• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural neural connectivity of the vestibular nuclei in the human brain: a diffusion tensor imaging study

    2018-05-05 06:47:12SungHoJangMiYoungLeeSangSeokYeoHyeokGyuKwon

    Sung Ho Jang, Mi Young Lee, Sang Seok Yeo, Hyeok Gyu Kwon

    1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea

    2 Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsan, North Gyeongsang, Republic of Korea

    3 Department of Physical Therapy, College of Health Sciences, Dankook University, Dandaero, Cheonan, Republic of Korea

    4 Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea

    Introduction

    The vestibular nuclei (VN), located at the pons and medulla oblongata, consists of four subnuclei: superior nucleus, inferior nucleus, medial nucleus, and lateral nucleus (Barmack,2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010). It receives and carries various types of sensory information,including eye movement, direction or speed of head movement, and body orientation in space to control the movements (Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al., 2010; zu Eulenburg et al., 2012). The VN is known to have neural connection with various brain regions including the cerebellum, thalamus, cerebral cortex, oculomotor nucleus, trochlear nucleus, abducens nucleus, insula, and hypothalamus (Henkel and Martin, 1977; Montgomery,1988; Akbarian et al., 1994; Shiroyama et al., 1999; Barmack,2003; Horowitz et al., 2005; Haines, 2006; Augustine, 2008;Markia et al., 2008; Siegel et al., 2010; Kirsch et al., 2016).The connected brain regions and their relation to functions can be summarized as follows: cerebellum - equilibrium;oculomotor nucleus - control of eye movements; thalamus and cerebral cortex - conscious perception of movement and spatial orientation (Barmack, 2003; Haines, 2006; Augustine,2008; Siegel et al., 2010; zu Eulenburg et al., 2012; Hitier et al., 2014). As a result, an injury to VN can result in vertigo and sensorimotor dysfunction, including loss of equilibrium, poor perception of body movement and eye movement(Barmack, 2003; Haines, 2006; Augustine, 2008; Siegel et al.,2010; Hitier et al., 2014).

    Electrophysiologic and tracer techniques have been used in many animal studies reporting on the neural connectivity between the VN and various brain regions (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). However, these techniques are limited to application in the live human brain, and the connectivity of the VN in the human brain has not been clearly elucidated. Recently developed diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), is a technique used to reveal the structural neural connectivity in three-dimensional visualization by detection of the translational displacement of water molecules (Parker and Alexander, 2005; Behrens et al., 2007). In particular, the probabilistic tracking method enables estimation of local uncertainty in fiber orientation of each voxel(Parker and Alexander, 2005; Behrens et al., 2007). In other words, it considers the distribution of underlying fiber structure. Accordingly, probabilistic DTI tractography has been widely used to investigate the neural connectivity between neural structures in the human brain, including the amygdala, lateral geniculate body and red nucleus (Muthusamy et al., 2007; Nucifora et al., 2007; Jang and Kwon, 2014; Kwon and Jang, 2014). However, few studies are reported on the structural neural connectivity of the VN in the human brain(Kirsch et al., 2016). In this study, we attempted to investi-gate the structural neural connectivity of the VN in normal subjects using DTT.

    Figure 1 Diffusion tensor tractography for the structural neural connectivity of the vestibular nuclei in a healthy participant.

    Participants and Methods

    Participants

    Thirty-seven healthy participants (22 males and 15 females;mean age of 37.8 years (range 20–56 years) with no previous history of neurological, physical, or psychiatric illness were included in this studyviabulletin board notices. All participants understood the purpose of this study and provided written informed consent prior to participation and the study protocol was approved by the Institutional Review Board of Yeungnam University Hospital, Republic of Korea(YUMC 2017-07-065-011).

    Data acquisition

    A 1.5 T Philips Gyroscan Intera system (Philips Ltd, Best,The Netherlands) equipped with a 6-channel head coil with a single-shot spin echo planar imaging sequence was used for acquisition of DTT data. For each of the 32 non-collinear, diffusion-sensitizing gradients, 70 contiguous slices were acquired parallel to the anterior commissure-posterior commissure line. Imaging parameters of DTT were as follows:acquisition matrix = 96 × 96; reconstructed to matrix = 192 ×192; field of view = 240 × 240 mm2; repetition time = 10,398 ms; echo time = 72 ms; parallel imaging reduction factor = 2;echo-planar imaging factor = 59;b= 1000 s/mm2; number of excitations = 1; and a slice thickness of 2.5 mm.

    Probabilistic fiber tracking

    The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl) was used to analyze diffusion-weighted imaging data. Eddy current correction was applied to correct the head motion effect and image distortion. Fiber tracking was performed using probabilistic tractography, and applied in the default tractography option in FMRIB Diffusion Soft-ware (5000 streamline samples, 0.5 mm step lengths, curvature thresholds = 0.2) (Smith et al., 2004; Behrens et al.,2007). The fiber tracking method was used to generate 5000 streamline samples from each seed region of interest with relection of both dominant and non-dominant orientation of diffusion in each voxel in each individual (Smith et al.,2004; Behrens et al., 2007). The fiber tracking method has an advantage in the evaluation of the structural neural connectivities of neural structures. In the seed region of interest, the VN was isolated using the following adjacent structures: the reticular formation (RF, antero-medial boundary), restiform body (lateral boundary), and posterior margin of the medulla (posterior boundary) (Naidich and Duvernoy, 2009). Out of 5,000 streamline samples generated from the seed voxel,results of fiber tracking were visualized at the threshold of 5, 50, and 100 streamlines through each voxel for analysis.Connectivity represented the percentage of connection in the hemispheres of 37 healthy subjects.

    Determination of connectivity between the VN and targeted brain regions

    Connectivity was defined as the incidence of connection between the VN and each of the following brain regions: the primary motor cortex, premotor cortex, primary somatosensory cortex, posterior parietal cortex, lateral prefrontal cortex,ventromedial prefrontal cortex, orbitofrontal cortex, thalamus,hypothalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation and cerebellum.

    Statistical analysis

    SPSS 15.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. The chi-square test was performed to determine the difference in connectivity of the VN between the right and left hemispheres. A level ofP< 0.05 was considered statistically significant.

    Table 1 Incidence of connectivity (%) between the vestibular nuclei and targeted brain regions in healthy subjects

    Results

    A summary of the structural neural connectivity of the VN is shown in Table 1 and Figure 1. The VN showed 100%connectivity with the cerebellum, thalamus, oculomotor nucleus, trochlear nucleus, abducens nucleus, and reticular formation, irrespective of thresholds. In contrast, regarding the threshold of 5, 50, and 100 streamlines, the VN showed connectivity with the primary motor cortex (95.9%, 83.8%,and 74.3%), primary somatosensory cortex (90.5%, 68.9%,and 64.9%), premotor cortex (87.8%, 52.7%, and 40.5%),hypothalamus (86.5%, 64.9%, and 54.1%), posterior parietal cortex (75.7%, 27.0%, and 23.0%), lateral prefrontal cortex(70.3%, 27.0%, and 17.6%), ventromedial prefrontal cortex(51.4%, 27.0%, and 20.3%), and orbitofrontal cortex (40.5%,24.3%, and 18.9%), respectively. In all targeted brain regions,no significant difference in connectivity of the VN was observed between the right and left hemispheres (P> 0.05).

    Discussion

    In this study, probabilistic tracking was used to investigate the structural neural connectivity of the VN in the normal human brain. According to our findings, the VN showed 100% connectivity with brain regions (cerebellum, thalamus,oculomotor nucleus, trochlear nucleus, abducens nucleus,and reticular formation) related to the functions of the VN(equilibrium, control of eye movements, conscious perception of movement, and spatial orientation) irrespective of thresholds, as well as high connectivity (over 70%) with the sensory-motor cortex (primary motor cortex, primary somatosensory cortex, premotor cortex, and posterior parietal cortex), hypothalamus, and lateral prefrontal cortex at the threshold of 5 streamlines.

    Tracer technique has been used in many animal studies reporting on the connectivity of the VN (Henkel and Martin, 1977; Montgomery, 1988; Faugier-Grimaud and Ventre,1989; Barmack et al., 1993; Akbarian et al., 1994; Shiroyama et al., 1999; Horowitz et al., 2005; Markia et al., 2008). Using tracer technique, Henkel and Martin (1977) demonstrated connection of the major afferent fibers of the VN with the cerebellum in 300 rats and that the superior VN terminated at the ipsilateral trochlear nucleus and oculomotor nucleus. Subsequently, Akbarian et al. (1994), who reported that the VN connected the premotor and parietal cortex in five monkeys, suggested that these connectivities might affect the vestibulocular reflex. Horowitz et al. (2005) reported connection of the VN with various brain regions, including the thalamic nucleus, hypothalamus, oculomotor nucleus,and cerebellum in 24 hamsters. Markia et al. (2008) recently reported on the connectivity between the VN and paraventricular nucleus of hypothalamus using a monosynaptic retrograde tracer technique in six rats. Our results appear to be consistent with those of the previous studies.

    To the best of our knowledge, only one study involving the human brain has been reported on the structural neural connectivity of the VN using DTT (Kirsch et al., 2016 ).Kirsch et al. (2016) examined the functional and structural connectivity between the VN and ipsilateral and contralateral parieto-insular vestibular cortex in 24 normal subjects using DTT and functional MRI. They found two ipsilateral pathways of the VN to the parieto-insular vestibular cortex,a direct pathway without the thalamus and an indirect pathway with the thalamus in either the posterolateral or paramedian nuclei, and with regard to the contralateral pathways, the VN connected with the parieto-insular vestibular cortexviathe posterolateral thalamus (Kirsch et al., 2016). Compared to Kirsch’s study, our study investigated the structural neural connectivity of the VN to almost all brain regions and adopted three different thresholds to determine the potential and tendency of connectivity between the VN and all brain regions. We believe our findings would be helpful for clinicians who are engaged in research on neurological diseases in terms of diagnosis, treatment plan, and prognosis prediction.

    In conclusion, in this study, we investigated the structural neural connectivity of the VN in normal human subjects and found that the VN showed high connectivity with brain regions related to the functions including equilibrium, eye movements, conscious perception of movement, and spatial orientation. We believe that the methods used in this study to investigate the structural neural connectivity of the VN in the live human brain, as well as the corresponding results, would provide valuable information for clinicians and researchers studying the VN. However, several limitations of this study should be considered (Parker and Alexander, 2005; Yamada et al., 2009; Fillard et al., 2011). First, although the VN is composed of four subnuclei, we found no connectivity between specific subnuclei of the VN and each brain region. Second,because DTT cannot discern the direction, the afferent and efferent fibers could not be divided between the VN and brain regions. Third, when using probabilistic DTT tractography,crossing fibers in a voxel or partial volume effect throughout the white matter of the brain can cause both false positive and negative results (Yamada et al., 2009; Fillard et al., 2011).Therefore, to overcome these limitations, in-depth studies, as well as studies regarding clinical application of our results for patients with brain injury, are encouraged.

    Author contributions:SHJ conceived and designed this study, was responsible for data acquisition, wrote and authorized the paper. MYL participated in research design and data acquisition. SSY participated in research design and provided technical assistance. HGK participated in data acquisition and analysis, was in charge of fundraising, contributed to paper writing, and provided technical support. All authors approved the final version of this paper.

    Conflicts of interest:None declared.

    Financial support:This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2015R1D1A4A01020385).

    Research ethics:All participants provided informed consent for participation and the study was approved by the institutional Review Board of Yeungnam University Hospital (YUMC 2017-07-065-011). The study followed the Declaration of Helsinki and relevant ethical principles.

    Declaration of participant consent:The authors certify that they will obtain all appropriate participant consent forms. In the form, the participants will give their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Akbarian S, Grusser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421-437.

    Augustine JR (2008) Human Neuroanatomy. NJ, USA: John Wiley &Sons.

    Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511-541.

    Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521-534.

    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007)Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 34:144-155.

    Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1-14.

    Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J,Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56:220-234.

    Haines DE (2006) Fundamental neuroscience, 3rdEdition. Philadelphia:Churchill Livingstone.

    Henkel CK, Martin GF (1977) The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. J Comp Neurol 172:321-348.

    Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integr Neurosci 8:59.

    Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487:127-146.

    Jang SH, Kwon HG (2014) Neural connectivity of the amygdala in the human brain: a diffusion tensor imaging study. Neural Netw World 24:591-599.

    Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M (2016) Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 221:1291-308.

    Kwon HG, Jang SH (2014) Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study. Neurosci Lett 578:66-70.

    Markia B, Kovacs ZI, Palkovits M (2008) Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: morphological evidence for the existence of a vestibular stress pathway in the rat brain.Brain Struct Funct 213:239-245.

    Montgomery NM (1988) Projections of the vestibular and cerebellar nuclei in Rana pipiens. Brain Behav Evol 31:82-95.

    Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107:814-820.

    Naidich TP, Duvernoy HM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high- field MRI: surface anatomy, internal structure, vascularization and 3D sectional anatomy. Wien; New York:Springer.

    Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367-384.

    Parker GJ, Alexander DC (2005) Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci 360:893-902.

    Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407:318-332.

    Siegel A, Sapru HN, Siegel H (2010) Essential neuroscience, 3th ed. Edition: Lippincott Williams & Wilkins.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.

    Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8:165-174.

    zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex.Neuroimage 60:162-169.

    亚洲精品美女久久久久99蜜臀| 日本精品一区二区三区蜜桃| 在线视频色国产色| 午夜视频精品福利| 精品电影一区二区在线| 精品久久久久久,| 久久亚洲精品不卡| 国产精品一及| 人人妻人人澡欧美一区二区| 免费在线观看亚洲国产| 午夜福利视频1000在线观看| www.www免费av| 午夜免费激情av| 久久久精品欧美日韩精品| 欧美午夜高清在线| 欧美黑人欧美精品刺激| 欧美日韩亚洲综合一区二区三区_| 18禁美女被吸乳视频| 亚洲,欧美精品.| 成人国语在线视频| 成人午夜高清在线视频| cao死你这个sao货| 黄片大片在线免费观看| 后天国语完整版免费观看| a在线观看视频网站| 夜夜爽天天搞| 亚洲精品久久国产高清桃花| 黄色片一级片一级黄色片| 一本精品99久久精品77| 国产精品亚洲一级av第二区| 日本五十路高清| 黄色毛片三级朝国网站| 久久久久久大精品| 亚洲片人在线观看| 看片在线看免费视频| 黄色片一级片一级黄色片| 级片在线观看| 女同久久另类99精品国产91| 欧美黄色片欧美黄色片| 国产av又大| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 嫩草影院精品99| 无人区码免费观看不卡| 看片在线看免费视频| ponron亚洲| 日韩三级视频一区二区三区| 亚洲欧美日韩高清专用| 中文字幕高清在线视频| 国产一级毛片七仙女欲春2| 免费av毛片视频| 亚洲五月天丁香| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 亚洲激情在线av| 日韩大码丰满熟妇| 啦啦啦观看免费观看视频高清| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 首页视频小说图片口味搜索| 国产亚洲精品av在线| 国产三级中文精品| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 久久久久免费精品人妻一区二区| 国产真人三级小视频在线观看| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 无遮挡黄片免费观看| 91av网站免费观看| 色av中文字幕| 在线观看www视频免费| 99热只有精品国产| 99久久国产精品久久久| 久久久久免费精品人妻一区二区| 日韩 欧美 亚洲 中文字幕| 岛国在线免费视频观看| 日本三级黄在线观看| 亚洲欧美精品综合一区二区三区| 国产高清视频在线观看网站| 亚洲人与动物交配视频| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 国产亚洲精品第一综合不卡| 久久亚洲真实| 日本三级黄在线观看| netflix在线观看网站| 国产探花在线观看一区二区| 最新美女视频免费是黄的| 国产探花在线观看一区二区| 一级毛片女人18水好多| 国产人伦9x9x在线观看| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区免费| 在线观看舔阴道视频| 久久久久国产精品人妻aⅴ院| 欧美一区二区精品小视频在线| 黄色女人牲交| 舔av片在线| 丝袜人妻中文字幕| 亚洲欧美激情综合另类| 91大片在线观看| 亚洲国产欧美网| 亚洲人成网站在线播放欧美日韩| 99国产极品粉嫩在线观看| 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 99国产精品99久久久久| av在线播放免费不卡| a级毛片在线看网站| 蜜桃久久精品国产亚洲av| 中文字幕高清在线视频| 人成视频在线观看免费观看| 丝袜美腿诱惑在线| 欧美成人性av电影在线观看| 一级片免费观看大全| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 国产精品98久久久久久宅男小说| 久久人人精品亚洲av| 亚洲,欧美精品.| 亚洲aⅴ乱码一区二区在线播放 | 少妇熟女aⅴ在线视频| 悠悠久久av| 亚洲成人中文字幕在线播放| 中文字幕熟女人妻在线| 国产精华一区二区三区| 久久草成人影院| 久热爱精品视频在线9| 亚洲精品粉嫩美女一区| 久久精品成人免费网站| 亚洲av片天天在线观看| 国产av一区二区精品久久| 欧美成狂野欧美在线观看| 一区二区三区国产精品乱码| 国产在线观看jvid| 男人的好看免费观看在线视频 | 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 91成年电影在线观看| 成人午夜高清在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产私拍福利视频在线观看| 男人舔女人下体高潮全视频| 黄片小视频在线播放| 舔av片在线| 美女扒开内裤让男人捅视频| 成人国产一区最新在线观看| 国模一区二区三区四区视频 | 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 国产区一区二久久| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频| 一本精品99久久精品77| 成人三级黄色视频| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| 国产成人系列免费观看| av福利片在线| 韩国av一区二区三区四区| 伊人久久大香线蕉亚洲五| 搡老熟女国产l中国老女人| 久久这里只有精品19| √禁漫天堂资源中文www| 欧美国产日韩亚洲一区| 人人妻人人看人人澡| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| 91成年电影在线观看| 1024手机看黄色片| 国产av一区在线观看免费| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 香蕉国产在线看| 亚洲av成人精品一区久久| 亚洲国产精品合色在线| 少妇人妻一区二区三区视频| 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 老汉色∧v一级毛片| 99re在线观看精品视频| www日本黄色视频网| 日韩欧美免费精品| 久久久久性生活片| 日韩大尺度精品在线看网址| 亚洲国产高清在线一区二区三| 国产成人系列免费观看| 香蕉丝袜av| 国产亚洲欧美98| 一级毛片高清免费大全| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| 亚洲第一欧美日韩一区二区三区| 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产 | av中文乱码字幕在线| 国产三级在线视频| 国产成年人精品一区二区| 亚洲国产欧美人成| 一个人观看的视频www高清免费观看 | 中文亚洲av片在线观看爽| 国产主播在线观看一区二区| 欧美成人性av电影在线观看| www国产在线视频色| 国产伦在线观看视频一区| 99国产极品粉嫩在线观看| 最近视频中文字幕2019在线8| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 又黄又爽又免费观看的视频| 国产在线观看jvid| 亚洲七黄色美女视频| 国产69精品久久久久777片 | 久久久久国产精品人妻aⅴ院| 国产在线观看jvid| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 久久久久久久久久黄片| 国产69精品久久久久777片 | 99久久精品国产亚洲精品| 日本 欧美在线| 真人一进一出gif抽搐免费| 午夜成年电影在线免费观看| 亚洲精品粉嫩美女一区| 国产精品九九99| 亚洲成人久久爱视频| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 亚洲精品美女久久av网站| 久久九九热精品免费| 久久久久久亚洲精品国产蜜桃av| 窝窝影院91人妻| 亚洲一区二区三区色噜噜| 12—13女人毛片做爰片一| 夜夜爽天天搞| 久久精品影院6| 女人被狂操c到高潮| 我的老师免费观看完整版| 色播亚洲综合网| 中文字幕高清在线视频| 18禁国产床啪视频网站| 校园春色视频在线观看| 亚洲自拍偷在线| 麻豆国产av国片精品| 曰老女人黄片| 国产亚洲精品久久久久5区| 国产免费av片在线观看野外av| 亚洲国产精品999在线| 夜夜看夜夜爽夜夜摸| av在线播放免费不卡| 日本免费a在线| 午夜老司机福利片| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 亚洲av成人不卡在线观看播放网| 天堂√8在线中文| bbb黄色大片| 国产亚洲精品综合一区在线观看 | 麻豆av在线久日| xxx96com| 亚洲一区二区三区色噜噜| 91成年电影在线观看| 99精品久久久久人妻精品| 亚洲av中文字字幕乱码综合| 日韩欧美国产一区二区入口| 亚洲九九香蕉| 国产v大片淫在线免费观看| 亚洲一区中文字幕在线| 久久99热这里只有精品18| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 18禁黄网站禁片免费观看直播| 丝袜人妻中文字幕| 亚洲国产精品合色在线| 一夜夜www| 成人精品一区二区免费| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| 亚洲激情在线av| 精品日产1卡2卡| 最好的美女福利视频网| 中文字幕精品亚洲无线码一区| 老汉色∧v一级毛片| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 丝袜美腿诱惑在线| 国产伦一二天堂av在线观看| 舔av片在线| 国产精品野战在线观看| 天堂动漫精品| 亚洲av成人精品一区久久| 国产av一区二区精品久久| 婷婷丁香在线五月| 美女大奶头视频| 99热6这里只有精品| 国产午夜福利久久久久久| 1024视频免费在线观看| av免费在线观看网站| 国产黄色小视频在线观看| 亚洲中文日韩欧美视频| 琪琪午夜伦伦电影理论片6080| 两个人看的免费小视频| 草草在线视频免费看| 久久精品国产99精品国产亚洲性色| 天天躁夜夜躁狠狠躁躁| 狂野欧美白嫩少妇大欣赏| 日本成人三级电影网站| 日韩高清综合在线| 一区二区三区激情视频| 亚洲成av人片免费观看| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 国产99白浆流出| 十八禁人妻一区二区| 成年版毛片免费区| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 夜夜爽天天搞| 曰老女人黄片| 国产高清有码在线观看视频 | 黄色视频不卡| 精品久久久久久久久久免费视频| 波多野结衣高清作品| √禁漫天堂资源中文www| 国产又色又爽无遮挡免费看| 亚洲av电影不卡..在线观看| 国产精品香港三级国产av潘金莲| 校园春色视频在线观看| 久久婷婷人人爽人人干人人爱| 欧美极品一区二区三区四区| 国产精品香港三级国产av潘金莲| 国产精品 欧美亚洲| 丁香欧美五月| 麻豆成人午夜福利视频| 欧美日本视频| 日本五十路高清| 一个人观看的视频www高清免费观看 | 久久久久亚洲av毛片大全| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 亚洲全国av大片| av福利片在线| 日韩欧美国产一区二区入口| 久久久久性生活片| 亚洲欧美日韩无卡精品| 国产成人欧美在线观看| 18禁黄网站禁片免费观看直播| 久久精品国产99精品国产亚洲性色| 国产野战对白在线观看| 91麻豆av在线| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 一区福利在线观看| 亚洲欧洲精品一区二区精品久久久| 日本 av在线| 久久伊人香网站| 久久精品夜夜夜夜夜久久蜜豆 | 最好的美女福利视频网| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 精品日产1卡2卡| 色噜噜av男人的天堂激情| 欧美一级毛片孕妇| avwww免费| 法律面前人人平等表现在哪些方面| 久久亚洲精品不卡| 成人18禁高潮啪啪吃奶动态图| 丰满人妻一区二区三区视频av | 日韩欧美国产一区二区入口| 久久久久国产精品人妻aⅴ院| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 久久婷婷成人综合色麻豆| 后天国语完整版免费观看| 老司机靠b影院| 99在线视频只有这里精品首页| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 免费在线观看影片大全网站| 狂野欧美白嫩少妇大欣赏| 国产精品影院久久| 高清毛片免费观看视频网站| 久久久久免费精品人妻一区二区| av视频在线观看入口| 白带黄色成豆腐渣| 又大又爽又粗| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 午夜福利高清视频| 久久久久性生活片| 国产一区二区在线观看日韩 | 久久久久久久午夜电影| 叶爱在线成人免费视频播放| 国产熟女xx| 51午夜福利影视在线观看| 成人国产综合亚洲| 久久久久九九精品影院| ponron亚洲| 亚洲欧美激情综合另类| 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 免费无遮挡裸体视频| 在线观看www视频免费| 欧美性猛交╳xxx乱大交人| 欧美中文综合在线视频| 午夜福利高清视频| 国产精品久久久久久人妻精品电影| 久久 成人 亚洲| 村上凉子中文字幕在线| 91国产中文字幕| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 日韩欧美国产在线观看| 人人妻人人澡欧美一区二区| 久久久国产成人免费| 成年版毛片免费区| 91av网站免费观看| 免费在线观看日本一区| 国产免费av片在线观看野外av| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 国产av又大| 亚洲成人免费电影在线观看| 亚洲片人在线观看| 成人三级做爰电影| 久久婷婷人人爽人人干人人爱| 精品第一国产精品| 女生性感内裤真人,穿戴方法视频| 在线观看舔阴道视频| 51午夜福利影视在线观看| 亚洲精品一卡2卡三卡4卡5卡| 18禁美女被吸乳视频| 在线a可以看的网站| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 女人被狂操c到高潮| 男女做爰动态图高潮gif福利片| 精品第一国产精品| 午夜福利免费观看在线| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 美女大奶头视频| 国产精品 欧美亚洲| 国产精品一区二区三区四区久久| 欧美日本视频| 最近最新免费中文字幕在线| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| av在线天堂中文字幕| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 午夜福利18| 日本在线视频免费播放| 亚洲精品美女久久av网站| 亚洲一区二区三区不卡视频| 亚洲精品久久国产高清桃花| 午夜福利高清视频| 亚洲av电影不卡..在线观看| 一二三四社区在线视频社区8| 欧美乱码精品一区二区三区| 久久精品91无色码中文字幕| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 国产精品一区二区三区四区久久| 好看av亚洲va欧美ⅴa在| 日本 欧美在线| 每晚都被弄得嗷嗷叫到高潮| 首页视频小说图片口味搜索| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 国产成人精品无人区| 欧美日韩黄片免| 国产区一区二久久| 丰满人妻一区二区三区视频av | 五月伊人婷婷丁香| 两人在一起打扑克的视频| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看 | 国产精品久久久久久精品电影| 亚洲成a人片在线一区二区| 国产男靠女视频免费网站| 无人区码免费观看不卡| 又粗又爽又猛毛片免费看| 免费在线观看黄色视频的| 久久婷婷成人综合色麻豆| 麻豆成人午夜福利视频| 免费在线观看影片大全网站| 欧美色视频一区免费| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 少妇粗大呻吟视频| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 精品熟女少妇八av免费久了| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 少妇粗大呻吟视频| 亚洲成人久久爱视频| 亚洲 国产 在线| 亚洲欧美激情综合另类| 日本五十路高清| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜福利在线观看视频| 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| 美女高潮喷水抽搐中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲五月婷婷丁香| 在线视频色国产色| 人妻丰满熟妇av一区二区三区| 日韩欧美免费精品| 妹子高潮喷水视频| 91麻豆av在线| 国产一区二区在线av高清观看| 色老头精品视频在线观看| 欧美人与性动交α欧美精品济南到| av国产免费在线观看| 国产99久久九九免费精品| 国产成人精品久久二区二区91| 亚洲成人久久性| 久久久久国产一级毛片高清牌| 亚洲精品美女久久久久99蜜臀| 亚洲最大成人中文| 在线观看免费午夜福利视频| 男女做爰动态图高潮gif福利片| 波多野结衣巨乳人妻| 麻豆av在线久日| av中文乱码字幕在线| 最近最新中文字幕大全电影3| 舔av片在线| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 丰满人妻一区二区三区视频av | 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 亚洲五月天丁香| 午夜两性在线视频| 亚洲五月婷婷丁香| 国产精品综合久久久久久久免费| 三级毛片av免费| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美在线二视频| 99热只有精品国产| 国产1区2区3区精品| 国内毛片毛片毛片毛片毛片| 久久久久国产精品人妻aⅴ院| 久久精品91无色码中文字幕| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 久久欧美精品欧美久久欧美| 亚洲第一欧美日韩一区二区三区| 国产av一区二区精品久久| 黄色a级毛片大全视频| 欧美性猛交黑人性爽| 国产午夜精品论理片| 国产精品久久久久久人妻精品电影| 在线观看免费视频日本深夜| 久9热在线精品视频| 久久久久亚洲av毛片大全| 欧美一级毛片孕妇| 黄片小视频在线播放| 在线十欧美十亚洲十日本专区| 18禁黄网站禁片午夜丰满| 91麻豆精品激情在线观看国产| 亚洲自偷自拍图片 自拍| 最近在线观看免费完整版| 国产主播在线观看一区二区| 91九色精品人成在线观看| 久久热在线av| 亚洲av第一区精品v没综合| 日本免费一区二区三区高清不卡| 伦理电影免费视频| 久久久水蜜桃国产精品网| 亚洲午夜理论影院| 成年版毛片免费区| 久久亚洲真实| 午夜两性在线视频| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠躁躁| 久久久精品国产亚洲av高清涩受| 99国产极品粉嫩在线观看| www国产在线视频色| 国产又色又爽无遮挡免费看| 蜜桃久久精品国产亚洲av| 国产精品久久久人人做人人爽| 国产高清videossex| 天堂动漫精品| 亚洲国产日韩欧美精品在线观看 | 亚洲精品久久成人aⅴ小说| 亚洲国产日韩欧美精品在线观看 | 俺也久久电影网| 国产一区二区在线观看日韩 |