[摘要]目的分析1例Shwachman Diamond綜合征(SDS)病人遺傳學(xué)改變,探討其與基因型表型的關(guān)系。方法提取1例SDS病兒的外周血全基因組DNA,純化后經(jīng)PCR擴(kuò)增,利用二代測序技術(shù)對血液系統(tǒng)相關(guān)候選基因的全部編碼區(qū)和側(cè)翼剪切位點(diǎn)區(qū)域進(jìn)行突變篩查,與人類基因組突變數(shù)據(jù)庫中標(biāo)準(zhǔn)序列比對,尋找可疑突變位點(diǎn),確定存在SBDS基因突變后,對病兒父母進(jìn)行相同位點(diǎn)測序并進(jìn)行一代測序驗(yàn)證。結(jié)果病兒15歲出現(xiàn)血常規(guī)異常,經(jīng)骨髓穿刺診斷為骨髓增生異常綜合征(MDS),染色體G顯帶核型分析示46,XX,del20q-,后于16歲出現(xiàn)腎功能異常。二代測序結(jié)果顯示病兒SBDS基因第2外顯子剪切位點(diǎn)純合突變:c.258+2Tgt;C,為純合突變,其父母此位點(diǎn)均為雜合突變。此位點(diǎn)突變引起病兒SBDS基因mRNA在第2和第3外顯子之間出現(xiàn)剪切錯誤,導(dǎo)致SBDS序列提前終止。結(jié)論本研究發(fā)現(xiàn)1例SDS病兒SBDS熱點(diǎn)突變合并染色體20q-,為豐富基因型表型關(guān)系提供了依據(jù)。
[關(guān)鍵詞]骨髓增生異常-骨髓增殖性疾病;貧血,骨髓病性;寡核苷酸序列分析;突變;染色體畸變
[中圖分類號]R551.33[文獻(xiàn)標(biāo)志碼]A[文章編號] 2096-5532(2018)06-0631-04
SPLICE-SITE MUTATION AND PHENOTYPE IN SHWACHMAN-DIAMOND SYNDROME: AN ANALYSIS OF ONE CASE "WANG Fengqi, WEI Xiaonan, SHAO Cuihua, LIU Wenmiao, LIU Shiguo(Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[ABSTRACT]ObjectiveTo explore the genetic changes of a patient with Shwachman-Diamond syndrome (SDS) and the relationship between genotype and phenotype. MethodsWhole genome DNA was extracted from the peripheral blood of a child with SDS. PCR amplification was performed after the DNA was purified. Next-generation sequencing was then applied to detect mutation in all the coding regions as well as splice sites in flanking regions of the candidate genes associated with the blood system. Then the sequencing data was compared with the standard sequence in the human gene mutation database to find the suspected mutation site. After determining the mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, the gene of the child’s parents were sequenced at the same site and verified by Sanger sequencing. ResultsThe child had abnormal routine blood test results for the first time at the age of 15 years, and was diagnosed with myelodysplastic syndrome by bone marrow biopsy. The chromosome G banding karyotype analysis revealed 46, XX, del 20q-. Subsequently, abnormal renal function occurred at the age of 16. The results of next-generation sequencing showed that the mutation at exon 2 of the SBDS gene (c.258+2Tgt;C) was homozygous splice-site mutation for the child, and"was heterozygous mutations for the parents. This mutation caused a mistake in slicing between exons 2 and 3 in the mRNA of the SBDS gene, leading to premature termination of the SBDS sequence. ConclusionThis study found a SBDS hotspot mutation with chromosome 20q- in a SDS patient, which provides a basis for enriching the relationship between genotype and phenotype.
[KEY WORDS]myelodysplastic-myeloproliferative diseases; anemia, myelophthisic; oligonucleotide array sequence analysis; mutation; chromosome aberrations
Shwachman Diamond綜合征(SDS)是一種罕見的骨髓衰竭綜合征,其全球發(fā)病率為活產(chǎn)新生兒的1/20 000~1/10 000[1-2],其主要臨床表現(xiàn)為骨髓增殖異常、胰腺外分泌功能受損、骨骼干骺端發(fā)育缺陷等[3]。SDS雖然罕見,但卻是兒童胰腺功能不全中僅次于囊性纖維化的致病因素,同時(shí)也是除Fanconi貧血和Diamond-Blackfan貧血外,最常見的遺傳性骨髓衰竭綜合征的病因[4-5]。主要受累器官包括骨髓、胰腺、骨骼,但肝臟、腎臟、牙齒和免疫系統(tǒng)也可能受損[6-9]。SDS病人中伴發(fā)骨髓增生異常綜合征(MDS)和急性髓系白血病者達(dá)1/3[10]。SDS為常染色體隱性遺傳病,致病基因SBDS位于7號632青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)54卷
染色體長臂[11]。本病發(fā)病率低,臨床表現(xiàn)不典型,極易漏診、誤診。二代測序技術(shù)(NGS)作為一種快速、高效、低價(jià)的基因分析工具,現(xiàn)已成為診斷單基因病、分析遺傳異質(zhì)性疾病的可靠手段[12-13]。本研究聯(lián)合應(yīng)用NGS和一代測序分析技術(shù),對1例SDS的遺傳學(xué)和表型關(guān)系進(jìn)行分析,為豐富SDS的基因型表達(dá)提供依據(jù)?,F(xiàn)將結(jié)果報(bào)告如下。
1資料和方法
1.1研究對象
病兒,女,15歲,青島人,因高熱后血常規(guī)異常入院。自幼體弱,反復(fù)上呼吸道感染病史,3歲高熱驚厥1次。查體:體質(zhì)量41 kg。2015-01-09實(shí)驗(yàn)室檢查:白細(xì)胞2.48×109/L,中性粒細(xì)胞0.72×109/L,血小板83×109/L,血紅蛋白128 g/L,網(wǎng)織紅細(xì)胞絕對值0.003×1012/L;甲狀腺功能五項(xiàng)正常;生化全套未見明顯異常;尿常規(guī)、大便常規(guī)未見明顯異常,無脂肪滴。胸部CT及消化系統(tǒng)、腹部超聲檢查未見明顯異常,胰腺大小形態(tài)正常,表面光滑,內(nèi)部回聲均勻。右側(cè)髂后上嵴骨髓形態(tài)學(xué)檢查:骨髓增生減低,粒系增生活躍,晚幼粒細(xì)胞以上各階段比例增高,桿狀及分葉核細(xì)胞比例減低,紅系增生活躍,形態(tài)大致正常,淋巴細(xì)胞比例大致正常,骨髓片中偶見幼稚淋巴細(xì)胞,全片共找到12個巨核細(xì)胞,血小板少見;鐵染色顯示細(xì)胞內(nèi)鐵(-),細(xì)胞外鐵(+)。2015-01-12檢查EB病毒DNAlt;1 000 kU/L,巨細(xì)胞病毒DNAlt;1 000 kU/L;染色體核型分析可見克隆性異常20q-;CEG分析:外周血淋巴細(xì)胞DNA存在損傷,彗星細(xì)胞率48%,未見凋亡細(xì)胞;絲裂霉素(MMC)染色體畸變結(jié)果:MMC(0-40-80 μg/L),病兒100個細(xì)胞畸變數(shù)4-7-26,對照100個細(xì)胞畸變數(shù)4-7-15。診斷為MDS。2016-10-23病兒出現(xiàn)雙下肢水腫。查尿常規(guī):隱血(+),蛋白(3+),24 h尿蛋白定量3.615 g;肝功能檢查清蛋白23.8 g/L。診斷為腎病綜合征。腎臟穿刺顯示微小病變性腎小球腎炎,給予甲潑尼龍片24 mg每日1次口服、免疫抑制劑他克莫司1 mg每日兩次口服治療。2017-05-07查體:ALT 65.9 mmol/L,AST 60.9 mmol/L;消化系統(tǒng)超聲檢查示脂肪肝(輕度),診斷為肝損害。2017-07-23實(shí)驗(yàn)室檢查:尿糖(4+),空腹血糖6.25 mmol/L,糖化血紅蛋白6.80%,診斷為糖耐量異常。病兒父母均體健,染色體核型未見明顯異常;否認(rèn)近親婚配史。本研究經(jīng)過青島大學(xué)附屬醫(yī)院倫理委員會審核批準(zhǔn),并獲得病兒及父母知情同意。
1.2研究方法
1.2.1外周血DNA提取采集病兒及其父母外周血各3 mL,應(yīng)用Tiangen DNA提取試劑盒,嚴(yán)格按說明書要求對外周血進(jìn)行DNA提取。
1.2.2NGS分析采用TransNGSTM Tn5 DNA Library Prep Kit for Illumina試劑盒,將病兒基因組DNA通過體外轉(zhuǎn)座技術(shù),完成DNA片段化和接頭連接,制得可直接與測序平臺外顯子捕獲芯片雜交的cDNA文庫。Aglient 2100檢驗(yàn)合格的cDNA文庫,經(jīng)PCR擴(kuò)增并純化后,利用Illumina HiSeq X測序平臺,與血液病相關(guān)的已知候選基因芯片進(jìn)行雜交捕獲。捕獲的cDNA片段,通過PE 150測序策略,對富集的cDNA文庫進(jìn)行DNA片段的雙末端測序,平均測序深度達(dá)108.16×,目標(biāo)區(qū)域80×,覆蓋率為95%。去除接頭污染和低質(zhì)量數(shù)據(jù)后,與1 000 genomes、dbSNP和ESP 6500數(shù)據(jù)庫中人類基因組參考序列比對[14-15],對篩出的可疑突變位點(diǎn)經(jīng)PolyPhen和SIFT分析預(yù)測氨基酸保守性,尋現(xiàn)該家庭高度可疑致病基因突變[16-17]。
1.2.3一代測序驗(yàn)證對病兒及父母經(jīng)NGS分析得到的高度可疑致病基因突變進(jìn)行一代測序驗(yàn)證。將提取的外周血DNA分別進(jìn)行檢出位點(diǎn)上下游序列PCR擴(kuò)增。通過Primer premier 5軟件設(shè)計(jì)引物(引物序列:上游引物F-TGTTGTTGCCATCT-CGTA,下游引物R-TGGTTAGTCTTTCCTCCA),PCR反應(yīng)體系為50 μL,內(nèi)含:上游、下游引物各1.25 μL,模板DNA 5 μL,雙蒸水17.5 μL,Master Mix 25 μL。經(jīng)95 ℃、5 min的DNA模板鏈預(yù)變性,95 ℃變性30 s,53 ℃退火30 s,然后72 ℃目的片段延伸30 s;經(jīng)35個循環(huán)后,72 ℃最終延伸7 min,使引物延伸完全,并使單鏈產(chǎn)物退火成雙鏈。PCR產(chǎn)物經(jīng)凝膠電泳分析,對目的條帶明亮、干凈者,應(yīng)用ABI 3500XL測序儀(Applied Biosystems 3500-XL)測序,Variant ReporterTM軟件檢測和分析突變。
2結(jié)果
2.1NGS分析
病兒SBDS基因第2外顯子發(fā)生剪切位點(diǎn)突變(c.258+2Tgt;C)(圖1A),病兒父母該位點(diǎn)為雜合突變(圖1B、C)。
2.2一代測序
對NGS獲得高度可疑致病位點(diǎn)(c.258+2Tgt;
6期王鳳琦,等. Shwachman Diamond綜合征的剪切位點(diǎn)突變及表型分析633
C)進(jìn)行一代測序驗(yàn)證,結(jié)果表明,病兒該位點(diǎn)為純合突變,其父母均為雜合突變。查閱1 000 genomes數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/)[14],該突變在人類基因組中正常人基因頻率為0.001 6,在中國人口中正常人基因頻率為0。
3討論
本研究報(bào)道了1例SDS病兒,對其臨床表型進(jìn)行了闡述,并通過二代測序結(jié)合一代測序驗(yàn)證的方式,查找出了致病突變位點(diǎn):SBDS(c.258+2Tgt;C)。該突變?yōu)镾DS的已知熱點(diǎn)致病基因突變,該突變導(dǎo)致SBDS翻譯提前終止,截?cái)酁榘被嵝蛄凶疃酁?40 bp的片段[18-19]。本文病兒合并染色體異常(20q-),此為國內(nèi)SBDS基因突變合并20號染色體異常的首次報(bào)道。
病兒發(fā)病年齡15歲,首發(fā)臨床表現(xiàn)為MDS,伴染色體異常(20q-),無胰腺外分泌功能障礙及骨骼發(fā)育異常表現(xiàn)。追溯病兒病史,訴幼年體弱,既往反復(fù)上呼吸道感染,經(jīng)抗菌消炎處理后癥狀緩解,未予以重視。病兒16歲后出現(xiàn)腎功能異常,血清蛋白下降(lt;30 g/L),尿蛋白定量gt;3.5 g/d,診斷為腎病綜合征,給予大劑量糖皮質(zhì)激素沖擊治療并聯(lián)合應(yīng)用免疫抑制劑,后出現(xiàn)肝功能異常和糖耐量異常。病兒父母體健,染色體核型分析未見明顯異常。
SBDS是SDS的致病基因,定位于7號染色體長臂(7q11.21),含5個外顯子,其編碼的高度保守的蛋白質(zhì)在核糖體生物合成中起著重要作用。其編碼的蛋白質(zhì)可與延伸因子(如GTPase 1)相互作用,也參與真核翻譯起始因子6(Eif6)與60s亞基結(jié)合,進(jìn)而影響核糖體的組裝[20]。SBDS表達(dá)產(chǎn)物在心臟、脂肪、骨髓、肝臟、腎臟、胰腺等27種組織器官中均有表達(dá)。
20q-是20號染色體部分長臂缺失,是惡性血液病中發(fā)生率僅低于費(fèi)城染色體的第二位單一染色體異常[21]。病兒父母染色體核型無明顯異常,病兒檢出20q-,因此我們有理由懷疑SDS可誘導(dǎo)染色體發(fā)生斷裂,進(jìn)而誘導(dǎo)MDS和急性髓系白血病等惡性血液病的發(fā)生[22]。
SDS是一種骨髓衰竭綜合征,是多系統(tǒng)受累的常染色體隱性遺傳病,主要臨床表現(xiàn)為:胰腺外分泌功能障礙,骨骼的干骺端發(fā)育不全和伴血細(xì)胞減少的不同程度的骨髓功能障礙,SDS伴發(fā)MDS和急性髓系白血病者達(dá)1/3[10]。胰腺的外分泌功能障礙主要表現(xiàn)為出生后1年內(nèi)脂肪瀉,影像學(xué)檢查可發(fā)現(xiàn)胰腺組織脂肪化[23];骨骼異常主要表現(xiàn)為骨骼密度下降,易發(fā)生壓縮性骨折,肋骨發(fā)育不全引起新生兒呼吸衰竭,因骨骼干骺端發(fā)育不全而導(dǎo)致身材矮小[24];骨髓增殖障礙可表現(xiàn)為貧血、血小板減少、全血細(xì)胞減少、造血微環(huán)境缺陷,易進(jìn)展為MDS和急性髓系白血病[10,25]。除此之外,肝臟、腎臟、神經(jīng)系統(tǒng)受累者亦見報(bào)道[6-8,26]。因免疫細(xì)胞減少,SDS病人易反復(fù)感染[27]。本文研究病兒幼年無腹瀉病史,近期糞便常規(guī)無脂肪滴,腹部B超未提示有胰腺形態(tài)結(jié)構(gòu)異常;生長發(fā)育良好,無骨骼畸形、無身材矮小;自幼反復(fù)感染,經(jīng)抗炎等對癥處理后可好轉(zhuǎn);15歲出現(xiàn)骨髓增殖障礙,診斷為MDS;16歲出現(xiàn)腎功能異常。因病兒臨床表型不典型,極易漏診、誤診,因此基因檢測對明確SDS診斷起到了重要作用。
符合孟德爾遺傳規(guī)律的遺傳性疾病為單基因病,隨著測序技術(shù)的發(fā)展,定位克隆、連鎖分析等基因分析方法已被高效、快速的基因組測序技術(shù)逐漸取代。二代測序技術(shù)作為一種外顯子捕獲測序技術(shù),具有通量高、花費(fèi)少、省時(shí)、高效等特點(diǎn),為單基因病的致病基因精準(zhǔn)分析提供了技術(shù)支持。本文檢測到了病兒的致病突變,為明確診斷提供了幫助。
綜上所述,本研究結(jié)果豐富了SDS的遺傳資料和表型譜,二代測序技術(shù)的發(fā)展為單基因病的診斷及遺傳咨詢提供了支持,為推動個體化精準(zhǔn)醫(yī)療發(fā)展提供了動力。
634青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)54卷
[參考文獻(xiàn)]
[1]VINOKUROVA L, DUBTSOVA E A, YASHINA N I, et al. Shwachman-Diamond syndrome[J]. "Terapevticheskii Arkhiv, 2014,86(2):72-75.
[2]SHIMAMURA A. Shwachman-Diamond syndrome[J]. "Seminars in Hematology, "2006,43(3):178-188.
[3]SHWACHMAN H, DIAMOND L K, OSKI F, et al. The syndrome of pancreatic insufficiency and bone merrow dysfunction[J]. "The Journal of Pediatrics, 1964,65:645-663.
[4]DROR Y, FREEDMAN M H. Shwachman-diamond syndrome[J]. "British Journal of Haematology, 2002,118(3):701-713.
[5]ALTER B P. Fanconi anemia and the development of leukemia[J]. "Best Practice amp; Research Clinical Haematology, 2014,27(3/4):214-221.
[6]AGGETT P J, CAVANAGH N P, MATTHEW D J, et al. Shwachman’s syndrome. A review of 21 cases[J]. "Archives of Disease in Childhood, 1980,55(5):331-347.
[7]MACK D R, FORSTNER G G, WILSCHANSKI M, et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression[J]. "Gastroenterology, 1996,111(6):1593-1602.
[8]GINZBERG H, SHIN J, ELLIS L, et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar[J]. "The Journal of Pediatrics, 1999,135(1):81-88.
[9]DROR Y, GINZBERG H, DALAL I, et al. Immune function in patients with Shwachman-Diamond syndrome[J]. "British Journal of Haematology, 2001,114(3):712-717.
[10]DROR Y, FREEDMAN M H. Shwachman-Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment[J]. "Blood, 1999,94(9):3048-3054.
[11]NACCI L, DANESINO C, SAINATI L, et al. Absence of acquired copy number neutral loss of heterozygosity (CN-LOH) of chromosome 7 in a series of 10 patients with Shwachman-Diamond syndrome[J]. "British Journal of Haematology, 2014,165(4):573-575.
[12]NG S B, BUCKINGHAM K J, LEE C, et al. Exome sequencing identifies the cause of a mendelian disorder[J]. "Nature Genetics, 2010,42(1):30-35.
[13]MUZZEY D, EVANS E A, LIEBER C. Understanding the basics of NGS: from mechanism to variant calling[J]. "Current Genetic Medicine Reports, 2015,3(4):158-165.
[14]ZHENG-BRADLEY X, FLICEK P. Applications of the 1 000 genomes project resources[J]. "Briefings in Functional Geno-mics, 2017,16(3):163-170.
[15]SHERRY S T, WARD M H, KHOLODOV M, et al. dbSNP: the NCBI database of genetic variation[J]. "Nucleic Acids Research, 2001,29(1):308-311.
[16]SUKTITIPAT B, SATHIRAREUANGCHAI S, ROOTHUMNONG E, et al. Molecular investigation by whole exome sequencing revealed a high proportion of pathogenic variants among Thai victims of sudden unexpected death syndrome[J]. "PLoS One, 2017,12(7): e0180056.
[17]ADZHUBEI I, JORDAN D M, SUNYAEV S R. Predicting functional effect of human missense mutations using PolyPhen-2[J]. "Current Protocols in Human Genetics, 2013,76: Unit7.20. https://doi.org/10.1002/0471142905.hg0720s76.
[18]VASER R, ADUSUMALLI S, LENG S N, et al. SIFT missense predictions for genomes[J]. "Nature Protocols, 2016,11(1):1-9.
[19]BOOCOCK G R, MORRISON J A, POPOVIC M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome[J]. "Nat Genet, 2003,33:97-101.
[20]SEZGIN G, HENSON A L, NIHRANE A, et al. Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS[J]. "Pediatric Blood amp; Cancer, 2013,60(2):281-286.
[21]DEWALD G W, SCHAD C R, LILLA V C, et al. Frequency and photographs of HGM11 chromosome anomalies in bone marrow samples from 3,996 patients with malignant hematologic neoplasms[J]. "Cancer Genetics and Cytogenetics, 1993,68(1):60-69.
[22]NACCI L, VALLI R, MARIA PINTO R, et al. Parental origin of the deletion del(20q) in Shwachman-Diamond patients and loss of the paternally derived allele of the imprinted L3MBTL1 gene[J]. "Genes Chromosomes amp; Cancer, 2017,56(1):51-58.
[23]TOIVIAINEN-SALO S, RAADE M, DURIE P R, et al. Magnetic resonance imaging findings of the pancreas in patients with Shwachman-Diamond syndrome and mutations in the SBDS gene[J]. "The Journal of Pediatrics, 2008,152(3):434-436.
[24]BEER FOKUGRAS F C, ERKAN T, et al. Shwachman-Diamond syndrome with development of bone formation defects during prenatal Life[J]. "Journal of Pediatric Gastroenterology and Nutrition, 2014,58(4): e38-e40.
[25]LEUNG E W, RUJKIJYANONT P, BEYENE J, et al. Shwachman-Diamond syndrome: an inherited model of aplastic anaemia with accelerated angiogenesis[J]. "British Journal of Haematology, 2006,133(5):558-561.
[26]TOIVIAINEN-SALO S, MKITIE O, MANNERKOSKI M, et al. Shwachman-Diamond syndrome is associated with structural brain alterations on MRI[J]. "American Journal of Medical Genetics Part a, 2008,146A(12):1558-1564.
[27]ERDOS M, ALAPI K, BALOGH I, et al. Severe Shwachman-Diamond syndrome phenotype caused by compound hete-rozygous missense mutations in the SBDS gene[J]. "Experimental Hematology, 2006,34(11):1517-1521.