• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    色精品久久人妻99蜜桃| 中文字幕色久视频| 日本wwww免费看| 成熟少妇高潮喷水视频| 黑人操中国人逼视频| 伦理电影免费视频| 免费观看精品视频网站| 熟女少妇亚洲综合色aaa.| 人妻丰满熟妇av一区二区三区 | 不卡一级毛片| 亚洲精品久久成人aⅴ小说| 亚洲成av片中文字幕在线观看| 成年人免费黄色播放视频| 国产成人精品久久二区二区91| 国产国语露脸激情在线看| 在线播放国产精品三级| 亚洲国产精品合色在线| 老熟女久久久| 国产主播在线观看一区二区| 狠狠狠狠99中文字幕| 久久久国产成人免费| 亚洲综合色网址| 久久青草综合色| 久久久精品区二区三区| av视频免费观看在线观看| 老司机影院毛片| 91成年电影在线观看| 国产色视频综合| 亚洲综合色网址| 美女福利国产在线| 三上悠亚av全集在线观看| 午夜福利欧美成人| 亚洲欧美一区二区三区黑人| 免费在线观看亚洲国产| 精品国产乱子伦一区二区三区| 久热爱精品视频在线9| 女人高潮潮喷娇喘18禁视频| 丁香欧美五月| 黄频高清免费视频| 欧美黄色淫秽网站| 黄色a级毛片大全视频| 欧美性长视频在线观看| 成年动漫av网址| 91成年电影在线观看| 最新的欧美精品一区二区| 久久久国产成人精品二区 | 精品少妇久久久久久888优播| 亚洲自偷自拍图片 自拍| 免费在线观看影片大全网站| 亚洲一码二码三码区别大吗| 日本一区二区免费在线视频| 亚洲欧美一区二区三区久久| 国产精品影院久久| 亚洲熟妇中文字幕五十中出 | 麻豆av在线久日| bbb黄色大片| 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片 | 18禁美女被吸乳视频| bbb黄色大片| 亚洲情色 制服丝袜| 欧美精品啪啪一区二区三区| 精品亚洲成a人片在线观看| 国产在线观看jvid| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 免费av中文字幕在线| 高清欧美精品videossex| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 免费观看a级毛片全部| 午夜成年电影在线免费观看| 亚洲熟女毛片儿| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| 在线国产一区二区在线| 极品少妇高潮喷水抽搐| 一个人免费在线观看的高清视频| 夜夜爽天天搞| a在线观看视频网站| 亚洲成国产人片在线观看| 亚洲精品av麻豆狂野| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 亚洲精品中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| xxx96com| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产 | 久久久久久久久久久久大奶| 免费久久久久久久精品成人欧美视频| 国产亚洲一区二区精品| 久热这里只有精品99| 精品免费久久久久久久清纯 | 午夜福利欧美成人| 国产成人精品久久二区二区91| 久久午夜亚洲精品久久| 亚洲欧美一区二区三区久久| av中文乱码字幕在线| 精品国产美女av久久久久小说| 欧美激情高清一区二区三区| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品国产亚洲av高清涩受| 亚洲精品国产色婷婷电影| 少妇 在线观看| 美国免费a级毛片| 亚洲avbb在线观看| 一级毛片女人18水好多| 欧美性长视频在线观看| 亚洲第一青青草原| 久久中文字幕一级| 日本撒尿小便嘘嘘汇集6| 少妇的丰满在线观看| 欧美日韩瑟瑟在线播放| 精品一区二区三卡| 男女下面插进去视频免费观看| 国产精品秋霞免费鲁丝片| 咕卡用的链子| 999精品在线视频| 国产精品免费视频内射| 1024香蕉在线观看| 大型av网站在线播放| 久久久国产成人精品二区 | 天堂俺去俺来也www色官网| 久久精品熟女亚洲av麻豆精品| 免费人成视频x8x8入口观看| 女人精品久久久久毛片| 高清欧美精品videossex| 久久久久久人人人人人| 亚洲国产精品sss在线观看 | 国产免费av片在线观看野外av| 国产有黄有色有爽视频| aaaaa片日本免费| 亚洲在线自拍视频| 91成人精品电影| 黄片小视频在线播放| 亚洲精华国产精华精| 精品欧美一区二区三区在线| 激情视频va一区二区三区| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| 老熟妇仑乱视频hdxx| 国产精品国产av在线观看| 精品人妻熟女毛片av久久网站| 丝袜人妻中文字幕| 午夜免费观看网址| 中文字幕另类日韩欧美亚洲嫩草| 高清av免费在线| 757午夜福利合集在线观看| 精品亚洲成a人片在线观看| 亚洲av美国av| 一区二区三区精品91| 久久人妻av系列| 免费女性裸体啪啪无遮挡网站| av线在线观看网站| 亚洲av成人不卡在线观看播放网| 国产亚洲av高清不卡| 女人被躁到高潮嗷嗷叫费观| 欧美黑人欧美精品刺激| 一区在线观看完整版| 免费在线观看亚洲国产| 亚洲中文日韩欧美视频| 久久国产乱子伦精品免费另类| 国产午夜精品久久久久久| 国产av精品麻豆| 热99re8久久精品国产| 亚洲精品国产色婷婷电影| 国产精品99久久99久久久不卡| 纯流量卡能插随身wifi吗| 日本精品一区二区三区蜜桃| 亚洲一码二码三码区别大吗| 9色porny在线观看| 18禁观看日本| 91精品三级在线观看| 两性夫妻黄色片| 欧美精品人与动牲交sv欧美| 91av网站免费观看| 高潮久久久久久久久久久不卡| 婷婷成人精品国产| 日韩精品免费视频一区二区三区| 精品人妻1区二区| 日韩欧美免费精品| 三级毛片av免费| 精品久久久久久久久久免费视频 | 久热这里只有精品99| 久久中文看片网| 五月开心婷婷网| 中文欧美无线码| 精品熟女少妇八av免费久了| 操美女的视频在线观看| 少妇猛男粗大的猛烈进出视频| 精品久久蜜臀av无| 黑人欧美特级aaaaaa片| 国产成人精品无人区| 岛国毛片在线播放| 日本精品一区二区三区蜜桃| 国产精品二区激情视频| 91av网站免费观看| av超薄肉色丝袜交足视频| 母亲3免费完整高清在线观看| 一级作爱视频免费观看| 777米奇影视久久| 欧美国产精品一级二级三级| 看免费av毛片| 成人精品一区二区免费| a级毛片黄视频| 国产一区二区三区视频了| 麻豆乱淫一区二区| 欧美精品亚洲一区二区| 欧美日韩黄片免| 精品人妻1区二区| 老熟妇仑乱视频hdxx| 在线视频色国产色| 成人免费观看视频高清| 国产精品.久久久| 美女高潮到喷水免费观看| 老汉色av国产亚洲站长工具| 丰满的人妻完整版| av欧美777| 丝瓜视频免费看黄片| 纯流量卡能插随身wifi吗| 午夜免费成人在线视频| 久久国产精品影院| 国产免费男女视频| 怎么达到女性高潮| 50天的宝宝边吃奶边哭怎么回事| 免费观看精品视频网站| 免费av中文字幕在线| 日本撒尿小便嘘嘘汇集6| 国产色视频综合| 高清黄色对白视频在线免费看| 免费黄频网站在线观看国产| 搡老岳熟女国产| 无遮挡黄片免费观看| 国产在线一区二区三区精| 99国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 一区二区三区激情视频| 丰满饥渴人妻一区二区三| 99国产精品一区二区三区| 在线十欧美十亚洲十日本专区| 日日摸夜夜添夜夜添小说| 日本一区二区免费在线视频| cao死你这个sao货| 亚洲九九香蕉| 国产精品久久久久久人妻精品电影| 久久国产精品大桥未久av| av网站在线播放免费| 久久99一区二区三区| 老汉色av国产亚洲站长工具| 亚洲视频免费观看视频| 久久久久久人人人人人| 欧美日韩亚洲高清精品| 老汉色∧v一级毛片| 美女国产高潮福利片在线看| 下体分泌物呈黄色| 777久久人妻少妇嫩草av网站| 丝袜美足系列| 精品午夜福利视频在线观看一区| x7x7x7水蜜桃| 777米奇影视久久| 法律面前人人平等表现在哪些方面| 高清在线国产一区| 国产人伦9x9x在线观看| 国产高清videossex| 精品国内亚洲2022精品成人 | 欧美最黄视频在线播放免费 | 久久久精品免费免费高清| 成人特级黄色片久久久久久久| 免费日韩欧美在线观看| 久热爱精品视频在线9| 国产精品国产高清国产av | 亚洲美女黄片视频| 极品少妇高潮喷水抽搐| av欧美777| 露出奶头的视频| 99精国产麻豆久久婷婷| 久久性视频一级片| 亚洲五月婷婷丁香| av超薄肉色丝袜交足视频| 久9热在线精品视频| 777米奇影视久久| 极品人妻少妇av视频| 18禁裸乳无遮挡动漫免费视频| 久久久国产成人精品二区 | 亚洲精品国产精品久久久不卡| 99re6热这里在线精品视频| 久久香蕉国产精品| 高清视频免费观看一区二区| 国产欧美日韩精品亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 国产免费现黄频在线看| 日本精品一区二区三区蜜桃| 高清视频免费观看一区二区| 黄色女人牲交| 亚洲av日韩精品久久久久久密| 最新的欧美精品一区二区| 成人国语在线视频| 亚洲欧美日韩高清在线视频| 亚洲自偷自拍图片 自拍| 久久久久久久国产电影| 欧美午夜高清在线| 亚洲七黄色美女视频| 一区二区三区精品91| 男女免费视频国产| 久久精品91无色码中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av熟女| 国产免费现黄频在线看| 国产一区二区三区在线臀色熟女 | 中文字幕另类日韩欧美亚洲嫩草| 男女之事视频高清在线观看| 99re6热这里在线精品视频| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 免费在线观看黄色视频的| 免费不卡黄色视频| √禁漫天堂资源中文www| 一区二区三区国产精品乱码| 精品卡一卡二卡四卡免费| 王馨瑶露胸无遮挡在线观看| 9191精品国产免费久久| 侵犯人妻中文字幕一二三四区| 一进一出抽搐gif免费好疼 | 老司机午夜十八禁免费视频| 大码成人一级视频| 亚洲精品国产色婷婷电影| 99久久99久久久精品蜜桃| 一级a爱视频在线免费观看| 久久久久久免费高清国产稀缺| 三上悠亚av全集在线观看| 美女午夜性视频免费| 久久天堂一区二区三区四区| 久久久水蜜桃国产精品网| 亚洲欧美一区二区三区黑人| 日韩人妻精品一区2区三区| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 免费一级毛片在线播放高清视频 | 国产精品自产拍在线观看55亚洲 | 精品久久久久久电影网| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 欧美精品啪啪一区二区三区| av天堂在线播放| 日韩 欧美 亚洲 中文字幕| 99热只有精品国产| 一级片免费观看大全| 久久性视频一级片| 国产成人av教育| 国产成人啪精品午夜网站| 国精品久久久久久国模美| 亚洲av片天天在线观看| 精品国产亚洲在线| 亚洲国产精品合色在线| 欧美日韩亚洲高清精品| 亚洲片人在线观看| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 成人三级做爰电影| 搡老熟女国产l中国老女人| 18禁观看日本| 亚洲色图av天堂| 欧美av亚洲av综合av国产av| 欧美av亚洲av综合av国产av| 国产三级黄色录像| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 91精品国产国语对白视频| 在线观看舔阴道视频| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女 | 免费不卡黄色视频| 久久青草综合色| 欧美日韩国产mv在线观看视频| 香蕉久久夜色| 亚洲欧美日韩另类电影网站| 在线观看www视频免费| 大型黄色视频在线免费观看| 日韩精品免费视频一区二区三区| 老司机影院毛片| 1024视频免费在线观看| 免费看十八禁软件| 18禁裸乳无遮挡动漫免费视频| 亚洲av片天天在线观看| 久久影院123| 成人18禁高潮啪啪吃奶动态图| 香蕉久久夜色| 亚洲精品在线美女| 日韩中文字幕欧美一区二区| 超碰97精品在线观看| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 99re6热这里在线精品视频| 国产欧美亚洲国产| 久久中文字幕一级| 国产成人精品久久二区二区91| 黄频高清免费视频| 青草久久国产| 大香蕉久久成人网| 成年女人毛片免费观看观看9 | 婷婷丁香在线五月| 91老司机精品| 亚洲成人免费电影在线观看| 两个人免费观看高清视频| 男女之事视频高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产aⅴ精品一区二区三区波| 日日爽夜夜爽网站| 日韩中文字幕欧美一区二区| 999精品在线视频| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 国产成人一区二区三区免费视频网站| 伦理电影免费视频| 成年版毛片免费区| tube8黄色片| 黄色视频,在线免费观看| 极品人妻少妇av视频| 天天躁日日躁夜夜躁夜夜| 大片电影免费在线观看免费| 一级片'在线观看视频| 激情视频va一区二区三区| 久久久久久久午夜电影 | 99re6热这里在线精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片精品| 精品人妻1区二区| 久久精品91无色码中文字幕| 精品卡一卡二卡四卡免费| 波多野结衣av一区二区av| 在线看a的网站| 99久久综合精品五月天人人| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 最新的欧美精品一区二区| 看片在线看免费视频| 亚洲专区字幕在线| 国产精品久久久久久精品古装| 亚洲性夜色夜夜综合| 男女高潮啪啪啪动态图| 精品少妇一区二区三区视频日本电影| 国产一区二区三区综合在线观看| 女人精品久久久久毛片| 麻豆乱淫一区二区| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕 | 久久国产精品男人的天堂亚洲| 国产成人影院久久av| 久久 成人 亚洲| 国产在线观看jvid| 青草久久国产| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 女人被狂操c到高潮| 黄网站色视频无遮挡免费观看| 国产午夜精品久久久久久| 狂野欧美激情性xxxx| 999精品在线视频| 天堂中文最新版在线下载| 91大片在线观看| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 久热这里只有精品99| 99久久国产精品久久久| 曰老女人黄片| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 国产一区在线观看成人免费| 91国产中文字幕| 免费在线观看视频国产中文字幕亚洲| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 成在线人永久免费视频| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 欧美乱妇无乱码| 成年人午夜在线观看视频| 国产欧美日韩精品亚洲av| 久久久国产一区二区| 男人舔女人的私密视频| 亚洲av欧美aⅴ国产| 热re99久久国产66热| a级片在线免费高清观看视频| 亚洲欧美激情综合另类| 精品国产亚洲在线| 一夜夜www| 免费一级毛片在线播放高清视频 | 夫妻午夜视频| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 欧美乱色亚洲激情| 在线天堂中文资源库| 成人18禁在线播放| 国产亚洲精品第一综合不卡| 成人手机av| 曰老女人黄片| 黄色视频,在线免费观看| 91老司机精品| av在线播放免费不卡| 极品人妻少妇av视频| 身体一侧抽搐| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 国产激情久久老熟女| 男女午夜视频在线观看| 亚洲五月天丁香| 香蕉久久夜色| 黄色视频不卡| 制服人妻中文乱码| 亚洲欧美色中文字幕在线| 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 国产一卡二卡三卡精品| 91麻豆av在线| 免费黄频网站在线观看国产| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 一进一出好大好爽视频| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 亚洲在线自拍视频| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| 亚洲精品成人av观看孕妇| 久久亚洲真实| 韩国av一区二区三区四区| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 99re6热这里在线精品视频| 亚洲国产中文字幕在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 好男人电影高清在线观看| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 9191精品国产免费久久| 天堂动漫精品| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 乱人伦中国视频| 日本wwww免费看| 好男人电影高清在线观看| 一进一出抽搐动态| 999精品在线视频| 欧美色视频一区免费| 欧美日韩亚洲高清精品| 国产av又大| 亚洲精品国产区一区二| 久久九九热精品免费| 欧美日韩黄片免| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 国产精品偷伦视频观看了| 久久国产精品影院| 最近最新中文字幕大全免费视频| 热99国产精品久久久久久7| 日韩欧美免费精品| 一本大道久久a久久精品| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 51午夜福利影视在线观看| 亚洲va日本ⅴa欧美va伊人久久| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区| 一二三四社区在线视频社区8| xxx96com| 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 国产精品二区激情视频| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 国精品久久久久久国模美| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 精品第一国产精品| www.999成人在线观看| 人人妻人人添人人爽欧美一区卜| 久久久久精品人妻al黑| 一级毛片精品| 亚洲av日韩精品久久久久久密| 在线国产一区二区在线| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 极品教师在线免费播放| 又黄又爽又免费观看的视频| cao死你这个sao货| 侵犯人妻中文字幕一二三四区| 18在线观看网站| 热re99久久精品国产66热6| 中文字幕人妻熟女乱码|