• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band

    2018-04-21 06:02:35CongyingZHULeiSHIXiaopingLIYanmingLIUWeiAI
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Congying ZHU,Lei SHI,Xiaoping LI,Yanming LIU,Wei AI

    School of Aerospace Science and Technology,Xidian University,Xi’an 710071,China

    1.Introduction

    Serious challenges are encountered during the transmission of information between hypersonic vehicles and the ground Tracking Telemetry and Command(TT&C)station.For instance,thin-walled structures are extensively used in the structural design of hypersonic vehicles to reduce weight.1–3However,a thin-walled structure can withstand high-level acoustic load because the engine jet noise is combined with aerodynamic noise.4–9And,severe fluctuating pressure is produced by the acoustic load and causes the thin-walled structure to vibrate.Therefore,the airborne antenna is likely to vibrate slightly because of structure vibration.Antenna vibration can mix with the signals transmitted by the airborne antenna,and a rapid change in the signal phase occurs;these conditions result in parasitic phase modulation effects.Given the short wavelength of Ka band signals(mostly less than 1 cm),the coupling phenomenon is harmful to the transmission of Ka band phase modulated signals,especially coherent demodulation in the TT&C tracking system,and causes degradation of the communication performance.

    The structural vibration of hypersonic vehicles has been extensively investigated in previous studies.Suzukiand Abe10conducted aerodynamic tests on a reentry blunt cone under the conditions of near-sonic,supersonic,and hypersonic speeds.The aerodynamic characteristics of the aircraft were obtained mainly from the viewpoint of system stability.Bolender et al.11studied the effect of unsteady viscoelastic aerodynamics on the aerodynamic characteristics of an aspirated hypersonic vehicle,and the unstable boundary conditions were provided.Rizzi and Robinson12investigated the dynamic response of hypersonic vehicles at the NASA Langley Research Center and provided the corresponding fluctuating pressure spectra.However,the corresponding results for the vibration response of the aircraft were not sufficiently considered.Fortunately,the vibration response of an aircraft can be calculated based on fluctuating pressure.An accurate vibration model is crucial in investigating the influence of this coupling phenomenon on carrier tracking performance.In 2007,Kim et al.13examined the interaction between hypersonic vehicle structures and shock disturbances in the presence of acoustic load,and the vibration response was determined.It can be seen that the aerodynamic characteristics of hypersonic vehicles have been extensively investigated,and the structural dynamic response has been obtained.Nevertheless,the coupling effects between airborne antenna vibration and communication signalsare yetto be evaluated.A coherent demodulation mode is generally adopted in the actual transmission process of TT&C signals.Carriers locked precisely at a low-input SNR are essential for reliable communication,and the influence of this coupling effects on carrier tracking should be considered.This paper investigates the coupling effects and its influence on carrier tracking,especially two classic phase-modulated signals of Ka band.The effect of this phenomenon on PLL lock threshold is quantitatively analyzed in detail.Quantitative analysis results can provide a reference for actual system design and engineering applications.

    Theoretical results on the lock threshold of PLL are complex because of the multiplicative nature of phase noise;however,these results have been rarely obtained.The influence of this phenomenon is quantitatively investigated through simulation,compared,and verified with that obtained through a basic theoretical analysis.This paper is divided into the following parts.Section 2 investigates the coupling effects between airborne antenna vibration and tracking signals by establishing a vibration model and determining the phase noise.Section 3 presents the analytical model of PLL with multiplicative phase noise.Phase noise is imposed on the PLL model for further analysis in Section 4.The last section provides the conclusions.

    2.Coupling effects between airborne antenna vibration and tracking signals

    2.1.Airborne antenna vibration model

    Hypersonic vehicles,the speeds of which reach 5 Mach or above,are affected by engine jet noise combined with aerodynamic noise.The thin-walled structure of such vehicles withstands high-level acoustic load.Furthermore,interaction exists between the structure and the shock wave.Kim et al.13investigated the interaction between hypersonic vehicle structures and shock disturbances in the presence of acoustic load.The power spectrum of vibration displacement was provided(see Fig.1).The flight condition is that the flight speed is 5 Mach,the acoustic load is 120.2 dB,the angle between the shock and the wall is 4°,and the flight altitude is 17 km.The frequency-domain data of vibration displacement are obtained through the periodogram method using the power spectrum.The inverse Fourier transform technique is adopted to obtain vibration displacement data in the time domain(see Fig.2).

    With the power spectrum provided by Ref.13,the first-order statistics of vibration displacement are obtained.The Probability Density Function(PDF)of the vibration displacement is shown in Fig.3.The statistical law of vibration displacement is similar to that of Gaussian distribution.The mean value is 0,and the standard deviation is 1.2744×10-4m.

    Fig.1 Power spectrum obtained from Ref.13.

    Fig.2 Time domain data after processing(areodynamic reposnse).

    Fig.3 Probability density function of obtained vibration displacement.

    2.2.Multiplicative phase noise caused by airborne antenna vibration

    The patch antenna is widely used in hypersonic vehicles.As such,the assumption that airborne antenna vibration is similar to aircraft structure vibration is reasonable.Propagation distance and the signal phase have the following fixed coupling relation when the electromagnetic wave propagates in the atmosphere.

    whereL(t)is the propagation distance,i.e.,the vibration displacement;λ is the wavelength of the electromagnetic wave;β is the angle of the vibration direction and direction of propagation.The worst case,that is,vibration in the same direction of propagation(β =0°)is under consideration in the paper.And a 30 GHz carrier signal for the tracking systems is considered.Hence,Δθ(t),which is the parasitic phase noise,can be obtained with the vibration displacement obtained above,as illustrated in Eq.(2).

    Considering that the airborne antenna can vibrate with different standard deviations,we obtain the PDF of the parasitic phase noise with different standard deviations,as shown in Fig.4,where σ,normalized by the carrier wavelength,is the standard deviation of the vibration displacement.

    Fig.4 Probability density function of parasitic phase noise with different standard deviations.

    The phase noise caused by airborne antenna vibration also presents a Gaussian distribution due to the linear relationship with vibration displacement.This phase noise is multiplicative.The mean value is steady at zero degree despite the standard deviation of vibration displacement;however,a large standard deviation of vibration displacement results in a large standard deviation of phase noise.Multiplicative phase noise affects the tracking system in a different manner,and the lock threshold of PLL increases.The phase analytical model of PLL with this type of multiplicative phase noise is initially established,and the phase noise with different standard deviations of vibration displacement is imposed on it for further analysis.

    3.Analytical model of PLL with multiplicative phase noise

    The phase analytical model of PLL with the influence of airborne antenna vibration is shown in Fig.5.In the presence of parasitic phase noise,the input carrier and output signals can be expressed as follows:

    whereAis the amplitude of the input carrier signal,ω is the carrier angular frequency,ω0is the initial angular frequency of the oscillator,θ1(t)is the phase of the carrier,θ2(t)is the phase of the oscillator, θ1(t)= θ1+Δθ(t),and Δθ(t)is the phase noise caused by antenna vibration.

    The input additive Gaussian white noiseN(t)can be written as14

    whereN1(t)andN2(t)are independent Gaussian random processes with one-sided power spectral density ofN0w/cps.

    The differential equation of PLL can be obtained as

    where φ(t)is the phase error between the input and output signals,φ(t)= θ1(t)- θ2(t),N′(t)is the equivalent input Gaussian white noise,andKis the gain.N′(t)=-N1(t)sin θ2(t)+N2(t)cos θ2(t),andF(s)is the transfer function of the loop filter.

    In the basic theoretical analysis for the second-order loop,input carrier frequency ω that is equal to the initial frequency of the oscillator,that is,ω=ω0,and the initial condition,which is φ(t=0)=θ1,are assumed.15The input Gaussian white noise is the only factor that affects the status of PLL.φ(t)is a continuous Markov process16,and random walk techniques are used to determine its probability distribution.The theoretical lock threshold is obtained by solving the partial differential equation ofP(φ,t)as follows:

    Fig.5 Phase analytical model of PLL with parasitic phase noise.

    The steady-state probability distribution of the phase error in the linear model,that is,sin φ(t)≈ φ(t),can be obtained as

    The frequency of skipping cycles is expressed as follows:

    whereI0is a zero-order Bessel function,α is the loop SNR,andBLis the loop noise bandwidth.α is obtained as follows:

    The relationship between loop SNR and input SNRiis as follows17:

    whereBiis the bandwidth of the pre-BPF.When α is equal to zero with additive Gaussian white noise,the frequency of skipping cycles is 1,which is defined as the threshold of the loss of lock.18

    The loop noise bandwidth must be sufficiently small to track the carrier signal precisely under the condition of low input SNR,but this condition is contradictory to the demands for a short lock time,which requires a largeBL.19,20A PLL with good comprehensive performance is designed in this study,and the parameters of the model areBL=100 Hz andBi=450 Hz.For research convenience,this study considers the input SNR to characterize the lock threshold.

    4.Results and discussion

    4.1.Lock threshold without antenna vibration

    The lock probability of PLL is a widely used tool to analyze the status of PLL,and it is used in the following section to make a quantitative analysis.The lock probability of PLL without antenna vibration(Gaussian white noise only)is shown in Fig.6.The lock threshold is SNRi=-15 dB when the reference signal is the Ka band single-frequency signal.That is,the PLL cannot be locked with the probability of 1 when the input SNRiis less than-15 dB.The simulation result is generally consistent with that of the theoretical analysis.

    Fig.6 Lock probability without aircraft structure vibration.

    The lock thresholds of phase-modulated signals are higher than those of single-frequency signals because of the nonlinear operation before carrier extraction.In Fig.6,the lock thresholds for BPSK and QPSK signals are SNRi=-12 dB and SNRi=-4 dB,respectively.

    4.2.influence of antenna vibration and signal coupling effects on phase-modulated signals

    4.2.1.Quantitative analysis of BPSK signals

    The simulation condition is that the standard deviation of vibration displacement is 0.01λ and the intensity of input Gaussian white noise compared with that of the input signal is-12 dB,which is the critical value without vibration.A set of simulation results on the phase error between the output signal of PLL and the in-phase carrier signal is illustrated in Fig.7.

    The PLL is locked without vibration(solid line in Fig.7),that is,the phase error remains at zero degree.A skipping cycle phenomenon,namely,the phase error increases to about-180°from 0°,occurs at about 0.9 s(dash line in Fig.7).This means that the output signal cannot be used to demodulate the transmitted information with the influence of vibration.The Bit Error Rate(BER)increases,which in turn degrades the communication performance.

    The influence of this coupling effects on the lock threshold of PLL for BPSK signals is quantitatively analyzed under different standard deviations,which are normalized by the wavelength of the electromagnetic wave,of vibration displacement(see Fig.8).As shown in Fig.8,a large standard deviation results in a significant effect on the lock threshold.The standard deviation normalized by the wavelength,which is σ/λ,must be lower than 0.04 to ensure that the PLL is locked.Under these conditions,the PLL can relock with the probability of 1 by improving the input SNR.However,the PLL could become completely disabled if σ/λ is greater than 0.04.

    4.2.2.Quantitative analysis of QPSK signals

    A set of simulation results for QPSK signals on the phase error between the output signal and in-phase carrier is shown in Fig.9.The simulation condition is that SNRi=-4 dB,which is the critical value without vibration,and the standard deviation of vibration displacement is also 0.01λ.

    Fig.7 Phase error of output and reference carriers.

    Fig.8 Lock threshold with vibration for BPSK signals.

    Fig.9 Phase error for QPSK signals.

    Fig.10 Lock threshold with vibration for QPSK signals.

    As illustrated above,the lock threshold without vibration for the receiver of QPSK signals is-4 dB.A fluctuation phenomenon of phase error is observed in the presence of antenna vibration(dash line in Fig.9).This indicates that PLL performance is affected by airborne antenna vibration.

    The influence of airborne antenna vibration on the lock threshold of PLL for QPSK signals is quantitatively analyzed under different standard deviations(see Fig.10).The critical value of σ/λ is reduced to 0.02,which means that the influence of antenna vibration on the PLL of QPSK signals is more severe than that on BPSK signals.

    An interesting phenomenon is that ups and downs are observed in the lock probability when σ/λ is greater than the critical value.This phenomenon is mainly attributed to the random characteristics of the parasitic phase noise.The phase noise caused by the airborne antenna vibration and the Gaussian white noise exerts a canceling effect,thus improving the lock probability in several cases.

    Table 1 is prepared based on Figs.8 and 10 to quantitatively characterize the influence of airborne antenna vibration with different standard deviations on carrier tracking performance.The airborne antenna vibration affects the lockout threshold of PLL when σ/λ is greater than 0.01 for BPSK signals and σ/λ greater than 0.02 for QPSK signals.The effect exacerbates as σ/λ increases.However,a maximum σ/λ in the two types of signals can be tolerated by PLL.If σ/λ is greater than the maximum σ/λ,then the PLL cannot relock by improving the input SNR of the received signals.The critical value of the receiver of QPSK signals,which is only 0.02,is smaller than that of the BPSK signals.The simulation results indicate that the effect of antenna vibration on the performance of the QPSK signals is more severe than that on the BPSK signals.

    5.Conclusions

    Hypersonic vehicles encounter a very complicated environment,in which significant challenges are present during the transmission of information.Among these challenges is the structure vibration caused by fluctuating pressure.The airborne antenna vibrates due to structure vibration.The coupling effects between the vibration of the mechanism and the communication signals were comprehensively investigated in this study.A vibration model was initially established.This study focused on the effect on the TT&C tracking system.The coupling effects on the lock condition of the hypersonic vehicle carrier tracking system of the Ka band were quantitatively analyzed for BPSK and QPSK signals.The simulation results indicated that the vibration displacement presented a Gaussian distribution.The multiplicative phase noise caused by airborne antenna vibration also presented a Gaussian distribution due to the linear relationship with vibration displacement.A large standard deviation of vibration displacement exerted a significant effect on the lock threshold.A critical vibration standard deviation was observed in the two typesof signals.The effect on the QPSK receivers was more severe than that on the BPSK receivers.The receivers could become completely disabled if the vibration standard deviation is greater than the critical values.The results can help in selecting the optimal demodulation algorithm to improve the stability of communication systems.

    Table 1 influence of airborne antenna vibration on lock threshold.

    However,the vibration model was established under the condition that the flight speed is 5 Mach.Circumstances with different flight speeds should be considered comprehensively.A difference exists between airborne vibration and structure vibration.This difference should also be considered.Many options need to be investigated in the future.For example,the CFD software can be used to establish the airborne antenna vibration model under different conditions,and a Verification experiment could be implemented.

    Acknowledgements

    This work was co-supported by the National Basic Research Program of China(No.2014CB340205),the Natural Science Foundation of Shaanxi Provincial Department of Education(No.2016JM6016),and the National Natural Science Foundation of China(No.61473228).

    1.Wagner JL,Yuceil KB.Experimental investigation of unstart in an Inlet/isolator model in Mach 5 Flow.AIAA J2010;48(9):1875–88.

    2.Peng WG,He YR,Wang XZ,Zhu JQ,Han JC.Thermal protection mechanism of heat pipe in leading edge under hypersonic conditions.Chin J Aeronaut2015;28(1):121–32.

    3.Nicholson J.Oblique blast wave interaction with a supersonic vehicle.Aerospace sciences meeting;1967 Jan 23–26;New York.Reston:AIAA;1967.p.67–180.

    4.Chassaing JC,Lucor D,Tregon J.Stochastic nonlinear aeroelastic analysis of a supersonic lifting surface using an adaptive spectral method.J Sound Vib2012;331:394–411.

    5.Hu ZM,Myong RS,Wang C,Cho TH,Jiang ZL.Numerical study of the oscillations induced by shock/shock interaction in hypersonic double-wedge flows.Shock Waves2008;18(1):41–51.

    6.Do H,Im SK,Mungal MG.The influence of boundary layers on supersonic inlet flow unstart induced by mass injection.Exp Fluids2011;51(3):679–91.

    7.Chou YS,Laitone EV.Phugoid oscillations at hypersonic speeds.AIAA J2015;3(4):732–5.

    8.Chen X,Liu L,Long T,Yue ZJ.A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD.Chin J Aeronaut2015;28(5):1328–42.

    9.Li K,Liu J,Liu WG.A new surface catalytic model for silicabased thermal protection material for hypersonic vehicles.Chin J Aeronaut2015;28(5):1355–61.

    10.Suzuki K,Abe T.Transonic,supersonic and hypersonic windtunnel tests on aerodynamic characteristics of reentry body with blunted cone configuration.Inst Space Astronaut Sci Report1995;658:1–25.

    11.Bolender M,Oppenheimer M,Doman D.Effects of unsteady and viscous aerodynamics on the dynamics of a flexible air-breathing hypersonic vehicle.AIAA atmospheric flight mechanics conference and exhibit;2007 Aug 20–23;Hilton Head.Reston:AIAA;2007.p.1–18.

    12.Rizzi S,Robinson J.Dynamic response and sonic fatigue analysis at NASA Langley for hypersonic vehicle structures.AlAA fourth international aerospace planes conference;1992 December 1–4;Orlando.Reston:AIAA;1992.p.1–10.

    13.Kim KK,Kim YC,Migholet MP,Liu DD.Random aeroelastic response due to strong hypersonic unsteady-wave/shock interaction with acoustic loads.AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference;2007 Apr 23–26;Honolulu.Reston:AIAA;2007.p.1–10.

    14.Musa A,Deng W,Siriburanon T,Miyahara M,Okada K,Matsuzawa A.A compact,low-power and low-jitter dual-loop injection locked PLL using all-digital PVT calibration.IEEE J Solid-State Circuits2014;49(1):50–60.

    15.Golestan S,Ramezani M,Guerrero JM,Monfared M.Dq-Frame cascaded delayed signal cancellation-based PLL:Analysis,design,and comparison with moving average filter-based PLL.IEEE Trans Power Electron2015;30(3):1618–32.

    16.Maneatis JG,Kim J,Mcclatchie I,Maxey J,Shankaradas M.Selfbiased high-bandwidth low-jitter 1–4096 multiplier clock generator PLL.IEEE J Solid-State Circuits2003;38(11):1795–803.

    17.Tierno JA,Rylyakov AV,Friedman DJ.A wide power supply range,wide tuning range,all static CMOS all digital PLL in 65nm SOI.IEEE J Solid-State Circuits2008;43(1):42–51.

    18.Viterbi AJ.Phase-locked loop dynamics in the presence of noise by fokker-planck techniques.J Proc IEEE1963;51(12):1737–53.

    19.Smedt BD,Gielen G.Nonlinear behavioral modeling and phase noise evaluation in phase locked loops.Proceedings of the IEEE custom integrated circuits conference;1998.p.53–6.

    20.Kanjiya P,Khadkikar V,Moursi MSE.A novel type-1 frequencylocked loop for fast detection of frequency and phase with improved stability margins.IEEE Trans Power Electron2015;31(3):2550–61.

    美女高潮到喷水免费观看| 色吧在线观看| 一二三四中文在线观看免费高清| 国产日韩欧美视频二区| 欧美在线黄色| 国产成人精品无人区| 亚洲av成人精品一二三区| 在线观看国产h片| 欧美 亚洲 国产 日韩一| 免费黄网站久久成人精品| 免费在线观看完整版高清| 人成视频在线观看免费观看| 免费久久久久久久精品成人欧美视频| 男人爽女人下面视频在线观看| 丁香六月天网| 成人亚洲欧美一区二区av| 国产 一区精品| 日韩av免费高清视频| 久久久久久久久久久久大奶| 又粗又硬又长又爽又黄的视频| netflix在线观看网站| 飞空精品影院首页| 国产在线免费精品| 又大又黄又爽视频免费| 亚洲成人手机| 九九爱精品视频在线观看| 久久久久精品人妻al黑| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 欧美av亚洲av综合av国产av | 精品久久蜜臀av无| 99久国产av精品国产电影| 女人高潮潮喷娇喘18禁视频| 国产有黄有色有爽视频| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 亚洲伊人久久精品综合| 无限看片的www在线观看| 亚洲av在线观看美女高潮| 精品酒店卫生间| 亚洲精品,欧美精品| 在线观看国产h片| 日韩一区二区三区影片| 亚洲国产精品999| 十八禁人妻一区二区| 伦理电影免费视频| 免费看av在线观看网站| 国产毛片在线视频| 少妇被粗大猛烈的视频| 啦啦啦中文免费视频观看日本| 老汉色∧v一级毛片| 亚洲欧美成人精品一区二区| 制服诱惑二区| 午夜福利视频精品| 在线精品无人区一区二区三| 爱豆传媒免费全集在线观看| 国产成人欧美在线观看 | 免费观看a级毛片全部| 国产精品.久久久| 岛国毛片在线播放| 国产精品av久久久久免费| 国产黄色免费在线视频| 国产成人精品福利久久| 免费观看人在逋| 欧美精品一区二区大全| 久久久亚洲精品成人影院| 亚洲熟女精品中文字幕| 777米奇影视久久| 亚洲 欧美一区二区三区| av不卡在线播放| 亚洲成人一二三区av| 亚洲国产精品国产精品| 搡老岳熟女国产| 国产伦理片在线播放av一区| 亚洲成人av在线免费| 大话2 男鬼变身卡| e午夜精品久久久久久久| 久久久久精品国产欧美久久久 | 国产精品一二三区在线看| 伊人久久大香线蕉亚洲五| 亚洲五月色婷婷综合| 在线观看www视频免费| 欧美国产精品va在线观看不卡| 久久精品亚洲熟妇少妇任你| 免费日韩欧美在线观看| 在线 av 中文字幕| 亚洲欧美中文字幕日韩二区| 一区二区三区激情视频| av在线老鸭窝| 欧美日韩一区二区视频在线观看视频在线| 激情五月婷婷亚洲| 一区二区三区激情视频| 色网站视频免费| 各种免费的搞黄视频| 女性被躁到高潮视频| 两个人免费观看高清视频| 亚洲人成电影观看| 男男h啪啪无遮挡| 精品亚洲成国产av| 国产伦人伦偷精品视频| 国产亚洲最大av| 国产乱来视频区| 尾随美女入室| 日韩一卡2卡3卡4卡2021年| 日韩免费高清中文字幕av| 少妇精品久久久久久久| 这个男人来自地球电影免费观看 | 免费高清在线观看日韩| 国产男女内射视频| 国产精品久久久久久久久免| 国产免费现黄频在线看| 国产精品免费大片| 丰满饥渴人妻一区二区三| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 日韩欧美一区视频在线观看| 一区在线观看完整版| 久久韩国三级中文字幕| 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 国产1区2区3区精品| 精品亚洲乱码少妇综合久久| 久久99一区二区三区| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 性高湖久久久久久久久免费观看| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 亚洲国产中文字幕在线视频| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 久久精品人人爽人人爽视色| 欧美少妇被猛烈插入视频| 一边摸一边做爽爽视频免费| 国产精品.久久久| 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 久久精品人人爽人人爽视色| 又粗又硬又长又爽又黄的视频| 久久人人爽人人片av| 精品少妇黑人巨大在线播放| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 亚洲精品美女久久久久99蜜臀 | 热re99久久国产66热| 国产精品麻豆人妻色哟哟久久| 欧美精品人与动牲交sv欧美| 我的亚洲天堂| 精品国产一区二区三区四区第35| 观看av在线不卡| 亚洲欧美清纯卡通| 欧美黑人欧美精品刺激| 性少妇av在线| 欧美精品亚洲一区二区| 久久国产精品大桥未久av| 又粗又硬又长又爽又黄的视频| 建设人人有责人人尽责人人享有的| www.av在线官网国产| 日韩大片免费观看网站| 亚洲精品国产区一区二| 纵有疾风起免费观看全集完整版| 综合色丁香网| 精品视频人人做人人爽| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 日韩,欧美,国产一区二区三区| 性少妇av在线| 亚洲av综合色区一区| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 女的被弄到高潮叫床怎么办| 在线看a的网站| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 美女午夜性视频免费| 久久性视频一级片| 亚洲精品日本国产第一区| 一本一本久久a久久精品综合妖精| 国产一区二区在线观看av| 欧美日韩av久久| 黄色视频不卡| 啦啦啦在线观看免费高清www| 国产乱来视频区| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 一级片免费观看大全| 日本av手机在线免费观看| 新久久久久国产一级毛片| 久久久亚洲精品成人影院| 美女福利国产在线| 午夜免费男女啪啪视频观看| 18禁裸乳无遮挡动漫免费视频| 国产乱来视频区| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 一级爰片在线观看| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 人人妻人人澡人人爽人人夜夜| 久久久国产一区二区| 欧美成人精品欧美一级黄| 国产成人精品无人区| 久久97久久精品| 成年动漫av网址| 99热国产这里只有精品6| 曰老女人黄片| 国产av精品麻豆| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| a级片在线免费高清观看视频| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 五月开心婷婷网| 美女扒开内裤让男人捅视频| 丝袜喷水一区| 又大又黄又爽视频免费| 国产乱来视频区| 欧美激情高清一区二区三区 | 99国产综合亚洲精品| 中文字幕最新亚洲高清| 91成人精品电影| 黄片无遮挡物在线观看| 97人妻天天添夜夜摸| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 成年动漫av网址| 少妇人妻 视频| 777久久人妻少妇嫩草av网站| 伦理电影大哥的女人| 午夜久久久在线观看| 亚洲图色成人| 观看av在线不卡| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线观看99| 男女国产视频网站| 男女无遮挡免费网站观看| 亚洲美女视频黄频| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 久久人人爽人人片av| av.在线天堂| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 男女高潮啪啪啪动态图| 美女中出高潮动态图| 久久久久精品久久久久真实原创| 老司机靠b影院| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 在线精品无人区一区二区三| 老司机深夜福利视频在线观看 | 在线看a的网站| 桃花免费在线播放| 一区二区三区乱码不卡18| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 男女下面插进去视频免费观看| 日本色播在线视频| 亚洲伊人久久精品综合| 丝袜美足系列| 日本欧美国产在线视频| 精品亚洲乱码少妇综合久久| 女性生殖器流出的白浆| av免费观看日本| 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 18在线观看网站| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| av在线老鸭窝| 极品人妻少妇av视频| 国产精品久久久久久久久免| 亚洲色图 男人天堂 中文字幕| 中文乱码字字幕精品一区二区三区| 亚洲成色77777| 精品少妇久久久久久888优播| 精品人妻在线不人妻| 一级毛片 在线播放| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 亚洲av综合色区一区| 亚洲一区二区三区欧美精品| 777久久人妻少妇嫩草av网站| 欧美激情高清一区二区三区 | 午夜福利网站1000一区二区三区| av电影中文网址| 国产免费现黄频在线看| 美女福利国产在线| 亚洲精品美女久久久久99蜜臀 | 一区二区三区激情视频| 国产精品国产三级专区第一集| 国产精品久久久久久精品电影小说| 丝袜美腿诱惑在线| 好男人视频免费观看在线| 欧美激情极品国产一区二区三区| 久久97久久精品| 久久av网站| 男女国产视频网站| 国产不卡av网站在线观看| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 纯流量卡能插随身wifi吗| 久久99精品国语久久久| 99热全是精品| 亚洲av国产av综合av卡| 欧美精品亚洲一区二区| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 精品国产露脸久久av麻豆| 在线观看免费高清a一片| 亚洲久久久国产精品| 国产亚洲最大av| 一区二区日韩欧美中文字幕| 久久久精品94久久精品| av视频免费观看在线观看| 一边亲一边摸免费视频| 美女午夜性视频免费| 国产成人欧美在线观看 | 精品国产乱码久久久久久男人| 嫩草影院入口| 黑丝袜美女国产一区| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 午夜久久久在线观看| 亚洲国产看品久久| 夫妻午夜视频| av视频免费观看在线观看| 国产成人啪精品午夜网站| 青春草视频在线免费观看| xxx大片免费视频| 国产成人系列免费观看| 成年女人毛片免费观看观看9 | 伊人久久国产一区二区| 国产97色在线日韩免费| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 如何舔出高潮| 少妇人妻 视频| 久久久久久人妻| 国产国语露脸激情在线看| 悠悠久久av| 香蕉国产在线看| 久久精品久久久久久久性| 午夜日本视频在线| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 精品一区二区免费观看| 国产野战对白在线观看| 啦啦啦在线观看免费高清www| 美女午夜性视频免费| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| 男女边吃奶边做爰视频| 亚洲成人国产一区在线观看 | 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 精品少妇一区二区三区视频日本电影 | 五月开心婷婷网| 久久97久久精品| 国产精品.久久久| 热re99久久国产66热| 夫妻性生交免费视频一级片| 亚洲综合精品二区| 人成视频在线观看免费观看| av女优亚洲男人天堂| 亚洲国产欧美一区二区综合| 一区二区三区激情视频| 最黄视频免费看| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 波多野结衣av一区二区av| 国产成人欧美在线观看 | 国产成人精品久久二区二区91 | 色网站视频免费| 婷婷色综合www| 黄频高清免费视频| 9热在线视频观看99| 日韩av不卡免费在线播放| 免费黄色在线免费观看| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 精品一区二区三卡| 制服人妻中文乱码| www.av在线官网国产| 亚洲国产欧美网| 精品国产露脸久久av麻豆| 国产精品熟女久久久久浪| 久久99一区二区三区| 国产精品免费视频内射| 一区二区三区精品91| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到| 在线亚洲精品国产二区图片欧美| 七月丁香在线播放| 秋霞伦理黄片| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区久久| 人成视频在线观看免费观看| 在线 av 中文字幕| 亚洲成人av在线免费| 高清不卡的av网站| 巨乳人妻的诱惑在线观看| 免费高清在线观看视频在线观看| 一二三四中文在线观看免费高清| 精品人妻在线不人妻| 一级毛片 在线播放| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久久久久婷婷小说| 一本大道久久a久久精品| 19禁男女啪啪无遮挡网站| 9色porny在线观看| 国产av一区二区精品久久| svipshipincom国产片| 少妇精品久久久久久久| 成人国产麻豆网| 欧美日韩av久久| 一级毛片黄色毛片免费观看视频| 亚洲 欧美一区二区三区| 91精品三级在线观看| 国产成人av激情在线播放| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 精品国产一区二区三区四区第35| 桃花免费在线播放| 日韩一区二区视频免费看| 成人影院久久| 黄色一级大片看看| 一本大道久久a久久精品| 母亲3免费完整高清在线观看| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| av在线老鸭窝| av天堂久久9| 大香蕉久久网| 2021少妇久久久久久久久久久| 1024视频免费在线观看| 纯流量卡能插随身wifi吗| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 亚洲国产精品一区三区| 日韩熟女老妇一区二区性免费视频| 我要看黄色一级片免费的| 男的添女的下面高潮视频| 亚洲三区欧美一区| 国产一区二区在线观看av| 久久狼人影院| 日韩成人av中文字幕在线观看| 黑丝袜美女国产一区| 国产 精品1| av免费观看日本| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 日韩大码丰满熟妇| 久久精品国产a三级三级三级| 久久久国产一区二区| 深夜精品福利| 国产在视频线精品| 国产精品国产三级专区第一集| 男人舔女人的私密视频| 2018国产大陆天天弄谢| 亚洲久久久国产精品| 精品久久久精品久久久| 丝袜人妻中文字幕| 亚洲av在线观看美女高潮| 免费久久久久久久精品成人欧美视频| 久久久久精品人妻al黑| 99久国产av精品国产电影| 一区二区三区精品91| 亚洲精品一区蜜桃| av一本久久久久| 五月开心婷婷网| 成年人午夜在线观看视频| 制服诱惑二区| 午夜福利视频在线观看免费| 国产日韩一区二区三区精品不卡| 色网站视频免费| 少妇人妻精品综合一区二区| 久久这里只有精品19| 欧美黑人精品巨大| 国产成人免费无遮挡视频| 永久免费av网站大全| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 欧美人与性动交α欧美软件| 汤姆久久久久久久影院中文字幕| 高清在线视频一区二区三区| 国产高清国产精品国产三级| 成人亚洲精品一区在线观看| 国产精品免费视频内射| 亚洲国产av新网站| 久久天堂一区二区三区四区| av卡一久久| 亚洲av欧美aⅴ国产| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 久久精品国产亚洲av涩爱| 日韩免费高清中文字幕av| 只有这里有精品99| 无遮挡黄片免费观看| 国产精品一区二区在线不卡| 精品国产一区二区三区久久久樱花| 秋霞在线观看毛片| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| av.在线天堂| 国产无遮挡羞羞视频在线观看| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区 | 亚洲一码二码三码区别大吗| 老汉色∧v一级毛片| 亚洲av福利一区| 在线天堂中文资源库| 在线 av 中文字幕| 在线观看免费午夜福利视频| 日韩欧美一区视频在线观看| 亚洲成人手机| 又大又爽又粗| 国产野战对白在线观看| 国产成人av激情在线播放| 51午夜福利影视在线观看| 亚洲精品中文字幕在线视频| 国产男人的电影天堂91| 日本黄色日本黄色录像| 欧美日韩精品网址| 精品一区二区三区四区五区乱码 | 日韩熟女老妇一区二区性免费视频| 国产 精品1| 日韩制服骚丝袜av| 国产又色又爽无遮挡免| 最近手机中文字幕大全| 欧美日韩视频精品一区| 国产精品香港三级国产av潘金莲 | 亚洲伊人色综图| 成人18禁高潮啪啪吃奶动态图| 欧美日韩一区二区视频在线观看视频在线| 蜜桃国产av成人99| 大片电影免费在线观看免费| 黄色一级大片看看| 在线免费观看不下载黄p国产| 精品一区二区免费观看| 人人妻人人爽人人添夜夜欢视频| 老司机影院成人| 国产欧美日韩综合在线一区二区| 国产精品久久久人人做人人爽| 国语对白做爰xxxⅹ性视频网站| 成人手机av| 午夜影院在线不卡| 黄色毛片三级朝国网站| 国产黄色免费在线视频| 欧美av亚洲av综合av国产av | 久久精品国产亚洲av高清一级| 久久久久久人人人人人| 激情五月婷婷亚洲| 欧美日韩一区二区视频在线观看视频在线| 黄色 视频免费看| 免费av中文字幕在线| 叶爱在线成人免费视频播放| 久久久久久免费高清国产稀缺| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费观看性视频| 嫩草影院入口| 中文欧美无线码| 久久精品熟女亚洲av麻豆精品| 丝袜美足系列| 欧美精品一区二区免费开放| 在线观看免费视频网站a站| 99久久综合免费| 国产精品偷伦视频观看了| 久久狼人影院| 亚洲欧美一区二区三区久久| 男人操女人黄网站| 人妻 亚洲 视频| 婷婷色综合www| 99热国产这里只有精品6| 1024香蕉在线观看| www日本在线高清视频| 在线观看免费午夜福利视频| 国产一卡二卡三卡精品 | 亚洲成色77777| 免费看av在线观看网站| 多毛熟女@视频|