• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural neural connectivity of the vestibular nuclei in the human brain: a diffusion tensor imaging study

    2018-05-05 06:47:12SungHoJangMiYoungLeeSangSeokYeoHyeokGyuKwon

    Sung Ho Jang, Mi Young Lee, Sang Seok Yeo, Hyeok Gyu Kwon

    1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea

    2 Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsan, North Gyeongsang, Republic of Korea

    3 Department of Physical Therapy, College of Health Sciences, Dankook University, Dandaero, Cheonan, Republic of Korea

    4 Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea

    Introduction

    The vestibular nuclei (VN), located at the pons and medulla oblongata, consists of four subnuclei: superior nucleus, inferior nucleus, medial nucleus, and lateral nucleus (Barmack,2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010). It receives and carries various types of sensory information,including eye movement, direction or speed of head movement, and body orientation in space to control the movements (Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010; zu Eulenburg et al., 2012). The VN is known to have neural connection with various brain regions including the cerebellum, thalamus, cerebral cortex, oculomotor nucleus, trochlear nucleus, abducens nucleus, insula, and hypothalamus (Henkel and Martin, 1977; Montgomery,1988; Akbarian et al., 1994; Shiroyama et al., 1999; Barmack,2003; Horowitz et al., 2005; Haines, 2006; Augustine, 2008;Markia et al., 2008; Siegel et al., 2010; Kirsch et al., 2016).The connected brain regions and their relation to functions can be summarized as follows: cerebellum - equilibrium;oculomotor nucleus - control of eye movements; thalamus and cerebral cortex - conscious perception of movement and spatial orientation (Barmack, 2003; Haines, 2006; Augustine,2008; Siegel et al., 2010; zu Eulenburg et al., 2012; Hitier et al., 2014). As a result, an injury to VN can result in vertigo and sensorimotor dysfunction, including loss of equilibrium, poor perception of body movement and eye movement(Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al.,2010; Hitier et al., 2014).

    Electrophysiologic and tracer techniques have been used in many animal studies reporting on the neural connectivity between the VN and various brain regions (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). However, these techniques are limited to application in the live human brain, and the connectivity of the VN in the human brain has not been clearly elucidated. Recently developed diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), is a technique used to reveal the structural neural connectivity in three-dimensional visualization by detection of the translational displacement of water molecules (Parker and Alexander, 2005; Behrens et al., 2007). In particular, the probabilistic tracking method enables estimation of local uncertainty in fiber orientation of each voxel(Parker and Alexander, 2005; Behrens et al., 2007). In other words, it considers the distribution of underlying fiber structure. Accordingly, probabilistic DTI tractography has been widely used to investigate the neural connectivity between neural structures in the human brain, including the amygdala, lateral geniculate body and red nucleus (Muthusamy et al., 2007; Nucifora et al., 2007; Jang and Kwon, 2014; Kwon and Jang, 2014). However, few studies are reported on the structural neural connectivity of the VN in the human brain(Kirsch et al., 2016). In this study, we attempted to investi-gate the structural neural connectivity of the VN in normal subjects using DTT.

    Figure 1 Diffusion tensor tractography for the structural neural connectivity of the vestibular nuclei in a healthy participant.

    Participants and Methods

    Participants

    Thirty-seven healthy participants (22 males and 15 females;mean age of 37.8 years (range 20–56 years) with no previous history of neurological, physical, or psychiatric illness were included in this studyviabulletin board notices. All participants understood the purpose of this study and provided written informed consent prior to participation and the study protocol was approved by the Institutional Review Board of Yeungnam University Hospital, Republic of Korea(YUMC 2017-07-065-011).

    Data acquisition

    A 1.5 T Philips Gyroscan Intera system (Philips Ltd, Best,The Netherlands) equipped with a 6-channel head coil with a single-shot spin echo planar imaging sequence was used for acquisition of DTT data. For each of the 32 non-collinear, diffusion-sensitizing gradients, 70 contiguous slices were acquired parallel to the anterior commissure-posterior commissure line. Imaging parameters of DTT were as follows:acquisition matrix = 96 × 96; reconstructed to matrix = 192 ×192; field of view = 240 × 240 mm2; repetition time = 10,398 ms; echo time = 72 ms; parallel imaging reduction factor = 2;echo-planar imaging factor = 59;b= 1000 s/mm2; number of excitations = 1; and a slice thickness of 2.5 mm.

    Probabilistic fiber tracking

    The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl) was used to analyze diffusion-weighted imaging data. Eddy current correction was applied to correct the head motion effect and image distortion. Fiber tracking was performed using probabilistic tractography, and applied in the default tractography option in FMRIB Diffusion Soft-ware (5000 streamline samples, 0.5 mm step lengths, curvature thresholds = 0.2) (Smith et al., 2004; Behrens et al.,2007). The fiber tracking method was used to generate 5000 streamline samples from each seed region of interest with relection of both dominant and non-dominant orientation of diffusion in each voxel in each individual (Smith et al.,2004; Behrens et al., 2007). The fiber tracking method has an advantage in the evaluation of the structural neural connectivities of neural structures. In the seed region of interest, the VN was isolated using the following adjacent structures: the reticular formation (RF, antero-medial boundary), restiform body (lateral boundary), and posterior margin of the medulla (posterior boundary) (Naidich and Duvernoy, 2009). Out of 5,000 streamline samples generated from the seed voxel,results of fiber tracking were visualized at the threshold of 5, 50, and 100 streamlines through each voxel for analysis.Connectivity represented the percentage of connection in the hemispheres of 37 healthy subjects.

    Determination of connectivity between the VN and targeted brain regions

    Connectivity was defined as the incidence of connection between the VN and each of the following brain regions: the primary motor cortex, premotor cortex, primary somatosensory cortex, posterior parietal cortex, lateral prefrontal cortex,ventromedial prefrontal cortex, orbitofrontal cortex, thalamus,hypothalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation and cerebellum.

    Statistical analysis

    SPSS 15.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. The chi-square test was performed to determine the difference in connectivity of the VN between the right and left hemispheres. A level ofP< 0.05 was considered statistically significant.

    Table 1 Incidence of connectivity (%) between the vestibular nuclei and targeted brain regions in healthy subjects

    Results

    A summary of the structural neural connectivity of the VN is shown in Table 1 and Figure 1. The VN showed 100%connectivity with the cerebellum, thalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation, irrespective of thresholds. In contrast, regarding the threshold of 5, 50, and 100 streamlines, the VN showed connectivity with the primary motor cortex (95.9%, 83.8%,and 74.3%), primary somatosensory cortex (90.5%, 68.9%,and 64.9%), premotor cortex (87.8%, 52.7%, and 40.5%),hypothalamus (86.5%, 64.9%, and 54.1%), posterior parietal cortex (75.7%, 27.0%, and 23.0%), lateral prefrontal cortex(70.3%, 27.0%, and 17.6%), ventromedial prefrontal cortex(51.4%, 27.0%, and 20.3%), and orbitofrontal cortex (40.5%,24.3%, and 18.9%), respectively. In all targeted brain regions,no significant difference in connectivity of the VN was observed between the right and left hemispheres (P> 0.05).

    Discussion

    In this study, probabilistic tracking was used to investigate the structural neural connectivity of the VN in the normal human brain. According to our findings, the VN showed 100% connectivity with brain regions (cerebellum, thalamus,oculomotor nucleus, trochlear nucleus, abducens nucleus,and reticular formation) related to the functions of the VN(equilibrium, control of eye movements, conscious perception of movement, and spatial orientation) irrespective of thresholds, as well as high connectivity (over 70%) with the sensory-motor cortex (primary motor cortex, primary somatosensory cortex, premotor cortex, and posterior parietal cortex), hypothalamus, and lateral prefrontal cortex at the threshold of 5 streamlines.

    Tracer technique has been used in many animal studies reporting on the connectivity of the VN (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). Using tracer technique, Henkel and Martin (1977) demonstrated connection of the major afferent fibers of the VN with the cerebellum in 300 rats and that the superior VN terminated at the ipsilateral trochlear nucleus and oculomotor nucleus. Subsequently, Akbarian et al. (1994), who reported that the VN connected the premotor and parietal cortex in five monkeys, suggested that these connectivities might affect the vestibulocular reflex. Horowitz et al. (2005) reported connection of the VN with various brain regions, including the thalamic nucleus, hypothalamus, oculomotor nucleus,and cerebellum in 24 hamsters. Markia et al. (2008) recently reported on the connectivity between the VN and paraventricular nucleus of hypothalamus using a monosynaptic retrograde tracer technique in six rats. Our results appear to be consistent with those of the previous studies.

    To the best of our knowledge, only one study involving the human brain has been reported on the structural neural connectivity of the VN using DTT (Kirsch et al., 2016 ).Kirsch et al. (2016) examined the functional and structural connectivity between the VN and ipsilateral and contralateral parieto-insular vestibular cortex in 24 normal subjects using DTT and functional MRI. They found two ipsilateral pathways of the VN to the parieto-insular vestibular cortex,a direct pathway without the thalamus and an indirect pathway with the thalamus in either the posterolateral or paramedian nuclei, and with regard to the contralateral pathways, the VN connected with the parieto-insular vestibular cortexviathe posterolateral thalamus (Kirsch et al., 2016). Compared to Kirsch’s study, our study investigated the structural neural connectivity of the VN to almost all brain regions and adopted three different thresholds to determine the potential and tendency of connectivity between the VN and all brain regions. We believe our findings would be helpful for clinicians who are engaged in research on neurological diseases in terms of diagnosis, treatment plan, and prognosis prediction.

    In conclusion, in this study, we investigated the structural neural connectivity of the VN in normal human subjects and found that the VN showed high connectivity with brain regions related to the functions including equilibrium, eye movements, conscious perception of movement, and spatial orientation. We believe that the methods used in this study to investigate the structural neural connectivity of the VN in the live human brain, as well as the corresponding results, would provide valuable information for clinicians and researchers studying the VN. However, several limitations of this study should be considered (Parker and Alexander, 2005; Yamada et al., 2009; Fillard et al., 2011). First, although the VN is composed of four subnuclei, we found no connectivity between specific subnuclei of the VN and each brain region. Second,because DTT cannot discern the direction, the afferent and efferent fibers could not be divided between the VN and brain regions. Third, when using probabilistic DTT tractography,crossing fibers in a voxel or partial volume effect throughout the white matter of the brain can cause both false positive and negative results (Yamada et al., 2009; Fillard et al., 2011).Therefore, to overcome these limitations, in-depth studies, as well as studies regarding clinical application of our results for patients with brain injury, are encouraged.

    Author contributions:SHJ conceived and designed this study, was responsible for data acquisition, wrote and authorized the paper. MYL participated in research design and data acquisition. SSY participated in research design and provided technical assistance. HGK participated in data acquisition and analysis, was in charge of fundraising, contributed to paper writing, and provided technical support. All authors approved the final version of this paper.

    Conflicts of interest:None declared.

    Financial support:This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2015R1D1A4A01020385).

    Research ethics:All participants provided informed consent for participation and the study was approved by the institutional Review Board of Yeungnam University Hospital (YUMC 2017-07-065-011). The study followed the Declaration of Helsinki and relevant ethical principles.

    Declaration of participant consent:The authors certify that they will obtain all appropriate participant consent forms. In the form, the participants will give their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Akbarian S, Grusser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421-437.

    Augustine JR (2008) Human Neuroanatomy. NJ, USA: John Wiley &Sons.

    Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511-541.

    Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521-534.

    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007)Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 34:144-155.

    Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1-14.

    Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J,Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56:220-234.

    Haines DE (2006) Fundamental neuroscience, 3rdEdition. Philadelphia:Churchill Livingstone.

    Henkel CK, Martin GF (1977) The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. J Comp Neurol 172:321-348.

    Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integr Neurosci 8:59.

    Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487:127-146.

    Jang SH, Kwon HG (2014) Neural connectivity of the amygdala in the human brain: a diffusion tensor imaging study. Neural Netw World 24:591-599.

    Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291-308.

    Kwon HG, Jang SH (2014) Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study. Neurosci Lett 578:66-70.

    Markia B, Kovacs ZI, Palkovits M (2008) Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: morphological evidence for the existence of a vestibular stress pathway in the rat brain.Brain Struct Funct 213:239-245.

    Montgomery NM (1988) Projections of the vestibular and cerebellar nuclei in Rana pipiens. Brain Behav Evol 31:82-95.

    Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814-820.

    Naidich TP, Duvernoy HM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high- field MRI: surface anatomy, internal structure, vascularization and 3D sectional anatomy. Wien; New York:Springer.

    Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367-384.

    Parker GJ, Alexander DC (2005) Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci 360:893-902.

    Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318-332.

    Siegel A, Sapru HN, Siegel H (2010) Essential neuroscience, 3th ed. Edition: Lippincott Williams & Wilkins.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.

    Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8:165-174.

    zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex.Neuroimage 60:162-169.

    色播亚洲综合网| 久热久热在线精品观看| tube8黄色片| 人妻 亚洲 视频| 高清午夜精品一区二区三区| 哪个播放器可以免费观看大片| 亚洲欧洲国产日韩| 女人十人毛片免费观看3o分钟| 黄色视频在线播放观看不卡| 亚洲精品国产av蜜桃| 亚洲欧美成人精品一区二区| 久久热精品热| 一级a做视频免费观看| 精品久久久久久久末码| 久久精品国产a三级三级三级| 少妇的逼水好多| 国产免费福利视频在线观看| 高清日韩中文字幕在线| 一本久久精品| 欧美极品一区二区三区四区| 国产成人freesex在线| 纵有疾风起免费观看全集完整版| 丰满人妻一区二区三区视频av| 国产av国产精品国产| 人妻系列 视频| 男女无遮挡免费网站观看| 色网站视频免费| 一区二区三区精品91| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 中文字幕av成人在线电影| 国产免费一级a男人的天堂| 亚洲精品成人久久久久久| 有码 亚洲区| 丰满少妇做爰视频| 美女视频免费永久观看网站| 国产精品人妻久久久久久| 一级毛片黄色毛片免费观看视频| 亚洲欧洲国产日韩| 午夜福利视频精品| 中文字幕免费在线视频6| 日韩在线高清观看一区二区三区| 神马国产精品三级电影在线观看| 大片电影免费在线观看免费| 最近手机中文字幕大全| 欧美 日韩 精品 国产| 免费av观看视频| 日本黄大片高清| 成人国产麻豆网| 色视频在线一区二区三区| 国产亚洲精品久久久com| 午夜精品国产一区二区电影 | 身体一侧抽搐| 精品国产乱码久久久久久小说| 噜噜噜噜噜久久久久久91| 禁无遮挡网站| 中文在线观看免费www的网站| 亚洲最大成人中文| freevideosex欧美| 少妇的逼好多水| 好男人在线观看高清免费视频| 精品人妻一区二区三区麻豆| 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| videossex国产| 久久精品国产亚洲av天美| 九草在线视频观看| 亚洲欧美成人综合另类久久久| 欧美日韩视频高清一区二区三区二| 黄色视频在线播放观看不卡| 精品视频人人做人人爽| 国产精品久久久久久久电影| 啦啦啦在线观看免费高清www| 亚洲精品国产av成人精品| 亚洲图色成人| 波野结衣二区三区在线| 久久精品国产自在天天线| 久久久精品欧美日韩精品| 简卡轻食公司| 秋霞伦理黄片| 神马国产精品三级电影在线观看| 久久久精品欧美日韩精品| 国产精品一区www在线观看| 乱码一卡2卡4卡精品| 黄色一级大片看看| 亚洲精品aⅴ在线观看| 日韩不卡一区二区三区视频在线| 国产在视频线精品| 中文字幕久久专区| 国产精品国产三级专区第一集| 欧美国产精品一级二级三级 | 在线观看国产h片| 男人爽女人下面视频在线观看| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 99九九线精品视频在线观看视频| 成人亚洲精品av一区二区| 不卡视频在线观看欧美| 亚洲伊人久久精品综合| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 亚洲最大成人中文| 久久久久久久久大av| 丰满少妇做爰视频| 秋霞伦理黄片| 看非洲黑人一级黄片| 免费观看性生交大片5| 嘟嘟电影网在线观看| 女人久久www免费人成看片| 免费av毛片视频| 免费观看的影片在线观看| 免费少妇av软件| 亚洲欧美一区二区三区黑人 | 成年人午夜在线观看视频| 真实男女啪啪啪动态图| 午夜亚洲福利在线播放| 少妇猛男粗大的猛烈进出视频 | 在线观看av片永久免费下载| 九九在线视频观看精品| 国产伦在线观看视频一区| 80岁老熟妇乱子伦牲交| 超碰97精品在线观看| 日本一二三区视频观看| 秋霞在线观看毛片| 三级国产精品片| 蜜桃久久精品国产亚洲av| 久久久久性生活片| 亚洲精品国产av蜜桃| 精品视频人人做人人爽| 在线播放无遮挡| 国产精品一区二区在线观看99| 亚洲国产高清在线一区二区三| 亚洲电影在线观看av| 日韩人妻高清精品专区| 国产乱人视频| 天堂中文最新版在线下载 | 日日啪夜夜撸| 日本午夜av视频| 久久久久久国产a免费观看| 2018国产大陆天天弄谢| 在线观看三级黄色| 免费电影在线观看免费观看| 日韩av免费高清视频| 亚洲精品国产成人久久av| 丰满人妻一区二区三区视频av| 色播亚洲综合网| 成人无遮挡网站| 大片免费播放器 马上看| 高清欧美精品videossex| 美女cb高潮喷水在线观看| 最近的中文字幕免费完整| 欧美丝袜亚洲另类| 香蕉精品网在线| 97在线人人人人妻| 夜夜爽夜夜爽视频| 国产综合懂色| 欧美潮喷喷水| 色网站视频免费| 久久久亚洲精品成人影院| 国产乱人视频| 亚洲熟女精品中文字幕| 男女边摸边吃奶| 99视频精品全部免费 在线| 午夜福利高清视频| 午夜免费男女啪啪视频观看| 国产黄色视频一区二区在线观看| 午夜老司机福利剧场| 亚洲av免费高清在线观看| 欧美性猛交╳xxx乱大交人| 欧美日韩国产mv在线观看视频 | 狂野欧美激情性bbbbbb| 亚洲av免费高清在线观看| 黑人高潮一二区| 久久99精品国语久久久| 日本色播在线视频| 精品国产露脸久久av麻豆| 伊人久久精品亚洲午夜| 色网站视频免费| 日本与韩国留学比较| 白带黄色成豆腐渣| 久久久久久久久久人人人人人人| 大陆偷拍与自拍| 久久久久久久久久成人| 久久久午夜欧美精品| 草草在线视频免费看| 日韩大片免费观看网站| 亚洲精品国产成人久久av| 最近最新中文字幕免费大全7| 成人国产av品久久久| 毛片一级片免费看久久久久| 女人十人毛片免费观看3o分钟| 少妇的逼好多水| 草草在线视频免费看| 在线观看av片永久免费下载| 日韩一本色道免费dvd| 一边亲一边摸免费视频| 午夜福利视频1000在线观看| 水蜜桃什么品种好| 在线免费十八禁| 青春草国产在线视频| 秋霞伦理黄片| 久久久久久久久久人人人人人人| 亚洲一区二区三区欧美精品 | 国产亚洲精品久久久com| 美女视频免费永久观看网站| 天堂网av新在线| 国产探花极品一区二区| 欧美精品人与动牲交sv欧美| 视频区图区小说| 97在线视频观看| 欧美性猛交╳xxx乱大交人| 亚洲精品中文字幕在线视频 | 国产免费一区二区三区四区乱码| 极品少妇高潮喷水抽搐| 久久久久久九九精品二区国产| 97在线视频观看| 少妇熟女欧美另类| 国产色婷婷99| 又黄又爽又刺激的免费视频.| 少妇丰满av| 亚洲欧美精品专区久久| 日韩制服骚丝袜av| 九色成人免费人妻av| 久久久精品欧美日韩精品| 精品一区在线观看国产| 久久人人爽人人片av| 伦精品一区二区三区| 日本午夜av视频| 男男h啪啪无遮挡| a级一级毛片免费在线观看| 日产精品乱码卡一卡2卡三| videossex国产| 99热这里只有是精品50| 久久久久久九九精品二区国产| 国产视频首页在线观看| 超碰97精品在线观看| 在现免费观看毛片| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 日本色播在线视频| 性色avwww在线观看| 成年女人在线观看亚洲视频 | 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 国产一区二区三区av在线| 黑人高潮一二区| 黄色视频在线播放观看不卡| 尾随美女入室| 亚洲av.av天堂| 国产老妇伦熟女老妇高清| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 久久韩国三级中文字幕| 免费看av在线观看网站| 欧美精品人与动牲交sv欧美| 超碰av人人做人人爽久久| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花 | 欧美xxxx黑人xx丫x性爽| 在线观看一区二区三区激情| 只有这里有精品99| 好男人视频免费观看在线| 国产伦在线观看视频一区| 成人国产麻豆网| 国产精品熟女久久久久浪| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 18禁在线无遮挡免费观看视频| 亚洲国产精品999| 99re6热这里在线精品视频| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 少妇 在线观看| 伊人久久精品亚洲午夜| 国产男人的电影天堂91| 一级av片app| 人妻一区二区av| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 国产伦精品一区二区三区四那| 亚洲国产精品专区欧美| 51国产日韩欧美| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 午夜免费鲁丝| 大又大粗又爽又黄少妇毛片口| 一区二区三区精品91| 亚洲国产精品成人久久小说| 欧美+日韩+精品| 国产伦精品一区二区三区视频9| 亚洲四区av| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| av网站免费在线观看视频| 免费观看性生交大片5| 亚洲精品一区蜜桃| 大话2 男鬼变身卡| 久久久久久久精品精品| 免费少妇av软件| 男女边摸边吃奶| 国产精品嫩草影院av在线观看| 亚洲无线观看免费| 成人国产av品久久久| 精品午夜福利在线看| 亚洲欧美日韩另类电影网站 | 美女cb高潮喷水在线观看| 欧美+日韩+精品| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 精品国产露脸久久av麻豆| 69av精品久久久久久| 青春草视频在线免费观看| 亚洲欧美精品专区久久| 老司机影院成人| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 欧美极品一区二区三区四区| 亚洲av欧美aⅴ国产| av在线播放精品| 久久精品久久久久久久性| 久久久久久久久久人人人人人人| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 色吧在线观看| 亚洲精品456在线播放app| 免费观看在线日韩| 精品少妇久久久久久888优播| 国产久久久一区二区三区| av国产免费在线观看| 在线 av 中文字幕| 精品少妇黑人巨大在线播放| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 久久热精品热| 最近手机中文字幕大全| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| 久久久a久久爽久久v久久| 久久久午夜欧美精品| 美女cb高潮喷水在线观看| 国产伦理片在线播放av一区| av免费在线看不卡| 免费观看的影片在线观看| 国产精品人妻久久久久久| 中国三级夫妇交换| 久久久久久久大尺度免费视频| 久久久久久久久久人人人人人人| videossex国产| 欧美日本视频| 国产一区亚洲一区在线观看| 又爽又黄a免费视频| 国产黄色免费在线视频| 97精品久久久久久久久久精品| h日本视频在线播放| 夫妻午夜视频| 国产综合懂色| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 久久精品国产亚洲av涩爱| 亚洲精品色激情综合| 如何舔出高潮| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 亚洲最大成人av| 日本一本二区三区精品| 欧美日韩视频精品一区| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 观看美女的网站| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| 亚洲欧美日韩另类电影网站 | av在线亚洲专区| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 特级一级黄色大片| 欧美高清性xxxxhd video| 精品国产乱码久久久久久小说| 久久99热6这里只有精品| 91久久精品电影网| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 免费大片黄手机在线观看| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 日韩大片免费观看网站| 欧美日韩亚洲高清精品| 久久99蜜桃精品久久| 久久久久精品性色| 亚洲一区二区三区欧美精品 | 久久鲁丝午夜福利片| 亚洲av福利一区| 免费黄网站久久成人精品| 国产成人精品久久久久久| 热99国产精品久久久久久7| h日本视频在线播放| 久久人人爽av亚洲精品天堂 | 成年av动漫网址| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 国产精品女同一区二区软件| 久久久久久久久久成人| 舔av片在线| 日韩视频在线欧美| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 国产成年人精品一区二区| 免费黄网站久久成人精品| 亚洲成人精品中文字幕电影| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 国产精品99久久99久久久不卡 | 交换朋友夫妻互换小说| 精品久久久久久久末码| 不卡视频在线观看欧美| videossex国产| 看免费成人av毛片| 久久综合国产亚洲精品| 在线播放无遮挡| 夫妻午夜视频| 一级毛片aaaaaa免费看小| 国产精品久久久久久精品电影| 国产精品伦人一区二区| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 永久网站在线| 婷婷色综合www| 国产白丝娇喘喷水9色精品| 在线观看美女被高潮喷水网站| 精品视频人人做人人爽| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 色吧在线观看| 国产在线一区二区三区精| 婷婷色麻豆天堂久久| 一个人看视频在线观看www免费| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 国产精品成人在线| 亚洲人成网站在线观看播放| 美女主播在线视频| 成人二区视频| 亚洲欧美精品专区久久| 久久99热6这里只有精品| 日韩伦理黄色片| 99热6这里只有精品| 日韩人妻高清精品专区| 精品人妻熟女av久视频| 午夜福利高清视频| 久久午夜福利片| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 久久ye,这里只有精品| 人人妻人人看人人澡| 有码 亚洲区| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区 | 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 人人妻人人澡人人爽人人夜夜| av国产精品久久久久影院| 日本熟妇午夜| 69人妻影院| 日韩,欧美,国产一区二区三区| 色播亚洲综合网| 亚洲色图av天堂| 国精品久久久久久国模美| 高清视频免费观看一区二区| 18禁在线播放成人免费| 亚洲精品一二三| 欧美激情在线99| 精品酒店卫生间| 69av精品久久久久久| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 免费av不卡在线播放| av国产久精品久网站免费入址| 免费看光身美女| 最近手机中文字幕大全| 全区人妻精品视频| 免费观看的影片在线观看| 高清午夜精品一区二区三区| 一本一本综合久久| 国产一区二区三区av在线| 欧美3d第一页| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 日本午夜av视频| 啦啦啦啦在线视频资源| av国产免费在线观看| 晚上一个人看的免费电影| 26uuu在线亚洲综合色| 免费看av在线观看网站| 中国三级夫妇交换| 日本一本二区三区精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲四区av| 日本黄大片高清| 干丝袜人妻中文字幕| 国产黄频视频在线观看| 热re99久久精品国产66热6| 免费观看a级毛片全部| 女的被弄到高潮叫床怎么办| 亚洲自偷自拍三级| 日韩视频在线欧美| 精品久久国产蜜桃| 熟女av电影| 亚洲国产最新在线播放| 国产有黄有色有爽视频| 免费观看的影片在线观看| 我的老师免费观看完整版| 五月天丁香电影| 97人妻精品一区二区三区麻豆| 国产91av在线免费观看| 国内揄拍国产精品人妻在线| 国产高清三级在线| 国产男人的电影天堂91| 成人综合一区亚洲| 国产亚洲最大av| 国产又色又爽无遮挡免| 日韩成人av中文字幕在线观看| 日本免费在线观看一区| 久久国内精品自在自线图片| 91久久精品电影网| 少妇 在线观看| 中文欧美无线码| 日本一本二区三区精品| 国产黄a三级三级三级人| 国产午夜精品一二区理论片| 国产亚洲最大av| 亚洲国产日韩一区二区| 欧美成人a在线观看| 国产熟女欧美一区二区| 99久国产av精品国产电影| 少妇高潮的动态图| 熟女人妻精品中文字幕| 国产黄频视频在线观看| 晚上一个人看的免费电影| 精品一区二区免费观看| 国产免费又黄又爽又色| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验| 69人妻影院| 在线a可以看的网站| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 亚洲国产色片| 亚洲一区二区三区欧美精品 | 国产欧美日韩精品一区二区| 嫩草影院新地址| 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 高清av免费在线| 亚洲无线观看免费| 男人和女人高潮做爰伦理| 日本色播在线视频| 免费黄频网站在线观看国产| 欧美精品国产亚洲| 色综合色国产| 国产在视频线精品| 在线观看av片永久免费下载| 亚洲国产精品国产精品| 国产精品国产三级国产av玫瑰| 男女无遮挡免费网站观看| 国产综合精华液| 两个人的视频大全免费| 99热全是精品| av国产免费在线观看| 九九爱精品视频在线观看| 国产成人福利小说| 日韩成人伦理影院| 天天躁日日操中文字幕| 蜜臀久久99精品久久宅男| 91精品国产九色| 亚洲伊人久久精品综合| 国产探花在线观看一区二区| 色哟哟·www| 欧美激情国产日韩精品一区| 一本久久精品| 精品人妻偷拍中文字幕| 久久精品国产亚洲av天美| 麻豆乱淫一区二区| 亚洲欧美成人综合另类久久久| 国产色爽女视频免费观看| 国产亚洲91精品色在线| 亚洲成色77777| 日本一二三区视频观看| 在线观看av片永久免费下载| 日本黄色片子视频| 又粗又硬又长又爽又黄的视频| 人妻一区二区av| av国产久精品久网站免费入址| 免费av不卡在线播放| 又爽又黄无遮挡网站| 精品一区二区免费观看| 男女无遮挡免费网站观看| 欧美xxxx黑人xx丫x性爽| 成人毛片60女人毛片免费| 色视频www国产| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 我的女老师完整版在线观看|