• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個(gè)三元輪換不等式的手工證明

    2018-04-24 07:23:34四川成都實(shí)驗(yàn)外國語學(xué)校
    關(guān)鍵詞:證明題哈爾濱工業(yè)大學(xué)易知

    四川成都實(shí)驗(yàn)外國語學(xué)校

    宿曉陽 (郵編:611731)

    題1設(shè)a、b、c是正數(shù),求證:

    此題是一道已有的習(xí)題,國內(nèi)流行的三本不等式專著[1]、[2]、[3]都有證明.但[1]、[2]的證明是錯(cuò)誤的,[3]的證明利用了Vasile不等式.本文將給出此不等式的一個(gè)簡潔的手工證明.供參考與欣賞.同時(shí)為我們的英才教育提供一點(diǎn)新鮮血液!

    先證明下列命題

    題2設(shè)a、b、c是正數(shù),則

    其中∑表示輪換對稱和.

    證明①式兩邊平方,易知①?

    由排序不等式 ,有

    于是由上式知,欲證明②式,即證明

    所以③式?

    欲證明④式,即證明

    3x4-4x3y-14x2y2+8xy3+24y2≥0?

    (x-2y)2(3x2+8xy+6y2)≥0.

    再證明題1在①中作作變換(a,b,c)→(a2,b2,c2),易知①式等價(jià)于

    又由二元柯西不等式,有

    (a4+b4)(a2+b2)≥(a3+b3)2,

    于是比較不等式⑥,⑦即知題1成立。

    注:筆者在二十多年前提出并證明的下面不等式(發(fā)表在《數(shù)學(xué)通報(bào)》數(shù)學(xué)問題欄目上),

    結(jié)合題1,我們提出下面不等式猜想:

    設(shè)a、b、c是正數(shù),n是正整數(shù), 則

    1 楊學(xué)枝.數(shù)學(xué)奧林匹克不等式研究[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2009

    2 范建熊[越南].隋振林,譯.不等式的秘密[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2012

    3 韓京俊.初等不等式的證明方法[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2011

    猜你喜歡
    證明題哈爾濱工業(yè)大學(xué)易知
    巧解一道代數(shù)求值題
    序列(12+Q)(22+Q)…(n2+Q)中的完全平方數(shù)
    三角形中巧求值
    巧用函數(shù)的性質(zhì)求解不等式證明題
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    從《曲律易知》看民國初年曲學(xué)理論的轉(zhuǎn)型
    戲曲研究(2017年3期)2018-01-23 02:50:52
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    一類不等式證明題的常規(guī)證法
    學(xué)生在解決幾何證明題中的深度體驗(yàn)
    望城县| 斗六市| 潮安县| 武邑县| 德格县| 崇左市| 通道| 青海省| 东乡族自治县| 布尔津县| 泰安市| 盐山县| 唐海县| 宜阳县| 黔江区| 青神县| 乐安县| 龙门县| 喜德县| 大安市| 鹤壁市| 资溪县| 噶尔县| 梅州市| 宝丰县| 咸丰县| 绥德县| 宁远县| 珲春市| 姜堰市| 佛冈县| 濉溪县| 鄄城县| 囊谦县| 吴江市| 银川市| 个旧市| 昂仁县| 霍山县| 禄丰县| 曲靖市|