• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain remodeling after chronic median nerve compression in a rat model

    2018-05-05 06:47:09BingBoBaoDanQianQuHongYiZhuTaoGaoXianYouZheng

    Bing-Bo Bao , Dan-Qian Qu , Hong-Yi Zhu Tao Gao Xian-You Zheng

    1 Department of Orthopedic Surgery, Shanghai Jiao Tong University, Affiliated Sixth People’s Hospital, Shanghai, China

    2 Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,China

    Introduction

    Carpal tunnel syndrome (CTS) is the most clinically common compressive neuropathy of the upper extremities,and affects many individuals (Stapleton, 2006). Specifically, it has a prevalence of 3–5% in the general population and 6% in females over the age of 40 years (Grace et al.,2010). It causes altered sensation, chronic pain, and partial thenar atrophy, which can lead to hand dysfunction(Kleopa, 2015; Padua et al., 2016; Dec and Zyluk, 2018).Previous studies have shown that CTS, accompanied by chronic nerve compression with compressive neuropathy,can induce changes in the structure and microvasculature of peripheral nerves (Bai et al., 2016; Chen et al., 2016).Further, CTS is also characterized by structural (Maeda et al., 2013, 2016) and functional (Druschky et al., 2000; Napadow et al., 2006; Dhond et al., 2012; Maeda et al., 2014)neuroplasticity in the primary somatosensory cortex (S1)of the brain.

    Figure 1 Brain activation map for normal control rats(functional magnetic resonance imaging).

    Figure 2 Brain activation map for carpal tunnel syndrome rats at 2 weeks after operation (functional magnetic resonance imaging).

    Figure 3 Brain activation map for carpal tunnel syndrome rats at 2 months after operation (functional magnetic resonance imaging).

    CTS leads to altered afferent processing throughout the somatosensory system (involving both the peripheral and central nervous systems), as measured by somatosensory evoked potentials in the spinal cord, brainstem, and primary sensorimotor cortex (Maeda et al., 2013b, 2017).The finger and toe digits occupy a significant portion of the human somatotopic map in the primary somatosensory cortex, and are represented in consecutive order along the postcentral gyrus, with digit 1 (D1) being most ventrolateral and digit 5 (D5) most dorsomedial (Maeda et al., 2014, 2016, 2017). Although chronic nerve compression is a peripheral neuropathy, neuroimaging data suggests that irregular afferent signals of CTS produce maladaptive central neuroplasticity (Napadow et al.,2007). For example, spinal amplification of event-related potentials to ulnar nerve stimulation of the CTS-affected hand is thought to represent unmasking of secondary inputs that are normally silent in median nerve signaling. Similarly, studies have recently reported that during stimulation of median nerve-innervated digits, early cortical amplification can evoke responses and alter S1 digit somatotopy. Corroboratively, these findings have been verified by functional magnetic resonance imaging (fMRI)(Khosrawi et al., 2012; Beissner et al., 2013; Kim et al.,2015).

    Nonetheless, there are limited longitudinal studies on plasticity in the somatosensory cortex, as it is difficult to acquire multi-point neuroimaging data clinically. Thus,to address this, we developed a rat model of CTS and investigated cerebral plasticity using small animal fMRI.

    Materials and Methods

    Animals

    Forty female Sprague-Dawley rats weighing from 250 g to 300 g and aged 8 weeks were provided by the Animal Center of the Medical College of Shanghai Jiao Tong University, China (license No. SYXK (Hu) 2016-0020). All rats were housed at 20–25°C and 50 ± 5% humidity with free access to food and water in 12-hour light/dark cycles.All procedures and animal experiments were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, China (approval No. 2017-0124). Rats were randomly divided into a CTS group (n= 20; chronic median nerve compression) and normal group (n= 20).

    Rat model establishment

    Rats were intraperitoneally anesthetized with pentobarbital sodium (40 mg/kg; Shanghai Longsheng Chemical Co., Ltd., Shanghai, China). A dorsal gluteal splitting approach was used to expose the right median nerve of each rat. The right median nerve at the wrist level was mobilized and a 10-0 prolene suture used for median nerve ligation. This entire procedure was performed using a microscope (Shanghai Eder Medical Technology Inc.Shanghai, China) at 10× magnification. Finally, the incision was closed across all layers, with a tension-free skin closure performed in accordance with previously published methods (Atroshi et al., 1999b; Grace et al., 2010).

    MRI acquisition

    All fMRI scans were performed using a 7.0T horizontal-bore Bruker scanner (Bruker Corporation, Karlsruhe,Germany), which was equipped with a gradient system of 116 mm inner diameter and maximum gradient strength of 400 mT/m. fMRI scanning was performed to investigate cortical plasticity. Rats were anesthetized by sevoflurane inhalation (3% in oxygen) (Shanghai Longsheng Chemical Co., Ltd.), and then fixed on the scanner with the necessary ventilator support. A single transmitting and receiving surface coil consisting of a single copper-wire loop was used. For functional imaging, an interleaved single-shot echo planar imaging (EPI) sequence was applied with the following parameters: flip angle, 90°;slice thickness, 0.5 mm; repetition time, 3,000 ms; echo time, 20 ms; number of averages, 1; and field of view, 32 mm × 32 mm with 64 × 64 points. EPI fMRI volumes covered a relatively restricted area centered approximately on bregma point. The whole scan began with a dummy epoch of 8 seconds, which was automatically discarded by the system. Both “ON” and “OFF” epochs lasted for 30 seconds and these two epochs sequentially formed one cycle. A total of six cycles were performed in one stimulation session, during which only one side was stimulated with electric needles in the palm position.

    Imaging preprocessing

    There are several preprocessing steps that must be performed before data analysis. All images had their pixel dimensions scaled up by a factor of 10 in the Nifti header to avoid scale-dependent issues using standard FSL software(Oxford University, Oxford, UK). Apart from brain extraction and band-pass filtering, all steps were performed using the MELODIC graphical user interface. Preprocessing steps included:

    (1) Brain extraction: brain extraction was manually performed. Specifically, masks were manually created by masking all slices from the first volume of each individual rat to generate a mask file. These mask files were then applied to all volumes in each functional image.

    (2) Band-pass filtering: functional images were band-pass filtered between 0.01 and 0.1 Hz.

    (3) Slice timing correction: because each slice was acquired in interleaved order (0, 2, 4, 6 …1, 3, 5, 7 …), interleaved slice timing correction was used.

    (4) Spatial smoothing: functional data were spatially smoothed to minimize minor registration imperfections.Because we were interested in large-scale networks across the whole brain of a young rat, Gaussian kernel full width at half maximum (FWHM) of 0.7 mm was used to preprocess data and identify relatively large areas of coherent activity.

    (5) Normalization to standard space: animals slightly differ in brain size, which must be taken into account.Therefore, before brain network analysis, individual brains were registered to a standardized anatomical image (see below). Registration of fMRI data to a standard space (in-house adult anatomical rat brain template) was performed using FSL’s flirt, with a freedom affine transformation of 12° and resampling resolution of 0.4 mm.Consequently, for registration, affine transformation was used to ensure proper alignment of each individual rat to the adult rat brain atlas. This step is a pre-requisite for group analysis to identify common networks across all animals. Common expected minimal artifacts were detected across all animals in the brain.

    (6) Post analysis: higher-level analysis was performed using a general linear model. One-samplet-test was first performed in each group for determining the significant area within the group (false discovery rate, FDR correction,P< 0.05). The significant area in each group was extracted and combined into one binary mask. Subsequently, a two-samplet-test was performed within the boundary of the previously-generated mask (FDR correction,P< 0.05). MRIcroGL software (Bonilha et al., 2016)was used to visualize the results.

    Results

    Intragroup differences in the sensory stimulus task at 2 weeks after operation

    In control rats, stimulation to either forepaw generated significant activation of the contralateral sensorimotor cortex. However, in rats with CTS, stimulation to the affected right forepaw at 2 weeks after operation generated a strong signal change in the contralateral primary motor area (M1) and sensory cortex. Additional activation was observed in the cerebellum and thalamus.

    Intergroup differences in the sensory stimulus task at 2 weeks and 2 months after operation

    The extent of activation in the brain was greater in CTS rats than normal control rats at 2 weeks. However, activation in the contralateral primary motor area (M1) and sensory cortex at 2 months was much weaker compared with normal control rats. These results suggest there is dynamic plasticity in the sensorimotor cortex of CTS rats(Figures 1–3).

    Discussion

    Peripheral entrapment neuropathies are common sources of pain and paraesthesia (Neal and Fields, 2010) in clinical practice (Atroshi et al., 1999a; Wilson d’Almeida et al., 2008; Foley and Silverstein, 2015). Entrapment of the median nerve at the wrist, called CTS, accounts for 90% of such neuropathies (Papanicolaou et al., 2001;Kleopa, 2015). Here, we demonstrate a dynamic plastic process of cortical reorganization in CTS rats using a long-term study. Our results show that the sensory map of the affected forepaw expands at the early stage,and then shrinks at the later stage. This suggests a compensatory process in the brain of CTS rats. Similarly,previous neuroimaging studies have shown that while CTS results from compression of the median nerve at the wrist, it is also characterized by structural and functional neuroplasticity in the brain (Tecchio et al., 2002; Maeda et al., 2017). Specifically, CTS patients show decreased primary somatosensory cortex (S1) gray matter volume and cortical thickness contralateral to the affected hand,which is pronounced in paraesthesia dominant symptom subgroups and associated with aberrant median nerve conduction. Further, fMRI shows reduced separation between S1 cortical representations of adjacent median nerve-innervated fi ngers, digits 2 and 3 (D2/D3), which is a reproducible finding in different CTS cohorts using both fMRI and magnetoencephalography. Reduced D2/D3 separation in S1 is associated with median sensory nerve conduction latency, symptom severity, reduced fi ne motor performance, and diminished sensory discrimination accuracy, demonstrating that functional brain neuroplasticity is indeed maladaptive (Baraban et al., 2016;Maeda et al., 2016, 2017).

    In our present study, block-design stimulation of the affected forepaw generated significant activation in the contralateral sensorimotor cortex in normal control rats.However, the same stimulation in CTS rats at the early stage generated extended activation in the contralateral hemisphere, including the primary sensorimotor cortex,cerebellum, and thalamus. This suggests that the brain attempts to compensate for sensory loss after median nerve entrapment by enlarging central representation in the sensorimotor cortex and related brain regions of sensorimotor networks. Interestingly, brain activation decreased remarkably in CTS rats at the later stage. This suggests a maladaptive process in the brain after median nerve entrapment. Possibly with continuously decreased sensory input, the brain is unable to maintain control of the affected forepaw.

    A limitation of our study is that the sensory nerve action potential test was difficult to perform in the rat model. Consequently, we were unable to obtain enough clinical neurophysiology data. Indeed, there were only two time-points in the follow-up investigation. In further studies, we would overcome this limitation by performing more investigations.

    In conclusion, our results strongly support a dynamic plastic process after median nerve entrapment. Cortical reorganization is the foundation of sensorimotor func-tion recovery and may be a treatment biomarker. Our future study will quantify the functional differences so as to objectively compare the temporal changes.

    Author contributions:XYZ was in charge of study design and paper writing. BBB and TG performed animal experiments. BBB and DQQ were responsible for fMRI data collection and analysis. BBB and HYZ participated in the revision of the paper. XYZ supervised the work. All authors discussed the results and commented on the paper, and approved the final version of the paper.

    Conflicts of interest:The authors declare that they have no conflicts of interest.

    Financial support:This work was supported by the National Natural Science Foundation of China, No. 81371965, 81672144; and a grant from the Shanghai Pujiang Program of China, No. 16PJD035. The funding bodies played no role in the study design, collection, analysis and interpretation of data, the writing of the paper, or the decision to submit the paper for publication.

    Research ethics:The study was approved by the Ethics Committee of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University of China (approval No. 2017-0124). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23,revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:José M. Ferrandez, Universidad Politecnica de Cartagena, Cartagena, Spain.

    Additional file:open peerreview report 1.

    Atroshi I, Gummesson C, Johnsson R, Sprinchorn A (1999a) Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J Hand Surg 24:398-404.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999b) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153-158.

    Bai J, Xu YB, Xia L, Zhou HZ (2016) The clinical efficacy and safety of endoscopic release versus mini-open release for carpal tunnel syndrome. Zhongguo Zuzhi Gongcheng Yanjiu 20:5009-5016.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149-161.

    Beissner F, Meissner K, Bar KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neuroscience 33:10503-10511.

    Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J(2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266-279.

    Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD (2016) Low-power laser therapy for carpal tunnel syndrome: effective optical power. Neural Regen Res 11:1180-1184.

    Dec P, Zyluk A (2018) Bilateral carpal tunnel syndrome - A review.Neurol Neurochir Pol 52:79-83.

    Dhond RP, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse LR, Audette J, Hamalainen M, Kettner N, Napadow V (2012) Spatio-temporal mapping cortical neuroplasticity in carpal tunnel syndrome.Brain 135:3062-3073.

    Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,Stefan H, Neundorfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11:3925-3930.

    Foley M, Silverstein B (2015) The long-term burden of work-related carpal tunnel syndrome relative to upper-extremity fractures and dermatitis in Washington State. Am J Ind Med 58:1255-1269.

    Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010)A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47-53.

    Khosrawi S, Moghtaderi A, Haghighat S (2012) Acupuncture in treatment of carpal tunnel syndrome: a randomized controlled trial study. J Res Med Sci 17:1-7.

    Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner FDPN, Garcia RG, Kim H, Wasan AD, Edwards RR, Napadow V (2015) The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol 67:1395-1405.

    Kleopa KA (2015) In the Clinic. Carpal Tunnel Syndrome. Ann intern Med 163:ITC1.

    Maeda Y, Kettner N, Lee J, Kim J, Cina S, Malatesta C, Gerber J, Mc-Manus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K, Audette J, Napadow V (2013) Acupuncture evoked response in contralateral somatosensory cortex reflects peripheral nerve pathology of carpal tunnel syndrome. Med Acupunct 25:275-284.

    Maeda Y, Kettner N, Holden J, Lee J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Im J, Libby A, Mezzacappa P, Morse LR, Park K,Audette J, Tommerdahl M, Napadow V (2014) Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137:1741-1752.

    Maeda Y, Kettner N, Kim J, Kim H, Cina S, Malatesta C, Gerber J,McManus C, Libby A, Mezzacappa P, Mawla I, Morse LR, Audette J, Napadow V (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-1093.

    Maeda Y, Kim H, Kettner N, Kim J, Cina S, Malatesta C, Gerber J,McManus C, Ong-Sutherland R, Mezzacappa P, Libby A, Mawla I, Morse LR, Kaptchuk TJ, Audette J, Napadow V (2017) Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 140:914-927.

    Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006)Somatosensory cortical plasticity in carpal tunnel syndrome-a cross-sectional fMRI evaluation. NeuroImage 31:520-530.

    Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N,Audette J, Hui KK (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130:254-266.

    Neal S, Fields KB (2010) Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician 81:147-155.

    Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, Caliandro P, Hobson-Webb LD (2016) Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15:1273-1284.

    Papanicolaou GD, McCabe SJ, Firrell J (2001) The prevalence and characteristics of nerve compression symptoms in the general population. J Hand Surg 26:460-466.

    Stapleton MJ (2006) Occupation and carpal tunnel syndrome. ANZ J Surg 76:494-496.

    Tecchio F, Padua L, Aprile I, Rossini PM (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study.Human brain mapp 17:28-36.

    Wilson d’Almeida K, Godard C, Leclerc A, Lahon G (2008) Sickness absence for upper limb disorders in a French company. Occup Med (Lond) 58:506-508.

    日韩精品青青久久久久久| 最近最新中文字幕大全免费视频| 免费人成视频x8x8入口观看| 很黄的视频免费| 久久久久国产一级毛片高清牌| 国产av一区在线观看免费| 国产伦精品一区二区三区四那| 曰老女人黄片| 亚洲美女黄片视频| 一个人免费在线观看的高清视频| 在线观看日韩欧美| 午夜精品一区二区三区免费看| h日本视频在线播放| 91字幕亚洲| 九九久久精品国产亚洲av麻豆 | 精品久久久久久成人av| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 欧美性猛交黑人性爽| 国模一区二区三区四区视频 | 亚洲激情在线av| 视频区欧美日本亚洲| 免费观看的影片在线观看| 99久国产av精品| 99久久精品一区二区三区| 岛国在线观看网站| 精品国产三级普通话版| 亚洲欧美一区二区三区黑人| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看 | 欧美黑人欧美精品刺激| 十八禁人妻一区二区| 国产v大片淫在线免费观看| 中文字幕高清在线视频| 久久久久久九九精品二区国产| 99re在线观看精品视频| 91久久精品国产一区二区成人 | 国产精品久久电影中文字幕| 久久精品国产综合久久久| 亚洲电影在线观看av| 日本与韩国留学比较| www.999成人在线观看| 两个人视频免费观看高清| 精品一区二区三区四区五区乱码| 国产伦精品一区二区三区四那| 午夜福利成人在线免费观看| 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 欧美成人性av电影在线观看| av女优亚洲男人天堂 | 黄色 视频免费看| 亚洲欧美日韩高清专用| 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 亚洲av美国av| 亚洲人成电影免费在线| 一区二区三区国产精品乱码| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区成人 | 91老司机精品| 久久香蕉精品热| 久久精品aⅴ一区二区三区四区| 岛国在线免费视频观看| 熟女少妇亚洲综合色aaa.| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 欧美在线黄色| 欧美xxxx黑人xx丫x性爽| svipshipincom国产片| 网址你懂的国产日韩在线| 日韩欧美精品v在线| 香蕉丝袜av| 色视频www国产| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 亚洲性夜色夜夜综合| aaaaa片日本免费| 久久精品国产综合久久久| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 久久婷婷人人爽人人干人人爱| 亚洲五月天丁香| 制服人妻中文乱码| 每晚都被弄得嗷嗷叫到高潮| av在线天堂中文字幕| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 日本与韩国留学比较| 一个人免费在线观看电影 | 精品乱码久久久久久99久播| 欧美色视频一区免费| 亚洲 欧美一区二区三区| ponron亚洲| 九九热线精品视视频播放| 国产亚洲欧美98| 99国产精品一区二区三区| 搡老岳熟女国产| 欧美zozozo另类| 法律面前人人平等表现在哪些方面| 亚洲色图av天堂| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 1000部很黄的大片| 女生性感内裤真人,穿戴方法视频| 国产美女午夜福利| 日本熟妇午夜| 日本 av在线| 中国美女看黄片| 国产 一区 欧美 日韩| 999久久久精品免费观看国产| 男女床上黄色一级片免费看| 国产亚洲精品久久久com| 免费在线观看日本一区| 91av网一区二区| 亚洲精华国产精华精| 国产精品永久免费网站| 国产精品久久久久久久电影 | 一级作爱视频免费观看| 99久久99久久久精品蜜桃| 久久人人精品亚洲av| 一夜夜www| 精品久久久久久成人av| 午夜视频精品福利| 日本a在线网址| 法律面前人人平等表现在哪些方面| 午夜两性在线视频| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 国产91精品成人一区二区三区| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 丁香欧美五月| 精品欧美国产一区二区三| 99久久精品一区二区三区| 精品久久久久久,| 色播亚洲综合网| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 俺也久久电影网| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 亚洲真实伦在线观看| 最近最新中文字幕大全免费视频| 可以在线观看毛片的网站| 亚洲自拍偷在线| 色播亚洲综合网| 国产成人av激情在线播放| 欧美+亚洲+日韩+国产| 欧美成人性av电影在线观看| 免费观看精品视频网站| 国产真人三级小视频在线观看| 日本 欧美在线| 久久久精品大字幕| 巨乳人妻的诱惑在线观看| 日本 欧美在线| 中文字幕久久专区| 欧美在线黄色| 成人av在线播放网站| 午夜日韩欧美国产| 国产不卡一卡二| 丝袜人妻中文字幕| 亚洲国产欧美网| 亚洲成人中文字幕在线播放| 久久久色成人| 在线十欧美十亚洲十日本专区| 久久天堂一区二区三区四区| x7x7x7水蜜桃| 三级男女做爰猛烈吃奶摸视频| 99精品欧美一区二区三区四区| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 亚洲国产色片| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 亚洲avbb在线观看| www.自偷自拍.com| 亚洲精华国产精华精| 成人一区二区视频在线观看| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 亚洲 欧美一区二区三区| 国产精品久久久av美女十八| 真人一进一出gif抽搐免费| 亚洲av成人一区二区三| 色综合亚洲欧美另类图片| 国产真实乱freesex| 免费在线观看视频国产中文字幕亚洲| 色吧在线观看| 狂野欧美激情性xxxx| 在线a可以看的网站| 日韩三级视频一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| а√天堂www在线а√下载| 国产高清videossex| 欧美日韩黄片免| 99国产综合亚洲精品| 亚洲第一电影网av| 男女午夜视频在线观看| 成年人黄色毛片网站| 黑人操中国人逼视频| 午夜a级毛片| 成人av在线播放网站| 国产毛片a区久久久久| 亚洲18禁久久av| 亚洲欧美精品综合久久99| 欧美日韩黄片免| 国产高清有码在线观看视频| 国产成人av激情在线播放| 97人妻精品一区二区三区麻豆| 十八禁人妻一区二区| 一本综合久久免费| 深夜精品福利| 法律面前人人平等表现在哪些方面| 国产乱人视频| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久国产a免费观看| 国内久久婷婷六月综合欲色啪| 亚洲 国产 在线| 午夜福利在线观看吧| 国产精品野战在线观看| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 久久精品人妻少妇| 99riav亚洲国产免费| 韩国av一区二区三区四区| 91麻豆精品激情在线观看国产| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 国产欧美日韩精品一区二区| 亚洲片人在线观看| av片东京热男人的天堂| 国内少妇人妻偷人精品xxx网站 | 久久久久亚洲av毛片大全| 亚洲国产欧美一区二区综合| 欧美乱色亚洲激情| 色综合站精品国产| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 国产美女午夜福利| 在线观看免费视频日本深夜| av视频在线观看入口| 丁香六月欧美| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 精品国产超薄肉色丝袜足j| 搡老妇女老女人老熟妇| 亚洲成av人片在线播放无| 五月玫瑰六月丁香| 国产精品 欧美亚洲| 欧美日韩黄片免| 亚洲国产精品成人综合色| 99久久99久久久精品蜜桃| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 国产男靠女视频免费网站| 免费观看的影片在线观看| 婷婷亚洲欧美| 欧美成人性av电影在线观看| 国产精品99久久久久久久久| 露出奶头的视频| 国产综合懂色| 国产精品一及| 亚洲精品乱码久久久v下载方式 | 免费看美女性在线毛片视频| 黑人操中国人逼视频| 久久精品影院6| 国产高清videossex| 成人三级黄色视频| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 成人av在线播放网站| 九九在线视频观看精品| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 极品教师在线免费播放| 少妇的逼水好多| 久久久久久久久久黄片| 国产av一区在线观看免费| 精华霜和精华液先用哪个| 国产麻豆成人av免费视频| 小说图片视频综合网站| 啪啪无遮挡十八禁网站| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 国产精品野战在线观看| 国产av不卡久久| 久久人妻av系列| 午夜福利欧美成人| 午夜福利成人在线免费观看| 日韩 欧美 亚洲 中文字幕| 很黄的视频免费| 国产高潮美女av| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 综合色av麻豆| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 丰满的人妻完整版| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 久久久久国产一级毛片高清牌| 久久久久亚洲av毛片大全| av女优亚洲男人天堂 | 非洲黑人性xxxx精品又粗又长| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 在线a可以看的网站| 亚洲国产精品成人综合色| 又黄又粗又硬又大视频| 一夜夜www| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三| 99久国产av精品| 亚洲成人精品中文字幕电影| 狂野欧美激情性xxxx| 日本与韩国留学比较| x7x7x7水蜜桃| 男女午夜视频在线观看| 性欧美人与动物交配| 男人舔奶头视频| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 国产精品 国内视频| 亚洲欧美日韩东京热| 一个人免费在线观看电影 | 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 一本综合久久免费| 亚洲av第一区精品v没综合| 欧美乱色亚洲激情| 欧美成人性av电影在线观看| 成年版毛片免费区| 一个人观看的视频www高清免费观看 | 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 男人舔女人的私密视频| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 三级毛片av免费| 午夜福利高清视频| 99久久国产精品久久久| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 久久久久国产一级毛片高清牌| 国产精品久久久av美女十八| 成人一区二区视频在线观看| 久久久国产精品麻豆| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 91在线观看av| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 特级一级黄色大片| 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 亚洲aⅴ乱码一区二区在线播放| 成人国产综合亚洲| 夜夜爽天天搞| 一级黄色大片毛片| 黄片大片在线免费观看| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区二区三区不卡视频| 国产高清有码在线观看视频| 黄色成人免费大全| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 一进一出好大好爽视频| 国产人伦9x9x在线观看| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 国产精品日韩av在线免费观看| 看黄色毛片网站| 久久久精品欧美日韩精品| 中文资源天堂在线| 18禁美女被吸乳视频| 欧美日本视频| 在线观看美女被高潮喷水网站 | 久久草成人影院| 国产精品久久久av美女十八| 亚洲国产精品久久男人天堂| 99热只有精品国产| 欧美最黄视频在线播放免费| 综合色av麻豆| 亚洲最大成人中文| 嫩草影院入口| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 欧美日本亚洲视频在线播放| 美女扒开内裤让男人捅视频| 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 国产精品,欧美在线| 久久久精品大字幕| 90打野战视频偷拍视频| 久久精品亚洲精品国产色婷小说| 欧美黑人巨大hd| 亚洲专区国产一区二区| 青草久久国产| 日韩免费av在线播放| 久久久久性生活片| 欧美av亚洲av综合av国产av| 熟女人妻精品中文字幕| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| av欧美777| 亚洲精品乱码久久久v下载方式 | 亚洲黑人精品在线| 久久香蕉精品热| 成年人黄色毛片网站| 国产高清视频在线播放一区| 欧美丝袜亚洲另类 | 国产高清videossex| 99精品欧美一区二区三区四区| 国产精品野战在线观看| 少妇裸体淫交视频免费看高清| 国产午夜精品论理片| 欧美zozozo另类| 九九在线视频观看精品| 一进一出抽搐动态| 精品久久久久久,| 欧美中文综合在线视频| 宅男免费午夜| 真人做人爱边吃奶动态| 综合色av麻豆| 免费在线观看视频国产中文字幕亚洲| 中国美女看黄片| 色哟哟哟哟哟哟| 亚洲人成伊人成综合网2020| 啦啦啦免费观看视频1| av黄色大香蕉| 国产91精品成人一区二区三区| 啦啦啦韩国在线观看视频| 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 亚洲黑人精品在线| 老汉色∧v一级毛片| 热99re8久久精品国产| 午夜福利18| 99热这里只有精品一区 | 免费看日本二区| av欧美777| 亚洲在线观看片| 亚洲av日韩精品久久久久久密| 免费在线观看视频国产中文字幕亚洲| 丝袜人妻中文字幕| 亚洲 国产 在线| 91麻豆av在线| 丰满人妻一区二区三区视频av | 亚洲一区二区三区不卡视频| 国模一区二区三区四区视频 | 久久草成人影院| 久久天堂一区二区三区四区| 少妇的逼水好多| 91在线精品国自产拍蜜月 | 日韩欧美三级三区| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 九九在线视频观看精品| 久久这里只有精品19| 美女免费视频网站| 国产综合懂色| 亚洲性夜色夜夜综合| 国产精品一区二区精品视频观看| 在线观看日韩欧美| 欧美在线黄色| 怎么达到女性高潮| 搡老妇女老女人老熟妇| 精品国产亚洲在线| 在线看三级毛片| 久久精品国产亚洲av香蕉五月| 国产探花在线观看一区二区| 一个人免费在线观看电影 | x7x7x7水蜜桃| 国产免费av片在线观看野外av| 午夜精品一区二区三区免费看| 久久中文字幕人妻熟女| 国产精品1区2区在线观看.| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆| 最近最新中文字幕大全电影3| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| www.熟女人妻精品国产| 国产精品九九99| 岛国在线观看网站| 麻豆成人午夜福利视频| 亚洲精品在线观看二区| 伦理电影免费视频| 久久久精品欧美日韩精品| 黄色成人免费大全| 热99re8久久精品国产| 日本 av在线| 国产伦精品一区二区三区四那| 欧美zozozo另类| 12—13女人毛片做爰片一| 亚洲欧美精品综合久久99| 天堂动漫精品| 少妇熟女aⅴ在线视频| 久久久色成人| 欧美在线黄色| 成人一区二区视频在线观看| 欧美zozozo另类| 国产高潮美女av| 亚洲av电影不卡..在线观看| 日本精品一区二区三区蜜桃| 一个人看视频在线观看www免费 | 高潮久久久久久久久久久不卡| 国产精品av久久久久免费| 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av香蕉五月| 精品久久久久久久人妻蜜臀av| 国产成人精品久久二区二区91| 日韩欧美 国产精品| 欧美一级毛片孕妇| 日本精品一区二区三区蜜桃| 亚洲欧美日韩东京热| 欧美色视频一区免费| 日韩 欧美 亚洲 中文字幕| 成人一区二区视频在线观看| 免费人成视频x8x8入口观看| 伊人久久大香线蕉亚洲五| www.熟女人妻精品国产| 极品教师在线免费播放| 欧美三级亚洲精品| 99久久综合精品五月天人人| 日韩三级视频一区二区三区| 网址你懂的国产日韩在线| 美女 人体艺术 gogo| 国产伦精品一区二区三区视频9 | 激情在线观看视频在线高清| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 亚洲国产欧美网| 一本久久中文字幕| 国产精品久久久av美女十八| 亚洲色图av天堂| 国产麻豆成人av免费视频| 国产精品久久久久久精品电影| 韩国av一区二区三区四区| 国产精华一区二区三区| av国产免费在线观看| 日日摸夜夜添夜夜添小说| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 日本免费a在线| 两个人的视频大全免费| 亚洲精品乱码久久久v下载方式 | 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 曰老女人黄片| 免费在线观看亚洲国产| 亚洲精品色激情综合| 国产毛片a区久久久久| 国产成人一区二区三区免费视频网站| 99久久精品热视频| 国产午夜精品论理片| 国产欧美日韩一区二区精品| 热99在线观看视频| 搡老熟女国产l中国老女人| 男人和女人高潮做爰伦理| 欧美在线黄色| 国产成人精品久久二区二区免费| 高清毛片免费观看视频网站| 五月伊人婷婷丁香| 中文字幕高清在线视频| 午夜福利视频1000在线观看| 丁香欧美五月| 成人精品一区二区免费| 美女cb高潮喷水在线观看 | 国内精品久久久久精免费| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av在线| 久久人妻av系列| 99国产精品一区二区蜜桃av| 99国产极品粉嫩在线观看| 两个人看的免费小视频| 亚洲七黄色美女视频| 日韩免费av在线播放| 制服人妻中文乱码| 亚洲av熟女| 日本五十路高清| 一级毛片女人18水好多| 一个人观看的视频www高清免费观看 | 成人特级av手机在线观看|