• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural neural connectivity of the vestibular nuclei in the human brain: a diffusion tensor imaging study

    2018-05-05 06:47:12SungHoJangMiYoungLeeSangSeokYeoHyeokGyuKwon

    Sung Ho Jang, Mi Young Lee, Sang Seok Yeo, Hyeok Gyu Kwon

    1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea

    2 Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsan, North Gyeongsang, Republic of Korea

    3 Department of Physical Therapy, College of Health Sciences, Dankook University, Dandaero, Cheonan, Republic of Korea

    4 Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea

    Introduction

    The vestibular nuclei (VN), located at the pons and medulla oblongata, consists of four subnuclei: superior nucleus, inferior nucleus, medial nucleus, and lateral nucleus (Barmack,2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010). It receives and carries various types of sensory information,including eye movement, direction or speed of head movement, and body orientation in space to control the movements (Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010; zu Eulenburg et al., 2012). The VN is known to have neural connection with various brain regions including the cerebellum, thalamus, cerebral cortex, oculomotor nucleus, trochlear nucleus, abducens nucleus, insula, and hypothalamus (Henkel and Martin, 1977; Montgomery,1988; Akbarian et al., 1994; Shiroyama et al., 1999; Barmack,2003; Horowitz et al., 2005; Haines, 2006; Augustine, 2008;Markia et al., 2008; Siegel et al., 2010; Kirsch et al., 2016).The connected brain regions and their relation to functions can be summarized as follows: cerebellum - equilibrium;oculomotor nucleus - control of eye movements; thalamus and cerebral cortex - conscious perception of movement and spatial orientation (Barmack, 2003; Haines, 2006; Augustine,2008; Siegel et al., 2010; zu Eulenburg et al., 2012; Hitier et al., 2014). As a result, an injury to VN can result in vertigo and sensorimotor dysfunction, including loss of equilibrium, poor perception of body movement and eye movement(Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al.,2010; Hitier et al., 2014).

    Electrophysiologic and tracer techniques have been used in many animal studies reporting on the neural connectivity between the VN and various brain regions (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). However, these techniques are limited to application in the live human brain, and the connectivity of the VN in the human brain has not been clearly elucidated. Recently developed diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), is a technique used to reveal the structural neural connectivity in three-dimensional visualization by detection of the translational displacement of water molecules (Parker and Alexander, 2005; Behrens et al., 2007). In particular, the probabilistic tracking method enables estimation of local uncertainty in fiber orientation of each voxel(Parker and Alexander, 2005; Behrens et al., 2007). In other words, it considers the distribution of underlying fiber structure. Accordingly, probabilistic DTI tractography has been widely used to investigate the neural connectivity between neural structures in the human brain, including the amygdala, lateral geniculate body and red nucleus (Muthusamy et al., 2007; Nucifora et al., 2007; Jang and Kwon, 2014; Kwon and Jang, 2014). However, few studies are reported on the structural neural connectivity of the VN in the human brain(Kirsch et al., 2016). In this study, we attempted to investi-gate the structural neural connectivity of the VN in normal subjects using DTT.

    Figure 1 Diffusion tensor tractography for the structural neural connectivity of the vestibular nuclei in a healthy participant.

    Participants and Methods

    Participants

    Thirty-seven healthy participants (22 males and 15 females;mean age of 37.8 years (range 20–56 years) with no previous history of neurological, physical, or psychiatric illness were included in this studyviabulletin board notices. All participants understood the purpose of this study and provided written informed consent prior to participation and the study protocol was approved by the Institutional Review Board of Yeungnam University Hospital, Republic of Korea(YUMC 2017-07-065-011).

    Data acquisition

    A 1.5 T Philips Gyroscan Intera system (Philips Ltd, Best,The Netherlands) equipped with a 6-channel head coil with a single-shot spin echo planar imaging sequence was used for acquisition of DTT data. For each of the 32 non-collinear, diffusion-sensitizing gradients, 70 contiguous slices were acquired parallel to the anterior commissure-posterior commissure line. Imaging parameters of DTT were as follows:acquisition matrix = 96 × 96; reconstructed to matrix = 192 ×192; field of view = 240 × 240 mm2; repetition time = 10,398 ms; echo time = 72 ms; parallel imaging reduction factor = 2;echo-planar imaging factor = 59;b= 1000 s/mm2; number of excitations = 1; and a slice thickness of 2.5 mm.

    Probabilistic fiber tracking

    The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl) was used to analyze diffusion-weighted imaging data. Eddy current correction was applied to correct the head motion effect and image distortion. Fiber tracking was performed using probabilistic tractography, and applied in the default tractography option in FMRIB Diffusion Soft-ware (5000 streamline samples, 0.5 mm step lengths, curvature thresholds = 0.2) (Smith et al., 2004; Behrens et al.,2007). The fiber tracking method was used to generate 5000 streamline samples from each seed region of interest with relection of both dominant and non-dominant orientation of diffusion in each voxel in each individual (Smith et al.,2004; Behrens et al., 2007). The fiber tracking method has an advantage in the evaluation of the structural neural connectivities of neural structures. In the seed region of interest, the VN was isolated using the following adjacent structures: the reticular formation (RF, antero-medial boundary), restiform body (lateral boundary), and posterior margin of the medulla (posterior boundary) (Naidich and Duvernoy, 2009). Out of 5,000 streamline samples generated from the seed voxel,results of fiber tracking were visualized at the threshold of 5, 50, and 100 streamlines through each voxel for analysis.Connectivity represented the percentage of connection in the hemispheres of 37 healthy subjects.

    Determination of connectivity between the VN and targeted brain regions

    Connectivity was defined as the incidence of connection between the VN and each of the following brain regions: the primary motor cortex, premotor cortex, primary somatosensory cortex, posterior parietal cortex, lateral prefrontal cortex,ventromedial prefrontal cortex, orbitofrontal cortex, thalamus,hypothalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation and cerebellum.

    Statistical analysis

    SPSS 15.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. The chi-square test was performed to determine the difference in connectivity of the VN between the right and left hemispheres. A level ofP< 0.05 was considered statistically significant.

    Table 1 Incidence of connectivity (%) between the vestibular nuclei and targeted brain regions in healthy subjects

    Results

    A summary of the structural neural connectivity of the VN is shown in Table 1 and Figure 1. The VN showed 100%connectivity with the cerebellum, thalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation, irrespective of thresholds. In contrast, regarding the threshold of 5, 50, and 100 streamlines, the VN showed connectivity with the primary motor cortex (95.9%, 83.8%,and 74.3%), primary somatosensory cortex (90.5%, 68.9%,and 64.9%), premotor cortex (87.8%, 52.7%, and 40.5%),hypothalamus (86.5%, 64.9%, and 54.1%), posterior parietal cortex (75.7%, 27.0%, and 23.0%), lateral prefrontal cortex(70.3%, 27.0%, and 17.6%), ventromedial prefrontal cortex(51.4%, 27.0%, and 20.3%), and orbitofrontal cortex (40.5%,24.3%, and 18.9%), respectively. In all targeted brain regions,no significant difference in connectivity of the VN was observed between the right and left hemispheres (P> 0.05).

    Discussion

    In this study, probabilistic tracking was used to investigate the structural neural connectivity of the VN in the normal human brain. According to our findings, the VN showed 100% connectivity with brain regions (cerebellum, thalamus,oculomotor nucleus, trochlear nucleus, abducens nucleus,and reticular formation) related to the functions of the VN(equilibrium, control of eye movements, conscious perception of movement, and spatial orientation) irrespective of thresholds, as well as high connectivity (over 70%) with the sensory-motor cortex (primary motor cortex, primary somatosensory cortex, premotor cortex, and posterior parietal cortex), hypothalamus, and lateral prefrontal cortex at the threshold of 5 streamlines.

    Tracer technique has been used in many animal studies reporting on the connectivity of the VN (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). Using tracer technique, Henkel and Martin (1977) demonstrated connection of the major afferent fibers of the VN with the cerebellum in 300 rats and that the superior VN terminated at the ipsilateral trochlear nucleus and oculomotor nucleus. Subsequently, Akbarian et al. (1994), who reported that the VN connected the premotor and parietal cortex in five monkeys, suggested that these connectivities might affect the vestibulocular reflex. Horowitz et al. (2005) reported connection of the VN with various brain regions, including the thalamic nucleus, hypothalamus, oculomotor nucleus,and cerebellum in 24 hamsters. Markia et al. (2008) recently reported on the connectivity between the VN and paraventricular nucleus of hypothalamus using a monosynaptic retrograde tracer technique in six rats. Our results appear to be consistent with those of the previous studies.

    To the best of our knowledge, only one study involving the human brain has been reported on the structural neural connectivity of the VN using DTT (Kirsch et al., 2016 ).Kirsch et al. (2016) examined the functional and structural connectivity between the VN and ipsilateral and contralateral parieto-insular vestibular cortex in 24 normal subjects using DTT and functional MRI. They found two ipsilateral pathways of the VN to the parieto-insular vestibular cortex,a direct pathway without the thalamus and an indirect pathway with the thalamus in either the posterolateral or paramedian nuclei, and with regard to the contralateral pathways, the VN connected with the parieto-insular vestibular cortexviathe posterolateral thalamus (Kirsch et al., 2016). Compared to Kirsch’s study, our study investigated the structural neural connectivity of the VN to almost all brain regions and adopted three different thresholds to determine the potential and tendency of connectivity between the VN and all brain regions. We believe our findings would be helpful for clinicians who are engaged in research on neurological diseases in terms of diagnosis, treatment plan, and prognosis prediction.

    In conclusion, in this study, we investigated the structural neural connectivity of the VN in normal human subjects and found that the VN showed high connectivity with brain regions related to the functions including equilibrium, eye movements, conscious perception of movement, and spatial orientation. We believe that the methods used in this study to investigate the structural neural connectivity of the VN in the live human brain, as well as the corresponding results, would provide valuable information for clinicians and researchers studying the VN. However, several limitations of this study should be considered (Parker and Alexander, 2005; Yamada et al., 2009; Fillard et al., 2011). First, although the VN is composed of four subnuclei, we found no connectivity between specific subnuclei of the VN and each brain region. Second,because DTT cannot discern the direction, the afferent and efferent fibers could not be divided between the VN and brain regions. Third, when using probabilistic DTT tractography,crossing fibers in a voxel or partial volume effect throughout the white matter of the brain can cause both false positive and negative results (Yamada et al., 2009; Fillard et al., 2011).Therefore, to overcome these limitations, in-depth studies, as well as studies regarding clinical application of our results for patients with brain injury, are encouraged.

    Author contributions:SHJ conceived and designed this study, was responsible for data acquisition, wrote and authorized the paper. MYL participated in research design and data acquisition. SSY participated in research design and provided technical assistance. HGK participated in data acquisition and analysis, was in charge of fundraising, contributed to paper writing, and provided technical support. All authors approved the final version of this paper.

    Conflicts of interest:None declared.

    Financial support:This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2015R1D1A4A01020385).

    Research ethics:All participants provided informed consent for participation and the study was approved by the institutional Review Board of Yeungnam University Hospital (YUMC 2017-07-065-011). The study followed the Declaration of Helsinki and relevant ethical principles.

    Declaration of participant consent:The authors certify that they will obtain all appropriate participant consent forms. In the form, the participants will give their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Akbarian S, Grusser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421-437.

    Augustine JR (2008) Human Neuroanatomy. NJ, USA: John Wiley &Sons.

    Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511-541.

    Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521-534.

    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007)Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 34:144-155.

    Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1-14.

    Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J,Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56:220-234.

    Haines DE (2006) Fundamental neuroscience, 3rdEdition. Philadelphia:Churchill Livingstone.

    Henkel CK, Martin GF (1977) The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. J Comp Neurol 172:321-348.

    Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integr Neurosci 8:59.

    Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487:127-146.

    Jang SH, Kwon HG (2014) Neural connectivity of the amygdala in the human brain: a diffusion tensor imaging study. Neural Netw World 24:591-599.

    Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291-308.

    Kwon HG, Jang SH (2014) Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study. Neurosci Lett 578:66-70.

    Markia B, Kovacs ZI, Palkovits M (2008) Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: morphological evidence for the existence of a vestibular stress pathway in the rat brain.Brain Struct Funct 213:239-245.

    Montgomery NM (1988) Projections of the vestibular and cerebellar nuclei in Rana pipiens. Brain Behav Evol 31:82-95.

    Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814-820.

    Naidich TP, Duvernoy HM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high- field MRI: surface anatomy, internal structure, vascularization and 3D sectional anatomy. Wien; New York:Springer.

    Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367-384.

    Parker GJ, Alexander DC (2005) Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci 360:893-902.

    Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318-332.

    Siegel A, Sapru HN, Siegel H (2010) Essential neuroscience, 3th ed. Edition: Lippincott Williams & Wilkins.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.

    Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8:165-174.

    zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex.Neuroimage 60:162-169.

    91在线观看av| 国产成+人综合+亚洲专区| 日本成人三级电影网站| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 久久九九热精品免费| 亚洲男人的天堂狠狠| 小蜜桃在线观看免费完整版高清| 亚洲专区中文字幕在线| 亚洲国产欧美人成| 熟女人妻精品中文字幕| 亚洲欧美日韩高清在线视频| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆| 最近视频中文字幕2019在线8| 最近在线观看免费完整版| 国产精品久久电影中文字幕| 免费无遮挡裸体视频| 少妇人妻一区二区三区视频| 天美传媒精品一区二区| 国产亚洲欧美98| 国产在线男女| 精品人妻1区二区| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 午夜影院日韩av| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| aaaaa片日本免费| 久久精品国产99精品国产亚洲性色| 婷婷丁香在线五月| 国产v大片淫在线免费观看| 亚洲人成网站在线播| 一本精品99久久精品77| 天堂av国产一区二区熟女人妻| 91久久精品电影网| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 91麻豆精品激情在线观看国产| 国产一区二区激情短视频| av在线天堂中文字幕| 欧美在线一区亚洲| 99在线视频只有这里精品首页| 欧美3d第一页| 乱码一卡2卡4卡精品| 婷婷亚洲欧美| 他把我摸到了高潮在线观看| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 波多野结衣高清无吗| 久久精品影院6| 精品欧美国产一区二区三| 久久国产精品人妻蜜桃| 日本黄大片高清| 精品乱码久久久久久99久播| 国产淫片久久久久久久久 | 9191精品国产免费久久| 国产野战对白在线观看| 岛国在线免费视频观看| 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 18禁黄网站禁片免费观看直播| 制服丝袜大香蕉在线| 在线看三级毛片| 久久久久久久久中文| 国产乱人视频| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 久久人妻av系列| 又紧又爽又黄一区二区| 少妇丰满av| 久久中文看片网| 久久精品影院6| 亚洲最大成人av| 亚洲av第一区精品v没综合| 欧美一区二区亚洲| 欧美乱妇无乱码| 三级毛片av免费| 精品日产1卡2卡| 又爽又黄a免费视频| 国内精品久久久久精免费| 午夜视频国产福利| 国产黄片美女视频| 日韩免费av在线播放| 日韩欧美精品v在线| 日韩欧美一区二区三区在线观看| 俄罗斯特黄特色一大片| 麻豆国产av国片精品| 欧美丝袜亚洲另类 | 久久久久国产精品人妻aⅴ院| 精品久久久久久久久亚洲 | 精品日产1卡2卡| 成年版毛片免费区| 免费看a级黄色片| 久久久久久大精品| 色综合欧美亚洲国产小说| 少妇高潮的动态图| 亚州av有码| 久久久国产成人免费| 国产伦精品一区二区三区四那| 大型黄色视频在线免费观看| 听说在线观看完整版免费高清| 成年免费大片在线观看| av福利片在线观看| 免费电影在线观看免费观看| 51国产日韩欧美| 亚洲午夜理论影院| 少妇被粗大猛烈的视频| www.www免费av| 成人美女网站在线观看视频| 自拍偷自拍亚洲精品老妇| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 亚洲 欧美 日韩 在线 免费| 免费高清视频大片| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 免费av毛片视频| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 神马国产精品三级电影在线观看| 岛国在线免费视频观看| 看免费av毛片| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久 | 美女xxoo啪啪120秒动态图 | 亚洲最大成人av| 99久国产av精品| 国产黄片美女视频| 成人特级av手机在线观看| 久久久国产成人精品二区| 激情在线观看视频在线高清| 一进一出好大好爽视频| 国产成人av教育| 国产精品亚洲美女久久久| 午夜福利欧美成人| 国产精华一区二区三区| 91九色精品人成在线观看| eeuss影院久久| 最后的刺客免费高清国语| 久久人妻av系列| 亚洲av成人不卡在线观看播放网| 欧美性猛交╳xxx乱大交人| 精品日产1卡2卡| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 亚洲片人在线观看| 午夜免费激情av| 成年女人毛片免费观看观看9| 99热精品在线国产| 成人国产综合亚洲| 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 怎么达到女性高潮| 午夜影院日韩av| 日日干狠狠操夜夜爽| 高清在线国产一区| 日本免费一区二区三区高清不卡| 日本免费a在线| 精品久久久久久成人av| 日韩人妻高清精品专区| 制服丝袜大香蕉在线| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 欧美性猛交╳xxx乱大交人| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 五月玫瑰六月丁香| 老司机福利观看| 小说图片视频综合网站| av在线天堂中文字幕| 校园春色视频在线观看| 国产精品综合久久久久久久免费| 欧美日韩乱码在线| 亚洲在线自拍视频| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产 | 精品人妻1区二区| 亚洲aⅴ乱码一区二区在线播放| 国产在视频线在精品| 我的老师免费观看完整版| 嫩草影院精品99| 欧美成人免费av一区二区三区| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站 | 亚洲成人精品中文字幕电影| 久久午夜福利片| 99精品在免费线老司机午夜| 美女大奶头视频| 97热精品久久久久久| 欧美最黄视频在线播放免费| 在线观看一区二区三区| 国产美女午夜福利| 婷婷精品国产亚洲av| 88av欧美| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久久久毛片| 久久久久久大精品| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 日本一二三区视频观看| 国产精品99久久久久久久久| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| 亚洲欧美日韩高清专用| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 精品人妻1区二区| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 真实男女啪啪啪动态图| 欧美日本亚洲视频在线播放| av女优亚洲男人天堂| 18+在线观看网站| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 久久香蕉精品热| 18禁在线播放成人免费| 99精品在免费线老司机午夜| 在线免费观看的www视频| 首页视频小说图片口味搜索| 日韩人妻高清精品专区| 久久久色成人| 一级黄色大片毛片| av在线天堂中文字幕| 久久久久久久亚洲中文字幕 | 国产又黄又爽又无遮挡在线| 国产乱人视频| 日本一二三区视频观看| 免费av不卡在线播放| 九九热线精品视视频播放| 又爽又黄a免费视频| 午夜福利18| 97热精品久久久久久| 国产午夜精品论理片| 国产成年人精品一区二区| 免费看日本二区| 12—13女人毛片做爰片一| 欧美黑人巨大hd| 在线国产一区二区在线| 亚洲av美国av| 又爽又黄a免费视频| 日韩成人在线观看一区二区三区| 国产中年淑女户外野战色| 国产精品亚洲一级av第二区| 嫩草影院精品99| 精品一区二区三区av网在线观看| 欧美午夜高清在线| 欧美极品一区二区三区四区| 成人三级黄色视频| x7x7x7水蜜桃| 好男人电影高清在线观看| 日韩欧美精品免费久久 | 午夜福利视频1000在线观看| h日本视频在线播放| 黄色视频,在线免费观看| 男女那种视频在线观看| 久久99热这里只有精品18| 桃色一区二区三区在线观看| 亚洲成人久久性| 夜夜爽天天搞| 日韩国内少妇激情av| 亚洲国产欧美人成| 成人一区二区视频在线观看| 亚洲精品色激情综合| 欧美另类亚洲清纯唯美| 五月伊人婷婷丁香| 欧美3d第一页| 久久人人精品亚洲av| 成人性生交大片免费视频hd| 不卡一级毛片| 男插女下体视频免费在线播放| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 欧洲精品卡2卡3卡4卡5卡区| 久久精品久久久久久噜噜老黄 | 欧美乱色亚洲激情| or卡值多少钱| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 婷婷色综合大香蕉| 精品午夜福利视频在线观看一区| 91午夜精品亚洲一区二区三区 | 中文字幕久久专区| 欧美黑人欧美精品刺激| 久久人妻av系列| 草草在线视频免费看| 国产v大片淫在线免费观看| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 999久久久精品免费观看国产| 午夜福利在线观看吧| 亚洲最大成人中文| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 国产免费一级a男人的天堂| 哪里可以看免费的av片| 少妇人妻精品综合一区二区 | 亚洲av中文字字幕乱码综合| 最好的美女福利视频网| 69人妻影院| 观看免费一级毛片| 一区二区三区激情视频| 亚洲av电影在线进入| 亚洲男人的天堂狠狠| 熟女电影av网| 亚洲熟妇熟女久久| 久久99热6这里只有精品| 变态另类成人亚洲欧美熟女| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品亚洲av| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 国产综合懂色| 深夜精品福利| 国产成人a区在线观看| 他把我摸到了高潮在线观看| 乱码一卡2卡4卡精品| 久久久成人免费电影| 亚洲人成网站在线播| www日本黄色视频网| 麻豆av噜噜一区二区三区| 亚洲精品亚洲一区二区| 国产中年淑女户外野战色| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 国产精品一区二区性色av| 亚洲成av人片免费观看| 欧美日韩黄片免| 久久九九热精品免费| 久久精品91蜜桃| 中国美女看黄片| 一个人看的www免费观看视频| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 搡老妇女老女人老熟妇| 国产免费男女视频| 亚洲av第一区精品v没综合| 老司机深夜福利视频在线观看| 99国产综合亚洲精品| 9191精品国产免费久久| 一个人免费在线观看电影| 特级一级黄色大片| 制服丝袜大香蕉在线| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 少妇丰满av| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 欧美高清性xxxxhd video| 欧美在线黄色| 亚洲国产精品久久男人天堂| 99久久精品热视频| 老女人水多毛片| 精品乱码久久久久久99久播| 亚洲在线观看片| 亚洲av免费在线观看| 久久人妻av系列| 99热只有精品国产| 高潮久久久久久久久久久不卡| 国产高清视频在线观看网站| 99久久精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 美女被艹到高潮喷水动态| 精品久久国产蜜桃| 91在线观看av| 嫩草影院新地址| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 精品福利观看| 亚洲欧美清纯卡通| 亚洲中文字幕一区二区三区有码在线看| 禁无遮挡网站| 久久久久久九九精品二区国产| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 69人妻影院| 成人精品一区二区免费| 极品教师在线免费播放| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 欧美高清性xxxxhd video| www.色视频.com| 高清在线国产一区| 亚洲自偷自拍三级| 国产欧美日韩精品一区二区| 亚洲av电影在线进入| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 免费看日本二区| 最新中文字幕久久久久| 国产高清三级在线| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片| 岛国在线免费视频观看| 国产视频一区二区在线看| 欧美乱妇无乱码| 久久热精品热| 免费看日本二区| 亚洲美女视频黄频| 亚洲avbb在线观看| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 亚洲性夜色夜夜综合| 欧美精品啪啪一区二区三区| 国产成人影院久久av| 国产精品一区二区性色av| 午夜激情欧美在线| 精品久久久久久久久亚洲 | 久久国产精品影院| 精品一区二区三区视频在线| av中文乱码字幕在线| 久久草成人影院| 99久久精品热视频| 99精品在免费线老司机午夜| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 国产精品亚洲av一区麻豆| 精品国产三级普通话版| 日韩欧美国产在线观看| 精品久久国产蜜桃| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久 | 18禁在线播放成人免费| 91狼人影院| а√天堂www在线а√下载| 国产精品1区2区在线观看.| 男插女下体视频免费在线播放| 久久热精品热| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 亚洲av中文字字幕乱码综合| 欧美成人性av电影在线观看| 亚洲精品在线美女| 老司机午夜十八禁免费视频| 午夜福利欧美成人| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 久久久久国产精品人妻aⅴ院| 午夜免费激情av| 91字幕亚洲| 性欧美人与动物交配| 日韩欧美一区二区三区在线观看| av专区在线播放| 国产伦人伦偷精品视频| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 成人三级黄色视频| 男女那种视频在线观看| 黄色视频,在线免费观看| 国产白丝娇喘喷水9色精品| 禁无遮挡网站| 波多野结衣高清无吗| 在线看三级毛片| 无遮挡黄片免费观看| 成年免费大片在线观看| 久久精品人妻少妇| 久久久国产成人免费| 全区人妻精品视频| 久久亚洲真实| 精品福利观看| 欧美在线一区亚洲| 欧美绝顶高潮抽搐喷水| 超碰av人人做人人爽久久| 久久久久免费精品人妻一区二区| 色综合站精品国产| 国产激情偷乱视频一区二区| 日韩欧美三级三区| 男女那种视频在线观看| 亚洲,欧美精品.| 又黄又爽又刺激的免费视频.| 亚洲激情在线av| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 亚洲美女搞黄在线观看 | 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 精品久久久久久久人妻蜜臀av| 变态另类丝袜制服| 亚洲成av人片在线播放无| 色播亚洲综合网| 三级国产精品欧美在线观看| 一级av片app| 久久久久久久久久黄片| 国产午夜精品论理片| 日韩高清综合在线| 亚洲精品一区av在线观看| 黄色丝袜av网址大全| 欧美性猛交黑人性爽| 免费无遮挡裸体视频| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄 | 91午夜精品亚洲一区二区三区 | 小说图片视频综合网站| 很黄的视频免费| 久久久成人免费电影| 看黄色毛片网站| 啪啪无遮挡十八禁网站| 不卡一级毛片| 成年版毛片免费区| 日韩欧美免费精品| 中文资源天堂在线| 久久久久久久久久黄片| 久久久久久久亚洲中文字幕 | 观看免费一级毛片| 十八禁网站免费在线| 免费人成在线观看视频色| 亚洲18禁久久av| 一本久久中文字幕| 精品国产亚洲在线| bbb黄色大片| 亚洲真实伦在线观看| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 在线播放国产精品三级| 我的女老师完整版在线观看| 夜夜躁狠狠躁天天躁| 亚洲男人的天堂狠狠| 日韩欧美精品v在线| 午夜福利成人在线免费观看| 日韩中字成人| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 亚洲人成网站在线播| 久久精品国产自在天天线| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 亚洲欧美精品综合久久99| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 直男gayav资源| 日本精品一区二区三区蜜桃| 少妇的逼水好多| 极品教师在线免费播放| 免费无遮挡裸体视频| 99riav亚洲国产免费| 国内精品美女久久久久久| 免费在线观看亚洲国产| 3wmmmm亚洲av在线观看| 国产综合懂色| 亚洲av日韩精品久久久久久密| 亚洲,欧美,日韩| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 国产成人av教育| 亚洲精品成人久久久久久| 黄色丝袜av网址大全| 欧美黑人欧美精品刺激| 色综合婷婷激情| 日本a在线网址| 欧美日韩综合久久久久久 | 一个人免费在线观看电影| 国产精品国产高清国产av| 亚洲五月婷婷丁香| 国产乱人视频| 国产精品久久久久久久久免 | 国产精品美女特级片免费视频播放器| 99国产极品粉嫩在线观看| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 小蜜桃在线观看免费完整版高清| 18禁在线播放成人免费| 波野结衣二区三区在线| av女优亚洲男人天堂| 午夜福利18| 国产大屁股一区二区在线视频| 亚洲内射少妇av| 欧美日韩国产亚洲二区| 天天躁日日操中文字幕| 国产极品精品免费视频能看的| 亚洲人与动物交配视频| 国产三级在线视频| 如何舔出高潮| 最新中文字幕久久久久| 欧美国产日韩亚洲一区| 十八禁网站免费在线| 色5月婷婷丁香| 啪啪无遮挡十八禁网站| 色哟哟哟哟哟哟| 免费看日本二区| 国产伦在线观看视频一区| 69av精品久久久久久| av专区在线播放| 国产精品日韩av在线免费观看|