• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    麻豆av噜噜一区二区三区| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 成人一区二区视频在线观看| 一区二区三区免费毛片| 少妇被粗大猛烈的视频| 久久这里有精品视频免费| 亚洲国产最新在线播放| 床上黄色一级片| 久久亚洲国产成人精品v| 久久久久性生活片| 国产伦精品一区二区三区视频9| 欧美区成人在线视频| 热99re8久久精品国产| 久久人人爽人人爽人人片va| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 搡女人真爽免费视频火全软件| 国产69精品久久久久777片| 中文字幕av成人在线电影| 一级黄片播放器| 久久亚洲国产成人精品v| 欧美zozozo另类| 久久久久久久久久成人| 三级毛片av免费| 99九九线精品视频在线观看视频| 91av网一区二区| 人妻制服诱惑在线中文字幕| 精品久久久久久久人妻蜜臀av| 一级毛片我不卡| 久久久亚洲精品成人影院| 熟妇人妻久久中文字幕3abv| 蜜桃亚洲精品一区二区三区| 综合色丁香网| eeuss影院久久| 内射极品少妇av片p| 又爽又黄无遮挡网站| 日韩av在线大香蕉| 精品久久久久久电影网 | 久久精品91蜜桃| 精品久久久久久成人av| 午夜福利视频1000在线观看| 狂野欧美激情性xxxx在线观看| 午夜福利在线在线| 成年免费大片在线观看| 99九九线精品视频在线观看视频| 搡女人真爽免费视频火全软件| 精品不卡国产一区二区三区| 免费观看精品视频网站| 国产精品伦人一区二区| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品免费久久| 色吧在线观看| 欧美日韩在线观看h| 久久久久久久久久久免费av| 久久久久久久久久久丰满| 午夜老司机福利剧场| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久久久按摩| 不卡视频在线观看欧美| 一级毛片aaaaaa免费看小| 久热久热在线精品观看| 色播亚洲综合网| 国产男人的电影天堂91| 在线观看av片永久免费下载| 看免费成人av毛片| 波多野结衣巨乳人妻| 九九爱精品视频在线观看| 免费人成在线观看视频色| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 欧美色视频一区免费| 少妇人妻一区二区三区视频| 国产精品人妻久久久久久| 一个人看视频在线观看www免费| 天堂中文最新版在线下载 | 三级经典国产精品| 黄色配什么色好看| 久久这里只有精品中国| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 精品国产三级普通话版| 精品久久久久久久末码| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 国产精品福利在线免费观看| 天美传媒精品一区二区| 久久草成人影院| 尾随美女入室| 国产av在哪里看| 一级毛片电影观看 | 一个人看视频在线观看www免费| 日本免费一区二区三区高清不卡| or卡值多少钱| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放 | 欧美成人精品欧美一级黄| 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 国产精品三级大全| 99热6这里只有精品| 久久这里有精品视频免费| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 老司机影院成人| 亚洲天堂国产精品一区在线| 精品一区二区三区人妻视频| 天堂√8在线中文| 性色avwww在线观看| 国产亚洲一区二区精品| 久久久久国产网址| 国产一区二区三区av在线| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 看免费成人av毛片| 七月丁香在线播放| 成人av在线播放网站| 亚洲三级黄色毛片| 国产极品天堂在线| 日韩成人av中文字幕在线观看| 日本黄色片子视频| 天堂中文最新版在线下载 | 色网站视频免费| 九九久久精品国产亚洲av麻豆| 99久久无色码亚洲精品果冻| 真实男女啪啪啪动态图| ponron亚洲| 成年女人永久免费观看视频| 欧美3d第一页| 国产精品.久久久| 欧美bdsm另类| 一区二区三区乱码不卡18| 高清在线视频一区二区三区 | 国产亚洲最大av| 少妇人妻精品综合一区二区| 亚洲无线观看免费| 日本wwww免费看| 亚洲精品影视一区二区三区av| 国产69精品久久久久777片| 国产免费男女视频| 亚洲av男天堂| 好男人在线观看高清免费视频| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| 国产综合懂色| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 精品无人区乱码1区二区| 国产 一区 欧美 日韩| 欧美成人免费av一区二区三区| 听说在线观看完整版免费高清| 精品国产三级普通话版| 美女国产视频在线观看| 亚洲精品日韩av片在线观看| 欧美激情国产日韩精品一区| 高清av免费在线| 3wmmmm亚洲av在线观看| 成人亚洲欧美一区二区av| 日韩欧美国产在线观看| 免费黄网站久久成人精品| 中文字幕亚洲精品专区| 国产久久久一区二区三区| 亚洲国产精品久久男人天堂| 真实男女啪啪啪动态图| 麻豆一二三区av精品| 欧美人与善性xxx| 少妇高潮的动态图| 永久网站在线| 国产精品国产三级专区第一集| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 村上凉子中文字幕在线| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 美女cb高潮喷水在线观看| 一级毛片aaaaaa免费看小| 黄片无遮挡物在线观看| 在现免费观看毛片| 精品少妇黑人巨大在线播放 | 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 亚洲国产最新在线播放| 欧美高清成人免费视频www| 黄片wwwwww| 亚洲欧美清纯卡通| 高清视频免费观看一区二区 | 两个人视频免费观看高清| 精品久久久久久久久久久久久| 天堂中文最新版在线下载 | 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 国产综合懂色| 哪个播放器可以免费观看大片| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 日本一二三区视频观看| 欧美日本视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲色图av天堂| 亚州av有码| 简卡轻食公司| 波野结衣二区三区在线| 亚洲国产欧美人成| 久久精品国产鲁丝片午夜精品| 亚洲第一区二区三区不卡| 激情 狠狠 欧美| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 大香蕉久久网| 国产精品日韩av在线免费观看| 国产精品久久久久久久久免| 一区二区三区高清视频在线| 一区二区三区免费毛片| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人精品婷婷| 免费黄网站久久成人精品| 国产高潮美女av| 久久99热这里只频精品6学生 | 在线免费十八禁| 欧美激情在线99| 久久久久久伊人网av| 婷婷色综合大香蕉| 亚洲精品亚洲一区二区| 26uuu在线亚洲综合色| 日韩欧美三级三区| 免费观看人在逋| 99久国产av精品国产电影| 一级黄片播放器| 久久久久久久国产电影| 国产精品野战在线观看| 女人久久www免费人成看片 | 国内精品宾馆在线| 中文字幕精品亚洲无线码一区| 国产乱来视频区| 少妇猛男粗大的猛烈进出视频 | a级毛色黄片| 丝袜喷水一区| 尾随美女入室| 日本免费在线观看一区| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 天美传媒精品一区二区| 99在线视频只有这里精品首页| 特大巨黑吊av在线直播| 国产精品电影一区二区三区| 日本免费在线观看一区| 亚洲18禁久久av| 久久久国产成人免费| 精品久久久久久成人av| 国产午夜精品一二区理论片| 永久免费av网站大全| www.色视频.com| 男插女下体视频免费在线播放| 国产成人a区在线观看| 国内精品美女久久久久久| 长腿黑丝高跟| 亚洲人与动物交配视频| 国产亚洲精品av在线| 日日啪夜夜撸| 午夜亚洲福利在线播放| 国产乱来视频区| 伦精品一区二区三区| 色噜噜av男人的天堂激情| 69av精品久久久久久| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| 美女黄网站色视频| 欧美成人一区二区免费高清观看| 国产精品永久免费网站| 免费人成在线观看视频色| 色网站视频免费| 精品久久久久久久久亚洲| 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 18+在线观看网站| 国产极品天堂在线| 午夜亚洲福利在线播放| 欧美成人午夜免费资源| 精品酒店卫生间| 色综合亚洲欧美另类图片| 春色校园在线视频观看| 精品久久久噜噜| 在线观看av片永久免费下载| 成人特级av手机在线观看| 国产精品伦人一区二区| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 99久久人妻综合| 黄色日韩在线| 免费观看精品视频网站| 在线观看66精品国产| 热99在线观看视频| 日本av手机在线免费观看| 亚洲欧美精品综合久久99| 国产高清不卡午夜福利| 日日撸夜夜添| 国产片特级美女逼逼视频| 中文字幕制服av| 国产欧美日韩精品一区二区| 欧美不卡视频在线免费观看| 男的添女的下面高潮视频| 国产精品av视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 久久6这里有精品| 精品人妻熟女av久视频| 中文字幕亚洲精品专区| 波多野结衣巨乳人妻| 色网站视频免费| www日本黄色视频网| 国产老妇伦熟女老妇高清| 日本一本二区三区精品| 亚洲精品乱码久久久久久按摩| 成年女人永久免费观看视频| 欧美3d第一页| av在线蜜桃| 18禁在线无遮挡免费观看视频| 九草在线视频观看| 视频中文字幕在线观看| 内射极品少妇av片p| 淫秽高清视频在线观看| 欧美高清成人免费视频www| 色哟哟·www| 丝袜喷水一区| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| eeuss影院久久| 干丝袜人妻中文字幕| 在线观看av片永久免费下载| 国产麻豆成人av免费视频| 永久免费av网站大全| 国产亚洲av嫩草精品影院| 国产精品一区二区在线观看99 | 男女视频在线观看网站免费| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 秋霞伦理黄片| 国产精品日韩av在线免费观看| 中文字幕亚洲精品专区| 天堂中文最新版在线下载 | 国产精品美女特级片免费视频播放器| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 亚洲精品456在线播放app| 久久久久国产网址| 高清日韩中文字幕在线| 18禁裸乳无遮挡免费网站照片| 老司机福利观看| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 韩国高清视频一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看| 国产69精品久久久久777片| 日本黄色视频三级网站网址| 六月丁香七月| 欧美日韩综合久久久久久| 视频中文字幕在线观看| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频 | 少妇的逼水好多| 麻豆国产97在线/欧美| 精品久久久噜噜| 久久久久久久久大av| 国产精品永久免费网站| 97超视频在线观看视频| 国产又黄又爽又无遮挡在线| 亚洲18禁久久av| 国产免费又黄又爽又色| АⅤ资源中文在线天堂| 看片在线看免费视频| 色哟哟·www| 午夜视频国产福利| 国产精品三级大全| 少妇的逼水好多| 久久久精品欧美日韩精品| 欧美日本视频| 免费观看人在逋| 欧美日韩国产亚洲二区| 在线观看美女被高潮喷水网站| kizo精华| 日本av手机在线免费观看| 亚洲,欧美,日韩| 欧美性感艳星| 国产精品乱码一区二三区的特点| 校园人妻丝袜中文字幕| 成年版毛片免费区| 久久久久九九精品影院| 免费观看在线日韩| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 久久久久性生活片| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 免费观看在线日韩| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影小说 | 国产三级在线视频| 男人狂女人下面高潮的视频| 免费播放大片免费观看视频在线观看 | 国产伦在线观看视频一区| 久久综合国产亚洲精品| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 天美传媒精品一区二区| av福利片在线观看| 男插女下体视频免费在线播放| 日本黄大片高清| 人妻少妇偷人精品九色| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 亚洲av免费高清在线观看| 免费观看在线日韩| 国产人妻一区二区三区在| 2022亚洲国产成人精品| 18禁动态无遮挡网站| 亚洲精品成人久久久久久| 亚洲美女搞黄在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜老司机福利剧场| 国产午夜福利久久久久久| 久久久色成人| 亚洲精品亚洲一区二区| 中文字幕制服av| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 在线免费十八禁| 久久久亚洲精品成人影院| 麻豆av噜噜一区二区三区| 日本色播在线视频| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 春色校园在线视频观看| 日韩人妻高清精品专区| 国产v大片淫在线免费观看| 26uuu在线亚洲综合色| 亚洲不卡免费看| 久久久久久伊人网av| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 日韩欧美在线乱码| 一夜夜www| 在线观看66精品国产| 精品一区二区三区视频在线| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 日日撸夜夜添| 少妇的逼水好多| 最近中文字幕高清免费大全6| 国产精品.久久久| 能在线免费看毛片的网站| 国产精品综合久久久久久久免费| 久久99热6这里只有精品| av免费观看日本| 精品人妻一区二区三区麻豆| 国产黄a三级三级三级人| 免费av观看视频| 日本爱情动作片www.在线观看| .国产精品久久| 精品一区二区三区视频在线| 少妇人妻一区二区三区视频| 九九爱精品视频在线观看| 久久婷婷人人爽人人干人人爱| 黄色欧美视频在线观看| 欧美性猛交╳xxx乱大交人| 少妇熟女aⅴ在线视频| 午夜福利在线观看吧| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 免费看a级黄色片| 免费看日本二区| 午夜a级毛片| 天堂网av新在线| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版 | 成人无遮挡网站| 亚洲第一区二区三区不卡| 最近2019中文字幕mv第一页| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 久久热精品热| 国产精品久久久久久久久免| 亚洲av免费在线观看| 日韩在线高清观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 天堂中文最新版在线下载 | 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 只有这里有精品99| 亚洲美女搞黄在线观看| 男女边吃奶边做爰视频| 日本熟妇午夜| 午夜免费激情av| 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 国产高清视频在线观看网站| 欧美人与善性xxx| 最近手机中文字幕大全| 免费看a级黄色片| 欧美成人午夜免费资源| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 亚洲国产最新在线播放| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 色哟哟·www| 国产精品乱码一区二三区的特点| 日本欧美国产在线视频| 日本五十路高清| 亚洲国产精品久久男人天堂| 变态另类丝袜制服| 免费看光身美女| 老司机影院成人| 村上凉子中文字幕在线| 久久久a久久爽久久v久久| 深爱激情五月婷婷| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| 精品国产三级普通话版| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 国产成人精品久久久久久| 桃色一区二区三区在线观看| 成人国产麻豆网| 欧美一级a爱片免费观看看| 亚洲av电影在线观看一区二区三区 | 久久精品国产99精品国产亚洲性色| 亚洲国产精品专区欧美| 午夜视频国产福利| 国产亚洲最大av| 欧美高清成人免费视频www| 最近视频中文字幕2019在线8| 97热精品久久久久久| 国产成人a区在线观看| 黄色日韩在线| 丝袜美腿在线中文| 国产精品99久久久久久久久| 观看美女的网站| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 亚洲自拍偷在线| 久久草成人影院| 黄片wwwwww| 国产精品久久电影中文字幕| 亚洲美女视频黄频| 日本三级黄在线观看| 国产成人91sexporn| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 中文字幕制服av| 日本wwww免费看| 高清在线视频一区二区三区 | 午夜亚洲福利在线播放| 岛国毛片在线播放| 天天躁日日操中文字幕| 99视频精品全部免费 在线| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区| 九九久久精品国产亚洲av麻豆| 国产日韩欧美在线精品| 深爱激情五月婷婷| 国产精品一区二区性色av| 亚洲国产成人一精品久久久| 中文精品一卡2卡3卡4更新| 日韩国内少妇激情av| 日韩 亚洲 欧美在线| 草草在线视频免费看| 日韩一区二区视频免费看| 99久久无色码亚洲精品果冻| 22中文网久久字幕| 成年av动漫网址| 丰满乱子伦码专区| 亚洲经典国产精华液单| 日韩 亚洲 欧美在线| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 老司机影院成人| 成人国产麻豆网| 亚洲精华国产精华液的使用体验| 性色avwww在线观看| 亚洲成人中文字幕在线播放| 国产精品电影一区二区三区| 亚洲婷婷狠狠爱综合网| 日本与韩国留学比较| 大又大粗又爽又黄少妇毛片口| 免费搜索国产男女视频| 亚洲精品日韩在线中文字幕| 国产亚洲av片在线观看秒播厂 | 18禁裸乳无遮挡免费网站照片| 91av网一区二区| 欧美潮喷喷水|