• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    爱豆传媒免费全集在线观看| 国产有黄有色有爽视频| 乱码一卡2卡4卡精品| 亚洲av一区综合| 插逼视频在线观看| 别揉我奶头 嗯啊视频| 亚洲国产色片| 美女内射精品一级片tv| 男人和女人高潮做爰伦理| 日本爱情动作片www.在线观看| 观看美女的网站| 一级毛片久久久久久久久女| 亚洲精品久久午夜乱码| 成人漫画全彩无遮挡| 精品久久久久久久久av| av一本久久久久| 亚洲精品日韩av片在线观看| 黄色配什么色好看| 自拍偷自拍亚洲精品老妇| 少妇人妻一区二区三区视频| 免费观看精品视频网站| 久久99热这里只频精品6学生| 综合色av麻豆| 青春草亚洲视频在线观看| 一级a做视频免费观看| 一边亲一边摸免费视频| 九色成人免费人妻av| 久久精品综合一区二区三区| 狂野欧美激情性xxxx在线观看| 日韩强制内射视频| 视频中文字幕在线观看| 一个人免费在线观看电影| 亚洲国产精品成人综合色| 亚洲va在线va天堂va国产| 婷婷色综合www| 免费黄色在线免费观看| 啦啦啦啦在线视频资源| 久久久久久久久久成人| 少妇丰满av| 嫩草影院新地址| 精品人妻熟女av久视频| 欧美97在线视频| 一级毛片黄色毛片免费观看视频| 床上黄色一级片| 老司机影院成人| 男女那种视频在线观看| 大话2 男鬼变身卡| 日韩av免费高清视频| 高清欧美精品videossex| 尤物成人国产欧美一区二区三区| 最近中文字幕2019免费版| 久久久久精品久久久久真实原创| 欧美日韩国产mv在线观看视频 | 精品一区在线观看国产| 久久草成人影院| 国产伦在线观看视频一区| 亚洲精品视频女| 一级毛片电影观看| 99热6这里只有精品| 午夜免费观看性视频| 九草在线视频观看| 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 少妇人妻精品综合一区二区| 又黄又爽又刺激的免费视频.| 欧美激情久久久久久爽电影| 22中文网久久字幕| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 精品久久久噜噜| 午夜福利在线观看免费完整高清在| 国产 亚洲一区二区三区 | 国产免费视频播放在线视频 | 国产男人的电影天堂91| 51国产日韩欧美| av专区在线播放| 国产乱人视频| 日本免费a在线| 成人二区视频| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 日本欧美国产在线视频| 久久久精品免费免费高清| 久久久午夜欧美精品| 激情 狠狠 欧美| 少妇熟女欧美另类| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 男女边吃奶边做爰视频| 三级国产精品片| 中文资源天堂在线| 日韩中字成人| 一区二区三区免费毛片| 超碰97精品在线观看| 精品亚洲乱码少妇综合久久| 亚洲一区高清亚洲精品| 国产成年人精品一区二区| 国国产精品蜜臀av免费| 欧美性猛交╳xxx乱大交人| 午夜福利视频1000在线观看| 天堂俺去俺来也www色官网 | 亚洲av电影在线观看一区二区三区 | 国产亚洲精品av在线| 黄色一级大片看看| 亚洲最大成人中文| 男的添女的下面高潮视频| 五月伊人婷婷丁香| 国产精品国产三级国产av玫瑰| 欧美性猛交╳xxx乱大交人| 国内精品宾馆在线| 韩国高清视频一区二区三区| 中文字幕免费在线视频6| 大又大粗又爽又黄少妇毛片口| 免费看光身美女| 成人毛片60女人毛片免费| 26uuu在线亚洲综合色| 嘟嘟电影网在线观看| 观看免费一级毛片| 少妇熟女aⅴ在线视频| 久久99精品国语久久久| 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 丝袜美腿在线中文| 日韩av不卡免费在线播放| 精品久久久久久久久亚洲| 最近视频中文字幕2019在线8| 欧美激情在线99| 亚洲精品456在线播放app| 黄色欧美视频在线观看| 99re6热这里在线精品视频| 精品不卡国产一区二区三区| www.色视频.com| 美女主播在线视频| 两个人视频免费观看高清| 美女高潮的动态| 麻豆成人av视频| 自拍偷自拍亚洲精品老妇| 又粗又硬又长又爽又黄的视频| 午夜免费激情av| 国产精品蜜桃在线观看| 日日摸夜夜添夜夜添av毛片| 免费看a级黄色片| 一级二级三级毛片免费看| 在线免费观看不下载黄p国产| 啦啦啦韩国在线观看视频| 一个人看的www免费观看视频| 热99在线观看视频| 欧美性感艳星| av卡一久久| 精品亚洲乱码少妇综合久久| 国产一级毛片七仙女欲春2| 久久久国产一区二区| 国产精品嫩草影院av在线观看| 日日啪夜夜爽| 国产亚洲精品av在线| 国产女主播在线喷水免费视频网站 | 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 色哟哟·www| 精品久久久精品久久久| 欧美日韩亚洲高清精品| 精品人妻一区二区三区麻豆| 欧美不卡视频在线免费观看| 亚洲真实伦在线观看| 一级片'在线观看视频| 99久久精品国产国产毛片| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 国产毛片a区久久久久| 97人妻精品一区二区三区麻豆| 色哟哟·www| 男插女下体视频免费在线播放| 久久精品久久精品一区二区三区| 日韩亚洲欧美综合| a级毛色黄片| 国产91av在线免费观看| 国产精品人妻久久久久久| 免费看不卡的av| 18+在线观看网站| 国产有黄有色有爽视频| 少妇人妻一区二区三区视频| 在线免费观看的www视频| 淫秽高清视频在线观看| 国产精品久久视频播放| 爱豆传媒免费全集在线观看| 少妇的逼好多水| 久久99热这里只频精品6学生| 午夜福利视频1000在线观看| 亚洲va在线va天堂va国产| 成人av在线播放网站| 色尼玛亚洲综合影院| 欧美日本视频| 1000部很黄的大片| 成人特级av手机在线观看| 日本一二三区视频观看| videos熟女内射| 你懂的网址亚洲精品在线观看| 亚洲怡红院男人天堂| 国产免费视频播放在线视频 | 国产乱人视频| 国产精品三级大全| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 联通29元200g的流量卡| 国产精品久久久久久久电影| 男女下面进入的视频免费午夜| 日日干狠狠操夜夜爽| 91精品国产九色| 国内精品一区二区在线观看| 午夜福利在线在线| 国产黄色小视频在线观看| 97精品久久久久久久久久精品| 久久久久久久亚洲中文字幕| av福利片在线观看| www.色视频.com| av国产久精品久网站免费入址| 天堂影院成人在线观看| 最近中文字幕2019免费版| 久久久久久伊人网av| 18禁裸乳无遮挡免费网站照片| 99久久人妻综合| 成年版毛片免费区| eeuss影院久久| 一区二区三区四区激情视频| 亚洲精品456在线播放app| h日本视频在线播放| 在线观看一区二区三区| 亚洲最大成人手机在线| 亚洲丝袜综合中文字幕| 三级国产精品欧美在线观看| 夫妻午夜视频| av女优亚洲男人天堂| 97超碰精品成人国产| 99久国产av精品| 真实男女啪啪啪动态图| 欧美最新免费一区二区三区| 自拍偷自拍亚洲精品老妇| 欧美另类一区| av女优亚洲男人天堂| 夜夜爽夜夜爽视频| av天堂中文字幕网| 高清日韩中文字幕在线| 亚洲婷婷狠狠爱综合网| 免费黄网站久久成人精品| 国产精品一区二区三区四区免费观看| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 国产老妇女一区| 99久久中文字幕三级久久日本| 插阴视频在线观看视频| 午夜久久久久精精品| 国产熟女欧美一区二区| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 天堂中文最新版在线下载 | 性色avwww在线观看| 日韩成人伦理影院| 国产黄a三级三级三级人| 晚上一个人看的免费电影| 欧美精品一区二区大全| videossex国产| 99re6热这里在线精品视频| 一边亲一边摸免费视频| 天堂网av新在线| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 欧美+日韩+精品| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 看非洲黑人一级黄片| 韩国av在线不卡| 在线a可以看的网站| 听说在线观看完整版免费高清| 十八禁国产超污无遮挡网站| 又大又黄又爽视频免费| 日本黄色片子视频| 免费高清在线观看视频在线观看| 插阴视频在线观看视频| 国产老妇女一区| 久久精品久久精品一区二区三区| 赤兔流量卡办理| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 中文欧美无线码| av女优亚洲男人天堂| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 精品久久久久久久久av| 99热这里只有是精品50| 亚洲欧美成人综合另类久久久| 国产69精品久久久久777片| 亚洲电影在线观看av| 午夜福利视频精品| 看免费成人av毛片| 国产黄a三级三级三级人| 久久久a久久爽久久v久久| 日韩欧美精品v在线| 18禁裸乳无遮挡免费网站照片| 精品酒店卫生间| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 又大又黄又爽视频免费| 国产亚洲av嫩草精品影院| 亚洲精品乱码久久久v下载方式| 最后的刺客免费高清国语| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 免费在线观看成人毛片| 欧美高清成人免费视频www| 高清日韩中文字幕在线| 欧美3d第一页| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 久久久久久久久久久丰满| 1000部很黄的大片| www.色视频.com| 五月天丁香电影| 久久久久久久亚洲中文字幕| 亚洲最大成人中文| 亚洲国产av新网站| 18禁裸乳无遮挡免费网站照片| 成人欧美大片| freevideosex欧美| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 全区人妻精品视频| 777米奇影视久久| 超碰97精品在线观看| 免费无遮挡裸体视频| 国产亚洲91精品色在线| 嘟嘟电影网在线观看| 少妇高潮的动态图| av播播在线观看一区| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 亚洲av免费高清在线观看| 日韩视频在线欧美| 欧美日韩精品成人综合77777| 欧美性猛交╳xxx乱大交人| 久久国内精品自在自线图片| 又黄又爽又刺激的免费视频.| 国产成人精品久久久久久| 69人妻影院| 精品99又大又爽又粗少妇毛片| 1000部很黄的大片| 搡老妇女老女人老熟妇| 国产亚洲av片在线观看秒播厂 | 亚洲精品亚洲一区二区| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品av在线| 日本wwww免费看| 精品欧美国产一区二区三| 尾随美女入室| 97超视频在线观看视频| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 日本一二三区视频观看| 夜夜爽夜夜爽视频| 久久精品人妻少妇| 精品久久久久久久末码| 国产伦理片在线播放av一区| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 又爽又黄无遮挡网站| 人体艺术视频欧美日本| 视频中文字幕在线观看| 国产色爽女视频免费观看| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 有码 亚洲区| 又爽又黄a免费视频| 中文天堂在线官网| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 免费观看a级毛片全部| 听说在线观看完整版免费高清| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 一级av片app| 中文字幕亚洲精品专区| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 欧美3d第一页| 久久精品人妻少妇| 久久6这里有精品| 可以在线观看毛片的网站| 国产av在哪里看| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看 | 中文字幕制服av| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 精品一区二区免费观看| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品 | 久久久久久九九精品二区国产| 国产免费视频播放在线视频 | 99久久中文字幕三级久久日本| 女人被狂操c到高潮| 国产熟女欧美一区二区| 久久精品综合一区二区三区| 极品教师在线视频| 熟妇人妻久久中文字幕3abv| 一级毛片 在线播放| 精品一区二区三区视频在线| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 麻豆国产97在线/欧美| 爱豆传媒免费全集在线观看| eeuss影院久久| 极品教师在线视频| 精品人妻视频免费看| 三级国产精品片| 国产免费福利视频在线观看| 久久久久九九精品影院| 国产黄片美女视频| 亚洲av一区综合| 看黄色毛片网站| 国产成年人精品一区二区| 观看免费一级毛片| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 国产av在哪里看| 久久久色成人| 国产老妇女一区| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 久久久久久久午夜电影| 极品少妇高潮喷水抽搐| av免费观看日本| 亚洲一区高清亚洲精品| 日韩av不卡免费在线播放| 久99久视频精品免费| 国产av码专区亚洲av| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 免费观看性生交大片5| 久久久久久久久久人人人人人人| 国产人妻一区二区三区在| 男的添女的下面高潮视频| 成年免费大片在线观看| 免费观看a级毛片全部| 高清在线视频一区二区三区| 麻豆国产97在线/欧美| 高清视频免费观看一区二区 | 国产伦一二天堂av在线观看| 好男人视频免费观看在线| 国产精品一区二区性色av| 人妻系列 视频| 又大又黄又爽视频免费| 大又大粗又爽又黄少妇毛片口| 乱人视频在线观看| 欧美日本视频| 欧美xxxx黑人xx丫x性爽| 国产免费一级a男人的天堂| 久久99热6这里只有精品| av国产免费在线观看| 久久久久久久大尺度免费视频| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 日韩不卡一区二区三区视频在线| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 街头女战士在线观看网站| 国产精品熟女久久久久浪| .国产精品久久| 美女内射精品一级片tv| .国产精品久久| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 大片免费播放器 马上看| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 国产成年人精品一区二区| 亚洲图色成人| 亚洲精品成人久久久久久| 18禁动态无遮挡网站| 亚洲精品自拍成人| 能在线免费观看的黄片| 欧美区成人在线视频| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 天天躁日日操中文字幕| 十八禁网站网址无遮挡 | 亚洲成人一二三区av| 欧美xxⅹ黑人| 老司机影院成人| av在线蜜桃| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 精品一区二区三区视频在线| 两个人的视频大全免费| 久久久久九九精品影院| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 午夜老司机福利剧场| 亚洲电影在线观看av| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频 | 99热这里只有精品一区| 有码 亚洲区| 少妇高潮的动态图| 国产精品美女特级片免费视频播放器| av国产免费在线观看| 99热这里只有是精品50| 搡老妇女老女人老熟妇| 国产午夜福利久久久久久| 建设人人有责人人尽责人人享有的 | 又爽又黄a免费视频| 日韩av免费高清视频| 欧美激情久久久久久爽电影| 国产精品一区www在线观看| 免费观看a级毛片全部| 成人综合一区亚洲| 欧美激情在线99| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 国产国拍精品亚洲av在线观看| 成人高潮视频无遮挡免费网站| 中文乱码字字幕精品一区二区三区 | 成人av在线播放网站| 男人舔女人下体高潮全视频| 欧美97在线视频| 久久综合国产亚洲精品| 亚洲国产高清在线一区二区三| 建设人人有责人人尽责人人享有的 | 久久久精品免费免费高清| av卡一久久| 亚洲精品久久久久久婷婷小说| 亚洲图色成人| 亚洲av电影在线观看一区二区三区 | 在线观看av片永久免费下载| 久久精品国产亚洲av天美| 国产av不卡久久| 搞女人的毛片| 一本一本综合久久| 在线观看一区二区三区| 赤兔流量卡办理| 精品久久久精品久久久| 日韩欧美精品v在线| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品aⅴ在线观看| 亚洲av不卡在线观看| 欧美另类一区| 熟女电影av网| 欧美 日韩 精品 国产| 男女边吃奶边做爰视频| 精品不卡国产一区二区三区| 欧美丝袜亚洲另类| 丰满人妻一区二区三区视频av| 国产探花极品一区二区| 高清欧美精品videossex| 久久99精品国语久久久| 亚洲图色成人| 一级毛片久久久久久久久女| 人妻夜夜爽99麻豆av| 九九爱精品视频在线观看| 一边亲一边摸免费视频| 亚洲性久久影院| 大片免费播放器 马上看| 日本黄大片高清| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 欧美3d第一页| 男人舔女人下体高潮全视频| 国产乱人偷精品视频| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 嫩草影院新地址| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 久久99蜜桃精品久久| 色尼玛亚洲综合影院| 一级片'在线观看视频| 中国美白少妇内射xxxbb| 日日干狠狠操夜夜爽| 高清午夜精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 哪个播放器可以免费观看大片| 极品少妇高潮喷水抽搐| 国产亚洲午夜精品一区二区久久 | 三级经典国产精品| 亚洲av免费高清在线观看| 国产极品天堂在线| 成年av动漫网址| 国产成年人精品一区二区| 97超碰精品成人国产| 男女视频在线观看网站免费| av在线蜜桃|