• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    嫩草影视91久久| 午夜福利视频1000在线观看| 非洲黑人性xxxx精品又粗又长| 九色国产91popny在线| 熟妇人妻久久中文字幕3abv| 精品人妻1区二区| АⅤ资源中文在线天堂| 亚洲最大成人手机在线| 黄色丝袜av网址大全| 国内精品一区二区在线观看| a级一级毛片免费在线观看| 国产黄片美女视频| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 国产成人av教育| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 精品久久久久久,| 舔av片在线| bbb黄色大片| 99热这里只有是精品50| 国产精品久久久久久久电影| 色综合亚洲欧美另类图片| 少妇的逼好多水| 俺也久久电影网| 久久久久精品国产欧美久久久| 伦理电影大哥的女人| 国产 一区精品| 18禁在线播放成人免费| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 色吧在线观看| 午夜老司机福利剧场| 日韩欧美在线二视频| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 国产成人a区在线观看| 亚洲中文字幕日韩| 日韩欧美三级三区| 日韩欧美精品免费久久| 日韩欧美国产在线观看| 国产精品久久久久久久电影| 久久中文看片网| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 国产毛片a区久久久久| 美女免费视频网站| 男女之事视频高清在线观看| 国产精品伦人一区二区| 国产伦一二天堂av在线观看| 成人三级黄色视频| 国产伦人伦偷精品视频| 极品教师在线视频| 成人高潮视频无遮挡免费网站| 自拍偷自拍亚洲精品老妇| 成年女人永久免费观看视频| 可以在线观看的亚洲视频| 成人欧美大片| 成人国产一区最新在线观看| 亚洲av成人av| 简卡轻食公司| 窝窝影院91人妻| 国产高潮美女av| 国产黄a三级三级三级人| 成人av在线播放网站| 亚洲在线观看片| 变态另类成人亚洲欧美熟女| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 中文在线观看免费www的网站| 黄色一级大片看看| 成人国产麻豆网| 男女视频在线观看网站免费| 级片在线观看| 欧美日韩黄片免| 天堂动漫精品| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 99热精品在线国产| 亚洲专区中文字幕在线| 黄色视频,在线免费观看| 美女高潮的动态| 搞女人的毛片| 一a级毛片在线观看| 日韩av在线大香蕉| 国产在视频线在精品| 国产精品国产高清国产av| 一区福利在线观看| www.www免费av| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区激情视频| 亚洲内射少妇av| 无人区码免费观看不卡| 国产成人一区二区在线| 一a级毛片在线观看| videossex国产| 国产aⅴ精品一区二区三区波| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 国内精品宾馆在线| 天堂av国产一区二区熟女人妻| 97碰自拍视频| 日本a在线网址| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 久久久久久伊人网av| 春色校园在线视频观看| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 一夜夜www| 亚洲av不卡在线观看| 免费看光身美女| 日韩精品有码人妻一区| www.www免费av| 中文字幕久久专区| 午夜福利18| 91久久精品国产一区二区成人| 国产在视频线在精品| 我的老师免费观看完整版| 欧美性猛交黑人性爽| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 欧美激情国产日韩精品一区| 久久亚洲精品不卡| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 性插视频无遮挡在线免费观看| 九色国产91popny在线| 22中文网久久字幕| 免费看美女性在线毛片视频| 亚洲第一电影网av| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 在线观看舔阴道视频| 夜夜看夜夜爽夜夜摸| 久久精品国产清高在天天线| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区 | 丰满的人妻完整版| 久久久色成人| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久亚洲 | 国产午夜福利久久久久久| 精品久久国产蜜桃| 亚洲欧美精品综合久久99| 九九在线视频观看精品| 亚洲av日韩精品久久久久久密| 国产69精品久久久久777片| 国产精品98久久久久久宅男小说| 九色成人免费人妻av| 国产69精品久久久久777片| 色综合色国产| 免费电影在线观看免费观看| 日韩av在线大香蕉| 久久午夜亚洲精品久久| 99在线人妻在线中文字幕| 亚洲欧美清纯卡通| 嫁个100分男人电影在线观看| 久久久国产成人精品二区| 午夜福利视频1000在线观看| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 此物有八面人人有两片| www.色视频.com| 中文字幕熟女人妻在线| 午夜激情欧美在线| 午夜视频国产福利| 国产高清不卡午夜福利| 高清日韩中文字幕在线| 午夜精品在线福利| 级片在线观看| 99久久九九国产精品国产免费| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 亚洲人成伊人成综合网2020| 麻豆一二三区av精品| 亚洲第一区二区三区不卡| 黄色视频,在线免费观看| 高清在线国产一区| 波多野结衣高清无吗| 日日干狠狠操夜夜爽| 国产成人a区在线观看| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| av专区在线播放| www日本黄色视频网| 一本久久中文字幕| 老司机深夜福利视频在线观看| 色吧在线观看| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 乱人视频在线观看| 久久久久久久久久久丰满 | 成人特级av手机在线观看| 欧美极品一区二区三区四区| 99久久久亚洲精品蜜臀av| 最近中文字幕高清免费大全6 | 国产精品无大码| 男人的好看免费观看在线视频| 中国美白少妇内射xxxbb| 亚洲av.av天堂| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 国国产精品蜜臀av免费| 色尼玛亚洲综合影院| 日韩欧美国产一区二区入口| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 亚洲精品456在线播放app | 日本黄色片子视频| 永久网站在线| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 久久久久久久久大av| aaaaa片日本免费| 99视频精品全部免费 在线| 极品教师在线免费播放| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| aaaaa片日本免费| 一区二区三区激情视频| 亚洲av熟女| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 亚洲一区二区三区色噜噜| 女人十人毛片免费观看3o分钟| 成人综合一区亚洲| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久 | 在线观看一区二区三区| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 免费人成在线观看视频色| 99国产极品粉嫩在线观看| 69av精品久久久久久| 99久久成人亚洲精品观看| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 国产视频一区二区在线看| 久久精品影院6| 1024手机看黄色片| 特级一级黄色大片| 国产 一区精品| 一本久久中文字幕| 中文字幕av在线有码专区| 久久人人精品亚洲av| 欧美成人a在线观看| 成人综合一区亚洲| 国产精品无大码| 俺也久久电影网| 天堂av国产一区二区熟女人妻| 日本五十路高清| 日韩av在线大香蕉| 国产单亲对白刺激| 人妻制服诱惑在线中文字幕| 日韩中字成人| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 日韩中文字幕欧美一区二区| 国产一区二区在线观看日韩| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 亚洲av二区三区四区| 亚洲av美国av| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品 | 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| а√天堂www在线а√下载| 日本三级黄在线观看| 不卡一级毛片| 91久久精品国产一区二区三区| 内地一区二区视频在线| 三级国产精品欧美在线观看| 日本精品一区二区三区蜜桃| 成人av在线播放网站| 日日夜夜操网爽| 日韩精品有码人妻一区| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 一区福利在线观看| 亚洲最大成人手机在线| 中文在线观看免费www的网站| 一级黄色大片毛片| 国产精品免费一区二区三区在线| 亚洲av不卡在线观看| 国产男靠女视频免费网站| av女优亚洲男人天堂| 在线观看66精品国产| 两个人视频免费观看高清| 日韩在线高清观看一区二区三区 | 精品久久久久久成人av| 深夜a级毛片| 午夜激情福利司机影院| 在线观看av片永久免费下载| 成年人黄色毛片网站| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 亚洲,欧美,日韩| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 国产男人的电影天堂91| 淫妇啪啪啪对白视频| 久久精品国产清高在天天线| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 日本在线视频免费播放| 日韩精品有码人妻一区| 亚洲avbb在线观看| 午夜a级毛片| 99久国产av精品| av在线观看视频网站免费| 18禁黄网站禁片午夜丰满| 国产精品一区二区性色av| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| videossex国产| 亚洲av五月六月丁香网| 夜夜爽天天搞| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 久久久久久久久久成人| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看 | 国产淫片久久久久久久久| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| av天堂中文字幕网| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 两个人视频免费观看高清| 在线观看舔阴道视频| 亚洲精品国产成人久久av| 欧美潮喷喷水| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 国产一区二区在线av高清观看| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 国产精品免费一区二区三区在线| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 久久精品影院6| 日韩大尺度精品在线看网址| 99在线人妻在线中文字幕| 中文字幕久久专区| 亚洲国产欧美人成| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 小蜜桃在线观看免费完整版高清| 我要看日韩黄色一级片| 欧美激情国产日韩精品一区| av视频在线观看入口| 黄色配什么色好看| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 日韩欧美国产在线观看| 久久久久久久久大av| 乱码一卡2卡4卡精品| 久久久久久久久大av| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看 | 天天躁日日操中文字幕| 99视频精品全部免费 在线| 一本久久中文字幕| 国产女主播在线喷水免费视频网站 | 国产成人影院久久av| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 精品无人区乱码1区二区| 日本五十路高清| 欧美3d第一页| 欧美bdsm另类| 直男gayav资源| 国产精品,欧美在线| 九色国产91popny在线| 国产精品一区二区三区四区久久| 国产精品野战在线观看| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 日本成人三级电影网站| 久9热在线精品视频| 日韩人妻高清精品专区| 国产亚洲欧美98| 亚洲成人中文字幕在线播放| 亚洲第一电影网av| 国产亚洲91精品色在线| 麻豆一二三区av精品| 最近视频中文字幕2019在线8| 成人永久免费在线观看视频| 男女视频在线观看网站免费| 日韩中文字幕欧美一区二区| 熟女人妻精品中文字幕| 最好的美女福利视频网| 亚洲久久久久久中文字幕| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 色哟哟·www| 欧美日本视频| 色播亚洲综合网| 国产熟女欧美一区二区| 国产美女午夜福利| 国产 一区精品| 蜜桃久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 精品一区二区三区av网在线观看| or卡值多少钱| 看免费成人av毛片| 久久久久九九精品影院| 国产乱人视频| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 男女那种视频在线观看| 九九热线精品视视频播放| 国产伦一二天堂av在线观看| 最近最新免费中文字幕在线| 悠悠久久av| 国产日本99.免费观看| 一级a爱片免费观看的视频| 国产久久久一区二区三区| 国产精品一及| 赤兔流量卡办理| 男女之事视频高清在线观看| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 久久人人精品亚洲av| 免费黄网站久久成人精品| 九九久久精品国产亚洲av麻豆| 欧美人与善性xxx| 99热只有精品国产| 看片在线看免费视频| 国产精品女同一区二区软件 | 久久国内精品自在自线图片| 此物有八面人人有两片| 乱系列少妇在线播放| 国产午夜精品久久久久久一区二区三区 | 欧美色视频一区免费| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 97超视频在线观看视频| 亚洲精华国产精华液的使用体验 | 久久久精品欧美日韩精品| 欧美精品啪啪一区二区三区| 禁无遮挡网站| 国产av在哪里看| 亚洲avbb在线观看| 欧美精品国产亚洲| 国产午夜精品论理片| 性插视频无遮挡在线免费观看| 欧美日韩黄片免| 久久久久性生活片| 日本 av在线| 淫妇啪啪啪对白视频| 舔av片在线| 网址你懂的国产日韩在线| 好男人在线观看高清免费视频| 免费看a级黄色片| 日本三级黄在线观看| 国产亚洲91精品色在线| 欧美人与善性xxx| 在线观看午夜福利视频| 嫩草影视91久久| 欧美极品一区二区三区四区| 亚洲av成人av| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 免费黄网站久久成人精品| 欧美精品国产亚洲| 国产探花极品一区二区| 免费观看的影片在线观看| 婷婷精品国产亚洲av在线| 欧美极品一区二区三区四区| 久久精品影院6| 特级一级黄色大片| 免费观看的影片在线观看| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 内射极品少妇av片p| 日韩高清综合在线| 精品人妻1区二区| 国产精品永久免费网站| 男女边吃奶边做爰视频| 黄色配什么色好看| 欧美色视频一区免费| 亚洲精品日韩av片在线观看| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 国产精品99久久久久久久久| 日本爱情动作片www.在线观看 | 老司机深夜福利视频在线观看| 我要看日韩黄色一级片| 成人永久免费在线观看视频| av视频在线观看入口| 亚洲精品一卡2卡三卡4卡5卡| 性色avwww在线观看| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 九九在线视频观看精品| 男人的好看免费观看在线视频| 国产极品精品免费视频能看的| videossex国产| 欧美激情久久久久久爽电影| 天美传媒精品一区二区| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| 日韩欧美在线乱码| 黄色视频,在线免费观看| 日韩,欧美,国产一区二区三区 | 又粗又爽又猛毛片免费看| 免费看日本二区| 日本精品一区二区三区蜜桃| 国产精品乱码一区二三区的特点| 国产淫片久久久久久久久| 精品久久久久久久久亚洲 | 亚洲av一区综合| 免费观看在线日韩| 久久草成人影院| 国产欧美日韩精品亚洲av| 日本熟妇午夜| av女优亚洲男人天堂| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 一区二区三区免费毛片| 国产男靠女视频免费网站| 久久人妻av系列| 少妇裸体淫交视频免费看高清| 国产午夜福利久久久久久| 国产v大片淫在线免费观看| 国产国拍精品亚洲av在线观看| 欧美日韩瑟瑟在线播放| 成人性生交大片免费视频hd| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 97热精品久久久久久| 亚洲精品一区av在线观看| 又黄又爽又刺激的免费视频.| 免费观看人在逋| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片 | 看十八女毛片水多多多| 亚洲成人久久爱视频| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜添av毛片 | 国产精品久久久久久亚洲av鲁大| 国产av一区在线观看免费| 深爱激情五月婷婷| 国产一级毛片七仙女欲春2| 国产精品久久久久久久久免| 床上黄色一级片| av福利片在线观看| 美女高潮的动态| 国产欧美日韩精品亚洲av| 国产乱人伦免费视频| 在线看三级毛片| 天堂动漫精品| 国产乱人伦免费视频| 97超级碰碰碰精品色视频在线观看| 在线免费观看的www视频| 波多野结衣巨乳人妻| 亚洲av第一区精品v没综合| 国产精品一区二区三区四区免费观看 | 亚洲美女黄片视频| 国产单亲对白刺激| 久久精品夜夜夜夜夜久久蜜豆| 国产高清三级在线| 亚洲精品国产成人久久av| 婷婷亚洲欧美| 久久国内精品自在自线图片| 国产一区二区三区视频了| 简卡轻食公司| 波多野结衣高清无吗| 国产精品久久久久久久久免| 丰满的人妻完整版| 国产色婷婷99| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看| 亚洲最大成人手机在线| 日日啪夜夜撸| 精品日产1卡2卡| 精品乱码久久久久久99久播| 亚洲三级黄色毛片| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 午夜福利18|