小说| 91午夜精品亚洲一区二区三区| 日韩中文字幕欧美一区二区 | 寂寞人妻少妇视频99o| 中文字幕精品免费在线观看视频| 国产福利在线免费观看视频| 国产日韩欧美视频二区| 国产熟女午夜一区二区三区| 亚洲图色成人| 国产成人91sexporn| 老女人水多毛片| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 在线天堂中文资源库| 我的亚洲天堂| 波野结衣二区三区在线| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久久大奶| 青春草国产在线视频| 哪个播放器可以免费观看大片| 男人舔女人的私密视频| 日韩中文字幕视频在线看片| 18+在线观看网站| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 波野结衣二区三区在线| av不卡在线播放| 男女边摸边吃奶| 妹子高潮喷水视频| 国产一区二区在线观看av| av在线老鸭窝| 欧美精品av麻豆av| av有码第一页| 在现免费观看毛片| 国产黄频视频在线观看| 国产爽快片一区二区三区| 成人国产av品久久久| 色94色欧美一区二区| 美国免费a级毛片| 亚洲精品aⅴ在线观看| 久久久久精品性色| 欧美日韩视频精品一区| 丁香六月天网| 黑人猛操日本美女一级片| 亚洲久久久国产精品| 久久午夜福利片| 午夜福利网站1000一区二区三区| 啦啦啦啦在线视频资源| 久久久精品国产亚洲av高清涩受| 午夜影院在线不卡| 亚洲国产精品一区三区| 人人妻人人澡人人爽人人夜夜| 超碰成人久久| 欧美日韩成人在线一区二区| 日韩制服丝袜自拍偷拍| 亚洲内射少妇av| 国产精品二区激情视频| 人妻人人澡人人爽人人| 视频在线观看一区二区三区| 久久人人97超碰香蕉20202| 爱豆传媒免费全集在线观看| 欧美老熟妇乱子伦牲交| 色播在线永久视频| 伦精品一区二区三区| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| freevideosex欧美| 亚洲图色成人| 97在线视频观看| 日韩,欧美,国产一区二区三区| av电影中文网址| 午夜日本视频在线| 韩国精品一区二区三区| 国产男女内射视频| 在线天堂中文资源库| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| av卡一久久| 在线看a的网站| 热re99久久精品国产66热6| 国产成人91sexporn| 久久久精品免费免费高清| 久久ye,这里只有精品| 国产不卡av网站在线观看| 午夜激情久久久久久久| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 午夜免费观看性视频| 一区二区三区四区激情视频| 亚洲一码二码三码区别大吗| 在线免费观看不下载黄p国产| 男人操女人黄网站| 国产成人精品一,二区| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 少妇人妻久久综合中文| 精品一区二区三卡| 久久人人爽av亚洲精品天堂| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 99香蕉大伊视频| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 国产日韩欧美视频二区| 久久久久精品久久久久真实原创| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 国产又爽黄色视频| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人 | 各种免费的搞黄视频| 黄片小视频在线播放| 日韩免费高清中文字幕av| 亚洲精品久久久久久婷婷小说| 日日啪夜夜爽| 精品第一国产精品| av.在线天堂| 成人二区视频| 一级片'在线观看视频| 国产一区二区三区综合在线观看| 热99国产精品久久久久久7| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 国产一区二区 视频在线| 你懂的网址亚洲精品在线观看| 精品国产超薄肉色丝袜足j| 日韩大片免费观看网站| 99re6热这里在线精品视频| 免费日韩欧美在线观看| 日本色播在线视频| 日韩精品免费视频一区二区三区| 国产免费视频播放在线视频| 亚洲精品自拍成人| videos熟女内射| 天堂8中文在线网| 男女免费视频国产| 亚洲精品国产av蜜桃| 日韩av免费高清视频| 女人久久www免费人成看片| a 毛片基地| 精品久久久久久电影网| 国产精品不卡视频一区二区| 99久久精品国产国产毛片| 日本色播在线视频| 久久这里有精品视频免费| 午夜福利视频精品| 18在线观看网站| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 亚洲精品aⅴ在线观看| 欧美成人午夜免费资源| 亚洲欧洲精品一区二区精品久久久 | 国产探花极品一区二区| a级毛片黄视频| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 婷婷色综合www| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| www.自偷自拍.com| av天堂久久9| 亚洲欧美精品自产自拍| 精品99又大又爽又粗少妇毛片| 亚洲欧洲精品一区二区精品久久久 | 捣出白浆h1v1| 亚洲欧美一区二区三区国产| 国产成人免费观看mmmm| 99国产精品免费福利视频| 国产 精品1| 性少妇av在线| 亚洲精品美女久久久久99蜜臀 | 午夜91福利影院| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 日韩中字成人| 免费看不卡的av| 不卡av一区二区三区| 少妇被粗大猛烈的视频| 蜜桃在线观看..| 亚洲av免费高清在线观看| 日韩不卡一区二区三区视频在线| 久久久久久久久久人人人人人人| 国产精品二区激情视频| 午夜激情av网站| 成人国语在线视频| 国产在线免费精品| 国产日韩欧美视频二区| 又粗又硬又长又爽又黄的视频| 亚洲婷婷狠狠爱综合网| 亚洲美女视频黄频| 高清视频免费观看一区二区|