• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single track and single layer formation in selective laser melting of niobium solid solution alloy

    2018-04-21 06:03:16YuelingGUOLinaJIABinKONGNaWANGHuZHANG
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Yueling GUO,Lina JIA,Bin KONG,Na WANG,Hu ZHANG

    School of Materials Science and Engineering,Beihang University,Beijing 100083,China

    1.Introduction

    Refractory niobium-based alloys are promising materials for high-temperature structural applications,owing to the ultrahigh melting point of Nb and their qualified high-and roomtemperature mechanical properties.1–3As in situ composites,Nb-Si-based alloys combine Nb solid solutions(Nbss)with intermetallic compounds of Nb5Si3and/or Nb3Si to improve their strength and stiffness as well as oxidation resistance at very high temperatures.2,4,5Recent development on processing techniques has endowed Nb-based alloys with an improved performance.Meanwhile,it is known that the processing of Nb-based alloys by traditional subtractive manufacturing techniques requires complicated procedures and limited production efficiency.Moreover,thermodynamically stable and chemically inert mould materials are also needed for the manufacture of Nb-based alloys with high melting temperature and high reactivity.6

    As a laser-based additive manufacture technology,selective laser melting(SLM)has gained considerable recognition since being introduced.7,8The distinguished benef i ts of SLM over traditional manufacturing techniques are highlighted as high production rate,design freedom,cost saving,and high utilization ratio of materials.Plenty of research efforts have been focused on the SLM-processing of Ti-based,Ni-based,Febased,and Al-based alloys.8–11Xia et al.10reported the fabrication of Ni-based superalloys by SLM and found that at an optimized linearenergy densityof221.5 J/m,theoutward convection favored the escapement of bubbles,resulting in a high relative density of 98.9%,but a higher linear energy density would increase the residual porosity and reduce the densification.Owing to the higher cooling rate during SLM,a finer microstructure tends to be achieved,and a higher hardness and compression strength as well as an improved wear resistance are normally obtained.11Furthermore,the SLM processing of refractory metals of tantalum12and tungsten13have been reported.Our previous work14investigated the manufacture of Nb-Si-based in situ composites by SLM,which consisted of Nbss and silicide phases,using irregular jet-milled powders.

    Since SLM is a track-by-track and layer-by-layer process,the performance of a component built by SLM depends largely on the quality of each single laser-melted track and each single layer.15–17Sound tracks well bonded to a substrate or previous layer are required to obtain qualified components.A numerical model has been presented to predict single tracks in SLM,which allows for the effects of powder properties,scanning speed,laser beam absorption,and heat conduction.16Yadroitsev et al.17presented that there was a threshold characteristic corresponding to the fomentation of single tracks,and the stability of single tracks depended on the processing parameters.Instabilities,in forms of irregularities and distortions,were typically formed at a low scanning speed.Cheikh et al.18found that during the coaxial laser cladding process,single tracks were f l attened with a high scanning speed and a low feed rate,and cylindrical tracks were formed at a low scanning speed and a high feed rate.

    Since single-phase niobium solid solution alloys have not been fabricated by SLM previously,it is of importance to perform primary experiments focusing on single track and single layer formations.Pre-alloyed niobium solid solution alloy powders are processed in this work.The aim of this work is to clarify the characteristics of laser-melted tracks and the sectional melt pool(MP)under either proper or improper processing parameters.

    2.Experimental

    With a nominal composition of Nb-37Ti-13Cr-2Al-1Si(at%),pre-alloyed powders were prepared by plasma rotating electrode processing(PREP).Nb-based alloy disks,produced via vacuum induction melting(VIM),were used as electrodes for PREP.Powders with a size ranging from 45 μm to 75 μm were screened for SLM.As shown in Fig.1,spherical Nbss prealloyed powders were fabricated by PREP.Those pre-alloyed powders were featured by smooth surfaces with the absence of oxide particles.Fine dendrite structures were observed on the powder surface,resulting from the large undercooling during PREP.

    The SLM machine employed in this work was equipped with a f i ber laser with a maximum power of 500 W.The intensity of the f i ber laser beam exhibited a typical Gaussian distribution.The building chamber of the SLM machine was filled with Ar atmosphere to avoid any oxidation,and the oxygen content in the chamber was below 0.1wt%.A computer system was designed to control the building process.Prior to laser scanning,a powder layer was spread on a titanium platform.The thickness of the powder layer was 80 μm.A series of single tracks and single layers was fabricated under different scanning speeds(V),laser powers(P),and hatch distances(D).The processing parameters of SLM are listed in Tables 1 and 2.The schematic of the SLM physical model is shown in Fig.2(a).The zigzag scanning strategy was performed for single layer formation(Fig.2(b)).The linear laser beam energy density(LED)is a critical factor that determines the meltingand solidifying behaviors of powders,which is defined by the following equation:

    Fig.1 Characterization of Nbss alloy powders via PREP.

    Table 2 SLM processing parametersforsingle layer formation.

    Surface morphology observation was performed using a scanning electron microscope(SEM,JEOL JSM 6010).The sectional microstructures of single tracks and single layers were examined using an election probe microanalyzer(EPMA,JXA-8230).Elemental distribution images were obtained by wavelength dispersive X-ray spectrometers(WDS)attached to the EPMA.The ZAF-corrected EPMA was calibrated by pure standards for different operating conditions and probe sizes.Prior to sectional microstructure examination,samples were mounted with epoxy resin,grounded up to 1200#using metallographic abrasive papers,and finally mechanically polished on Fe2O3/CrO3impregnated cloths.

    3.Results and discussion

    Fig.3 Surface morphologies of single tracks formed from Nbbased pre-alloyed powders under different scanning speeds and laser powers.

    Fig.3 shows the typical surface morphologies of the first-layer single tracks under different scanning speeds and laser powers.The phenomenon that both continuous and discontinuous single tracks exist at each set of input parameters of laser power and scanning speed indicates that the morphology of single tracks depends largely on the processing parameters.With a laser power of 270 W and a scanning speed of 1200 mm/s,only several drops have been formed on the substrate.Under the given processing parameters,there are ten continuous tracks formed on the substrates.It is worth noting that the five tracks formed at 380 W are all continuous,with a scanning speed ranging from 200 mm/s to 1200 mm/s.It suggests that an increase in the laser power benefits the formation of continuous tracks.When producing SLM parts,only continuous tracks are desired,because this kind of tracks typically generate a sound bonding between adjacent tracks and a fully dense final part.The fragmentation of single tracks,i.e.,a balling phenomenon,is also observed.It is an unfavorable drawback of SLM processing.13,19,20Remarkably,the balling phenomenon could be eliminated,by either decreasing the scanning speed or increasing the laser power(Fig.3).However,intrinsically,both of them result in an increase of the LED.

    Fig.2 Schematic diagrams of single layer formation for SLM.

    During SLM,a laser beam-powder-substrate system is generated.A range of physical and chemical phenomena take place in the course of the melting and solidifying processes of powders,including absorption,reflection and heat transfer,phase transformation, fluid flow and mass transfer,and chemical reactions.21–24The mechanism of the elimination of the balling defect by increasing the LED is stated as the following two aspects.On one hand,a molten free circular cylinder tends to break up into an array of small droplets via the Plateau-Rayleigh instability,when suffering from axial harmonic disturbances of its radius with wavelengths less than the circumference of the cylinder.25,26The driving force of the Plateau-Rayleigh instability is the surface tension of Nb-based alloy melt.Cohesive forces normally promote the breakup of liquid Nb-based alloy melt,resulting in the formation of balls to minimize the surface area.On the other hand,a lower LED value typically results in a smaller volume of the liquid phase and resultantly a higher viscosity of the liquid-solid mixture.The flowability of the liquid phase is thus reduced,leading to a decrease of the overall rheological performance of the liquid in conjunction with powders.19,20Consequently,the balling phenomenon occurs through the aggregation of the liquid Nb-based alloy melt into a coarsened sphere(Fig.3).

    As shown in Fig.4,the width of the ten continuous single tracks increases with an increase of the LED,i.e.,an increase of the laser power and a decrease of the scanning speed.The widths of the discontinuous single tracks have not been measured according to Fig.3.A higher LED corresponds to a higher energy input,leading to a higher temperature of the MP.Resultantly,these particles around single tracks are heated and melt by the intense flow from the MP with a higher temperature,thereby widening tracks eventually.This explains why wider single tracks are formed with a higher LED.

    When scanned by the laser beam,powders of the first layer are melted,resulting in the formation of molten pools on the substrates.The sectional microstructures of single tracks with different processing parameters are displayed in Fig.5.The Nb-based alloy melt is pegged to the substrate and a daggerlike penetration is formed resultantly.The penetration depth into the substrate(h),as shown in Fig.6,decreases with an increase of the scanning speed and a decrease of the laser power,i.e.,a decline of the LED.It suggests a larger penetration depth correlates with a higher LED value and a higher energy concentration of the laser beam.Note that the penetration depth is much larger than the thickness of the first powder layer(80 μm)with a minimum scanning speed(200 mm/s)and higher laser powers(330 W and 380 W).It means that more than one solidif i ed layers deposited previously will be remelted during each essential SLM process,and the metallurgical nature of the SLM-built part may be affected resultantly.With a laser power of 330 W and a scanning speed of 200 mm/s,the penetration depth(173.68 μm)into the substrate is greater than the MP half-width(141.12 μm),suggesting that the melting mode shifts from a conduction mode to a keyhole mode.27Keyhole-mode laser melting is more significantly observed when the laser power is 380 W and the scanning speed is 200 mm/s.

    Fig.4 Widths of single tracks formed from Nb-based pre-alloy powders under different scanning speeds and laser powers.

    Fig.5 Cross-sections of single tracks formed from Nb-based pre-alloyed powders under different scanning speeds and laser powers.

    Fig.6 Distribution of the penetration depth into the substrate for single tracks formed from Nb-based pre-alloyed powders under different scanning speeds and laser powers.

    According to Eagar and Tsai,28for a material heated by a Gaussian-shaped laser beam,the peak temperature in the MP

    is proportional to the ratioi.e.,increasing with the LED.A higher peak temperature allows the heat energy in the MP of Nb-based alloys to diffuse deeper into a substrate,and a deeper melting regime is generated resultantly.This explains the correlation between increasing penetration depth and the LED.The underlying physics of keyhole-mode laser melting in additive manufacture is similar to that in laser welding,which is ascribed to a surface threshold temperature close to boiling.In keyhole-mode laser melting,the evaporation of metals in Nb-based alloys and the formation of plasma are caused by the sufficient power density,leading to the development of a vapor cavity in the MP during SLM.27,29Resultantly,laser absorption is enhanced,enabling a deeper penetration into the substrate than that is possible in a conduction mode.A higher laser power means a higher LED and a higher peak temperature of the MP.The keyhole melting regime is thus more prevalent,and the penetration depth is deeper.

    The chemical distributions of Nb,Ti,Si,Cr,and Al are shown in Fig.7 obtained by EPMA-WDS.It is evident that the main elements distribute heterogeneously over the MP,namely,a chemical segregation phenomenon occurs.The alloying elements distribute in swirl-like patterns.The content of Ti in the MP is higher than that in the unmelted powders,suggesting that the diffusion process to the MP is accelerated.The diffused titanium from the substrate participates in the convection-enhanced mass transport across the MP,and spreads in swirl-like patterns.

    An intensive heat transfer occurs during the formation of a single track.Coupled heat and mass transfer processes are then introduced by the temperature gradient.The emergence of a swirl-like pattern is considered to be the result of convectionenhanced mass transport.30,31Accordingly,a conclusion could be drawn that thermo-capillary convection,i.e.,the Marangoni convection,plays a dominant role in the heat transfer process,rather than conduction.32In other words,the microstructure of a component built by SLM tends to highly depend on the convection in the MP.Based on the Nb-Ti binary phase diagram,33titanium has a high solubility limit in niobium,beneficial to the metallurgical bond between Nb-based alloy and the substrate.Therefore,it indicates that Nb-based alloy could be built on a titanium substrate using the SLM method.Nevertheless,an intermediate layer,with a higher Ti content,is introduced additionally,which requires careful consideration when fabricating Nb-based alloy parts by SLM.Liang et al.34presented a new microsegregation model to predict microsegregation in rapidly solidif i ed nickel-base superalloys,and argued thatmicrosegregation could be well controlled by achieving a higher temperature gradient and Solidification velocity using a set of processing parameters.It is quite instructive for the fabrication of Nb-based alloy by SLM.

    Fig.7 Chemical maps of the cross-sections of a single track formed from Nb-based pre-alloyed powders at a laser power of 380 W and a scanning speed of 400 mm/s.

    Fig.8 Single layers formed from Nb-based pre-alloyed powders under a fixed laser power(P=380 W)and different scanning speeds and hatch distances.

    Fig.9 Typical sectional microstructures of single layers formed from Nb-based pre-alloyed powders under different hatch distances(mm)(laser power is 380 W and the scanning speed is 600 mm/s).

    As an important processing parameter,the hatch distance describes the shift between two neighboring tracks.Fig.8 shows the macroscopic surface morphologies of single layers with four different hatch distances(D),i.e.,0.05 mm,0.08 mm,0.12 mm,and 0.15 mm.The laser power is 380 W,while the scanning speed is200 mm/s,600 mm/s,and 1200 mm/s,respectively.With a laser power of 380 W and a scanning speed of 600 mm/s,the sectional microstructures of single layers under different hatch distances(mm)are displayed in Fig.9.The MP boundaries are highlighted to better display the difference between different hatch distances.On one hand,it is obvious that a sound interconnection of neighboring tracks fails to achieve with an excessive hatch distance.Therefore,the proper hatch distance should not be longer than the width of single tracks.It is necessary to remelt parts of the former track to produce a metallurgical bond between two adjacent tracks.However,when the hatch distance is too short,a large part of the former track will be remelted,which probably produces an additional effect on the microstructure of the component printed by SLM.35Intrinsically,the hatch distance determines the overlapping rate between adjacent tracks,which is an important parameter for SLM.The overlapping rate is typically determined by powder size,scanning speed,laser power,and thickness of the powder bed.14,15,36For SLM-processing of 316L stainless steel,a dense and smooth surface could be obtained with an overlapping rate of 30%,and tracks were typically regular and thin-shaped.15An integrated factor,termed as volumetric energy density(VED),has been presented to evaluate the combined effect of these parameters on the densif i cation of powders,including power,scanning speed,hatch distance,as well as the thickness of one powder layer.37A suitable VED is required to yield a high-density part by SLM,by controlling the energy input and the melting mechanism.37

    It could be observed that obtaining continuous single tracks well bonded to previous tracks is a necessary requirement to produce a qualified single layer as well as high-density parts.A series of single tracks and single layers may be needed to optimize processing parameters.

    4.Conclusions

    Using sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders,a feasibility study on the fabrication of niobium-based alloy via SLM was performed.Conclusions were drawn as follows.

    (1)Continuous single tracks could be manufactured using a proper laser power and scanning speed.Improper processing parameters resulted in the occurrence of a balling phenomenon,which could be eliminated with a higher LED value,and the continuity of single tracks was improved resultantly.

    (2)Both the width of a single track and the penetration depth into a substrate increased with an increase of the LED,i.e.,an increase of the laser power and a decrease of the scanning speed.

    (3)Nb,Ti,Si,Cr,and Al elements distributed heterogeneously over the melt pool,spreading in swirl-like patterns,and resulting from the convection-enhanced mass transport.

    (4)Continuous single tracks were required for the formation of well-printed single layers.An excess of the hatch distance was found to fail to interconnect neighboring tracks.A proper hatch distance was required for SLM-processing of Nb-based alloys,by taking into consideration the powder size,scanning speed,laser power,and thickness of powder bed.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China(Nos.51471013 and 51571004).

    1.Mastanaiah P,Madhusudhan RG,Satya PK,Murthy CVS.An investigation on microstructures and mechanical properties of explosive cladded C103 niobium alloy over C263 nimonic alloy.J Mater Process Technol2014;214(11):2316–24.

    2.Ding F,Jia L,Yuan S,Su L,Weng J,Zhang H.Microstructure evolution of a hypereutectic Nb-Ti-Si-Cr-Al-Hf alloy processed by directional Solidification.Chin J Aeronaut2014;27(2):438–44.

    3.Kong B,Jia L,Zhang H,Sha J,Shi S,Guan K.Microstructure,mechanical properties and fracture behavior of Nb with minor Si addition.Int J Refract Met Hard Mater2016;58:84–91.

    4.Wang L,Su L,Jia L,Cui R,Zheng L,Zhang H.Microstructure,Mechanical properties and oxidation resistance of Nb-22Ti-14Si-2Hf-2Al-xCr Alloys.Chin J Aeronaut2012;25(2):292–6.

    5.Guo Y,Jia L,Kong B,Zhang S,Sha J,Zhang H.Microstructure transition from lamellar eutectic to anomalous eutectic of Nb-Si based alloy powders by heat treatment and spark plasma sintering.J Alloy Compd2017;696:516–21.

    6.Ma L,Zhang J,Yue G,Zhang H,Zhou L,Zhang H.Improvement and application of Y2O3directional Solidification crucible.Chin J Aeronaut2016;29(2):554–9.

    7.Sercombe TB,Schaffer GB.Rapid manufacturing of aluminum components.Science2003;301(5637):1225–7.

    8.Herzog D,Seyda V,Wycisk E,Emmelmann C.Additive manufacturing of metals.Acta Mater2016;117:371–92.

    9.Zhou Y,Wen SF,Song B,Zhou X,Teng Q,Wei QS,et al.A novel titanium alloy manufactured by selective laser melting:microstruc-ture, high temperature oxidation resistance.MaterDes2016;89:1199–204.

    10.Xia M,Gu D,Yu G,Dai D,Chen H,Shi Q.Selective laser melting 3D printing of Ni-based superalloy:understanding thermodynamic mechanisms.Sci Bull2016;61(13):1013–22.

    11.Sander J,Hufenbach J,Giebeler L,Bleckmann M,Eckert J,Kühna U.Microstructure,mechanical behavior,and wear properties of FeCrMoVC steel prepared by selective laser melting and casting.Scr Mater2017;126:41–4.

    12.Thijs L,Montero Sistiaga ML,Wauthle R,Xie Q,Kruth J,Humbeecka JV.Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum.Acta Mater2013;61(12):4657–68.

    13.Zhou X,Liu X,Zhang D,Shen Z,Liu W.Balling phenomena in selective laser melted tungsten.JMaterProcessTechnol2015;222:33–42.

    14.Guo Y,Jia L,Sun S,Kong B,Liu J,Zhang H.Rapid fabrication of Nb-Si based alloy by selective laser melting:microstructure,hardness and initial oxidation behavior.MaterDes2016;109:37–46.

    15.Wang D,Yang Y,Su X,Chen Y.Study on energy input and its influences on single-track,multi-track,and multi-layer in SLM.Int J Adv Manuf Technol2012;58(9):1189–99.

    16.Wits WW,Bruins R,Terpstra L,Huls RA,Geijselaers HJM.Single scan vector prediction in selective laser melting.Add Manu2016;9:1–6.

    17.Yadroitsev I,Gusarov A,Yadroitsava I,Smurov I.Single track formation in selective laser melting of metal powders.J Mater Process Tech2010;210(12):1624–31.

    18.Cheikh EIH,Courant B,Branchu S,Hasco?t JY,Guille′n R.Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process.Opt Laser Eng2012;50(3):413–22.

    19.Gu D,Shen Y.Balling phenomena in direct laser sintering of stainless steel powder:metallurgical mechanisms and control methods.Mater Des2009;30(8):2903–10.

    20.Tolochko NK,Mozzharov SE,Yadroitsev IA,Laoui T,Froyen L,Titov VI,et al.Balling processes during selective laser treatment of powders.Rapid Prototyp J2004;10(2):78–87.

    21.Yadroitsev I,Krakhmalev P,Yadroitsava I,Johansson S,Smurov I.Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder.J Mater Process Tech2013;213(4):606–13.

    22.Wang L,Wang N,Yao WJ,Zheng YP.Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys.Acta Mater2015;88:283–92.

    23.Dai D,Gu D.influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites.Int J Mac Tool Manu2016;100:14–24.

    24.Zhirnov IV,Podrabinnik PA,Okunkova AA,Gusarov AV.Laser beam prof i ling:experimental study of its influence on single-track formation by selective laser melting.Mech Ind2015;16(7):709.

    25.Mead-Hunter R,King AJ,Mullins BJ.Plateau Rayleigh instability simulation.Langmuir2012;28(17):6731–5.

    26.Kruth J,Froyen L,Van Vaerenbergh J,Mercelis P,Rombouts M,Lauwers B.Selective laser melting of iron-based powder.J Mater Process Tech2004;149(1):616–22.

    27.King WE,Barth HD,Castillo VM,Gallegos GF,Gibbs JW,Hahn DE,et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing.J Mater Process Tech2014;214(12):2915–25.

    28.Eagar TW,Tsai NS.Temperature fields produced by traveling distributed heat sources.Weld J1983;62(12):346–55.

    29.Scipioni Bertoli U,Wolfer AJ,Matthews MJ,Delplanque JR,Schoenung JM.On the limitations of volumetric energy density as a design parameter for selective laser melting.Mater Des2017;113:331–40.

    30.Dai D,Gu D.Thermal behavior and densif i cation mechanism during selective laser melting of copper matrix composites:simulation and experiments.Mater Des2014;55:482–91.

    31.Li XP,Kang CW,Huang H,Zhang LC,Sercombe TB.Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass:processing,microstructure evolution and mechanical properties.Mater Sci Eng A2014;606:370–9.

    32.Khairallah SA,Anderson AT,Rubenchik A,King WE.Laser powder-bed fusion additive manufacturing:physics of complex melt flow and formation mechanisms of pores,spatter,and denudation zones.Acta Mater2016;108:36–45.

    33.Bewlay BP,Jackson MR,Lipsitt HA.The Nb-Ti-Si ternary phase diagram:evaluation of liquid-solid phase equilibria in Nb-and Tirich alloys.J Phase Equilib1997;18(3):264–78.

    34.Liang Y,Cheng X,Wang H.A new microsegregation model for rapid Solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional Solidification.Acta Mater2016;118:17–27.

    35.Yadroitsev I,Bertrand P,Smurov I.Parametric analysis of the selective laser melting process.Appl Surf Sci2007;253(19):8064–9.

    36.Kang N,Coddet P,Liao H,Coddet C.Macrosegregation mechanism of primary silicon phase in selective laser melting hypereutectic Al-High Si alloy.J Alloy Compd2016;662:259–62.

    37.Gu DD,Meiners W,Wissenbach K,Poprawe R.Laser additive manufacturing of metallic components:materials,processes and mechanisms.Int Mater Rev2012;57(3):133–64.

    国产成人aa在线观看| 成人午夜精彩视频在线观看| 黑丝袜美女国产一区| 亚洲av欧美aⅴ国产| 日韩不卡一区二区三区视频在线| 国产综合精华液| 一本一本综合久久| 一个人免费看片子| 性高湖久久久久久久久免费观看| av免费观看日本| av一本久久久久| 亚洲精品日本国产第一区| 高清在线视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 日产精品乱码卡一卡2卡三| 九色成人免费人妻av| 插阴视频在线观看视频| 一个人免费看片子| 男女免费视频国产| 黑人高潮一二区| 王馨瑶露胸无遮挡在线观看| 高清在线视频一区二区三区| 亚洲第一区二区三区不卡| 亚洲欧洲国产日韩| 国产综合精华液| 日韩一区二区三区影片| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 亚洲内射少妇av| 一本大道久久a久久精品| 自线自在国产av| 国产成人freesex在线| 久久99精品国语久久久| 天堂8中文在线网| a级毛片黄视频| 久久精品国产亚洲av天美| 日本黄色日本黄色录像| 成人手机av| 男女国产视频网站| a 毛片基地| 国产高清三级在线| 肉色欧美久久久久久久蜜桃| 777米奇影视久久| 好男人视频免费观看在线| 国产视频内射| 91精品三级在线观看| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 在线观看www视频免费| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 色哟哟·www| 精品99又大又爽又粗少妇毛片| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 久久久久久人妻| 熟女av电影| 欧美人与善性xxx| 高清午夜精品一区二区三区| 少妇人妻 视频| 9色porny在线观看| 亚洲av不卡在线观看| 国产在线视频一区二区| 草草在线视频免费看| 久久久久久久精品精品| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 精品久久国产蜜桃| 啦啦啦啦在线视频资源| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 亚洲国产毛片av蜜桃av| 在线天堂最新版资源| 亚洲综合色惰| 精品人妻熟女av久视频| 中文字幕免费在线视频6| 中文字幕久久专区| 久久久欧美国产精品| 男女无遮挡免费网站观看| 在线观看一区二区三区激情| 国产又色又爽无遮挡免| 精品酒店卫生间| 夜夜看夜夜爽夜夜摸| 免费高清在线观看日韩| 天堂中文最新版在线下载| 欧美日韩在线观看h| 97超视频在线观看视频| 国产高清国产精品国产三级| 久久青草综合色| 五月天丁香电影| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 日本猛色少妇xxxxx猛交久久| a 毛片基地| 国产不卡av网站在线观看| 国产精品国产三级专区第一集| 亚洲人成网站在线观看播放| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 另类精品久久| 伦理电影大哥的女人| 美女国产视频在线观看| 九色亚洲精品在线播放| 赤兔流量卡办理| 国产极品天堂在线| 9色porny在线观看| 精品亚洲成a人片在线观看| 全区人妻精品视频| 欧美国产精品一级二级三级| 99热6这里只有精品| 日韩成人伦理影院| 少妇丰满av| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 少妇的逼好多水| 麻豆乱淫一区二区| 国产精品一区二区三区四区免费观看| 爱豆传媒免费全集在线观看| 一边摸一边做爽爽视频免费| 看十八女毛片水多多多| 七月丁香在线播放| 在线免费观看不下载黄p国产| 中国美白少妇内射xxxbb| 午夜av观看不卡| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品一区二区三区在线| 一级二级三级毛片免费看| 婷婷色av中文字幕| av.在线天堂| 九色成人免费人妻av| 99热这里只有是精品在线观看| 国产在线免费精品| 又粗又硬又长又爽又黄的视频| 国产精品一区www在线观看| 日韩在线高清观看一区二区三区| 少妇人妻 视频| 久久国内精品自在自线图片| 精品一品国产午夜福利视频| 美女主播在线视频| 美女cb高潮喷水在线观看| 精品视频人人做人人爽| 日本午夜av视频| 久久午夜福利片| 少妇精品久久久久久久| 国产永久视频网站| 免费观看无遮挡的男女| 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 制服人妻中文乱码| av在线app专区| 我的老师免费观看完整版| 亚洲精品国产色婷婷电影| 成人二区视频| 全区人妻精品视频| 亚洲精品久久午夜乱码| 黄色欧美视频在线观看| 99热国产这里只有精品6| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 亚洲色图 男人天堂 中文字幕 | 最近中文字幕高清免费大全6| 99热这里只有精品一区| 国产永久视频网站| 日韩欧美精品免费久久| 尾随美女入室| 一本色道久久久久久精品综合| 久久久久精品性色| 亚洲人成77777在线视频| 777米奇影视久久| 日本黄色片子视频| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 午夜影院在线不卡| 最新中文字幕久久久久| 国产日韩欧美视频二区| 日本黄大片高清| 18禁在线播放成人免费| 在线观看一区二区三区激情| 99热国产这里只有精品6| 熟女人妻精品中文字幕| 色网站视频免费| 多毛熟女@视频| 91精品国产九色| 99精国产麻豆久久婷婷| 免费大片18禁| 秋霞伦理黄片| 国产欧美日韩综合在线一区二区| 99久国产av精品国产电影| 国产精品不卡视频一区二区| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲精品视频女| 国产成人免费无遮挡视频| 免费少妇av软件| 欧美日韩视频精品一区| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 国产成人av激情在线播放 | 日本黄大片高清| 午夜免费鲁丝| 一区二区日韩欧美中文字幕 | 免费观看a级毛片全部| 一级毛片我不卡| 少妇被粗大的猛进出69影院 | 一级a做视频免费观看| 99热全是精品| 伦理电影大哥的女人| 777米奇影视久久| 51国产日韩欧美| 久久国产精品男人的天堂亚洲 | 99久久精品一区二区三区| 夜夜看夜夜爽夜夜摸| 99热网站在线观看| 卡戴珊不雅视频在线播放| 三级国产精品片| 国产精品人妻久久久久久| 亚洲国产精品一区二区三区在线| 国产精品人妻久久久影院| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 少妇高潮的动态图| 亚洲av成人精品一二三区| 久久午夜综合久久蜜桃| 99热这里只有是精品在线观看| .国产精品久久| 丰满乱子伦码专区| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| av女优亚洲男人天堂| videosex国产| 欧美日韩视频高清一区二区三区二| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 我要看黄色一级片免费的| 欧美变态另类bdsm刘玥| 各种免费的搞黄视频| 欧美3d第一页| 男女边摸边吃奶| 人妻人人澡人人爽人人| 大香蕉久久网| 亚洲情色 制服丝袜| 夜夜爽夜夜爽视频| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 午夜福利影视在线免费观看| 免费大片黄手机在线观看| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 欧美日韩精品成人综合77777| 曰老女人黄片| 寂寞人妻少妇视频99o| 91精品国产国语对白视频| 日韩一区二区视频免费看| 亚洲国产av新网站| 晚上一个人看的免费电影| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 超碰97精品在线观看| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 女人久久www免费人成看片| 久久影院123| 久久久久久久亚洲中文字幕| 精品久久久久久电影网| 中文字幕制服av| 男女边摸边吃奶| av不卡在线播放| 亚洲中文av在线| 18禁在线播放成人免费| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| av视频免费观看在线观看| 久久久久久久久久久久大奶| 久久国内精品自在自线图片| 国产av精品麻豆| 国产成人av激情在线播放 | 亚洲一级一片aⅴ在线观看| 18禁动态无遮挡网站| 日产精品乱码卡一卡2卡三| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 人人澡人人妻人| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 亚洲少妇的诱惑av| 亚洲国产精品专区欧美| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人看| 建设人人有责人人尽责人人享有的| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 精品国产露脸久久av麻豆| 国产成人免费无遮挡视频| 国产成人一区二区在线| 久久久国产一区二区| 乱码一卡2卡4卡精品| 又大又黄又爽视频免费| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级| 亚洲欧美成人精品一区二区| av天堂久久9| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 高清毛片免费看| 国产精品一国产av| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 91久久精品电影网| 欧美精品亚洲一区二区| 日韩av在线免费看完整版不卡| 亚洲综合精品二区| 免费观看在线日韩| 美女cb高潮喷水在线观看| 黑丝袜美女国产一区| 美女福利国产在线| .国产精品久久| 国产成人a∨麻豆精品| www.av在线官网国产| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 国产精品女同一区二区软件| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 多毛熟女@视频| 日韩精品免费视频一区二区三区 | 亚洲国产精品一区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 91久久精品国产一区二区三区| 日韩电影二区| 欧美另类一区| 91精品一卡2卡3卡4卡| 亚洲欧洲日产国产| 两个人免费观看高清视频| 777米奇影视久久| 国产在线一区二区三区精| 最黄视频免费看| 亚洲精品中文字幕在线视频| 日韩中字成人| 飞空精品影院首页| 国产一区二区三区av在线| 三级国产精品片| 免费高清在线观看视频在线观看| 欧美3d第一页| 少妇被粗大猛烈的视频| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 亚洲不卡免费看| 亚洲欧美成人综合另类久久久| 久久久久久人妻| 成人国产麻豆网| 纯流量卡能插随身wifi吗| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播| 精品久久久久久久久亚洲| 国产一级毛片在线| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| 日韩中字成人| 国产乱人偷精品视频| 日本vs欧美在线观看视频| 老熟女久久久| 我的女老师完整版在线观看| 亚洲av综合色区一区| 国产精品久久久久久久电影| 久久ye,这里只有精品| 自线自在国产av| 人成视频在线观看免费观看| 99九九线精品视频在线观看视频| 高清毛片免费看| 亚洲精品aⅴ在线观看| xxxhd国产人妻xxx| 国产成人精品一,二区| 91国产中文字幕| 国产在视频线精品| 中国美白少妇内射xxxbb| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 在线播放无遮挡| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的| 色网站视频免费| 黄片播放在线免费| 午夜影院在线不卡| 五月伊人婷婷丁香| 国产在线一区二区三区精| 我的女老师完整版在线观看| 久久精品熟女亚洲av麻豆精品| 高清av免费在线| 亚洲丝袜综合中文字幕| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 日本爱情动作片www.在线观看| 精品酒店卫生间| 美女内射精品一级片tv| 熟女电影av网| 水蜜桃什么品种好| 日本av免费视频播放| 91精品国产九色| 亚洲欧洲国产日韩| 一级爰片在线观看| 国国产精品蜜臀av免费| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 欧美日韩一区二区视频在线观看视频在线| a 毛片基地| av在线观看视频网站免费| 日本黄色片子视频| 亚洲av成人精品一二三区| 涩涩av久久男人的天堂| 国产精品免费大片| 亚洲久久久国产精品| 亚洲色图综合在线观看| 国产熟女欧美一区二区| 男人爽女人下面视频在线观看| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 婷婷色综合大香蕉| 高清毛片免费看| 一本色道久久久久久精品综合| 青春草视频在线免费观看| 欧美国产精品一级二级三级| 精品人妻熟女毛片av久久网站| 嫩草影院入口| 国产免费福利视频在线观看| 韩国av在线不卡| 婷婷色综合大香蕉| 国产色爽女视频免费观看| 国产亚洲欧美精品永久| 亚洲精品一二三| 校园人妻丝袜中文字幕| 99视频精品全部免费 在线| 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 中文字幕精品免费在线观看视频 | 男女边吃奶边做爰视频| 不卡视频在线观看欧美| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 如何舔出高潮| av免费在线看不卡| 热99久久久久精品小说推荐| 91在线精品国自产拍蜜月| 亚洲成色77777| 大片免费播放器 马上看| 国产成人精品久久久久久| 亚洲精品成人av观看孕妇| 日韩中字成人| 日本欧美视频一区| 中文字幕最新亚洲高清| 看十八女毛片水多多多| 五月天丁香电影| 母亲3免费完整高清在线观看 | 啦啦啦中文免费视频观看日本| 大陆偷拍与自拍| 国产老妇伦熟女老妇高清| 大香蕉久久成人网| 高清毛片免费看| 99久久中文字幕三级久久日本| 国产一区有黄有色的免费视频| 精品一区在线观看国产| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕 | 久久精品国产亚洲av天美| 啦啦啦在线观看免费高清www| 中国美白少妇内射xxxbb| 精品少妇内射三级| 精品人妻偷拍中文字幕| 三上悠亚av全集在线观看| 黑人高潮一二区| 久久亚洲国产成人精品v| 91久久精品国产一区二区成人| 制服丝袜香蕉在线| 超碰97精品在线观看| 一级毛片 在线播放| 精品一品国产午夜福利视频| 亚洲色图综合在线观看| 男女免费视频国产| 婷婷成人精品国产| 七月丁香在线播放| 亚洲欧美成人精品一区二区| av国产久精品久网站免费入址| 精品人妻偷拍中文字幕| 久久久久久人妻| 一边亲一边摸免费视频| 国产成人一区二区在线| 中文字幕精品免费在线观看视频 | 少妇的逼好多水| 国产在线视频一区二区| 热99国产精品久久久久久7| 91国产中文字幕| 乱码一卡2卡4卡精品| 国产高清国产精品国产三级| 国产探花极品一区二区| 最后的刺客免费高清国语| 国产黄色免费在线视频| 九九爱精品视频在线观看| 午夜久久久在线观看| 国产在线视频一区二区| 亚洲精品日本国产第一区| 日本色播在线视频| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 久久99一区二区三区| 国产69精品久久久久777片| 国产一区二区在线观看av| 少妇被粗大的猛进出69影院 | 王馨瑶露胸无遮挡在线观看| 亚洲av中文av极速乱| 久久久久久久久久久丰满| 午夜久久久在线观看| av有码第一页| 日韩 亚洲 欧美在线| 午夜福利,免费看| 午夜老司机福利剧场| 蜜臀久久99精品久久宅男| 亚洲图色成人| 日韩av免费高清视频| 日本黄色日本黄色录像| 亚洲精品日本国产第一区| 观看av在线不卡| 在线观看一区二区三区激情| 久久青草综合色| 永久免费av网站大全| 三上悠亚av全集在线观看| 色哟哟·www| videosex国产| 亚洲欧美日韩另类电影网站| 日日撸夜夜添| 欧美人与善性xxx| 国产精品熟女久久久久浪| 国产熟女午夜一区二区三区 | 亚洲精品久久午夜乱码| 午夜福利网站1000一区二区三区| 中文字幕免费在线视频6| 日韩三级伦理在线观看| 人人妻人人爽人人添夜夜欢视频| 日本欧美国产在线视频| 只有这里有精品99| 丝袜在线中文字幕| 视频区图区小说| 久久婷婷青草| 亚洲婷婷狠狠爱综合网| 天堂中文最新版在线下载| 黄色视频在线播放观看不卡| 大香蕉久久成人网| 国产免费又黄又爽又色| 卡戴珊不雅视频在线播放| 午夜日本视频在线| 国产乱人偷精品视频| 9色porny在线观看| 满18在线观看网站| 亚洲国产成人一精品久久久| 欧美另类一区| 在线天堂最新版资源| 国产一级毛片在线| 色哟哟·www| 黑丝袜美女国产一区| 热re99久久精品国产66热6| 午夜激情久久久久久久| 精品酒店卫生间| 秋霞在线观看毛片| 我的女老师完整版在线观看| 免费看光身美女| 九色亚洲精品在线播放| av免费在线看不卡| 日韩,欧美,国产一区二区三区| 午夜激情av网站| 最黄视频免费看| 亚洲三级黄色毛片| 亚洲情色 制服丝袜| 性高湖久久久久久久久免费观看| 人妻人人澡人人爽人人| 最近中文字幕2019免费版| 中文字幕精品免费在线观看视频 | 蜜臀久久99精品久久宅男| 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 免费人成在线观看视频色| 日韩强制内射视频| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 男女啪啪激烈高潮av片| 18禁动态无遮挡网站| 亚州av有码| 在线播放无遮挡| 久久韩国三级中文字幕| 日本黄大片高清| 久久精品久久久久久久性| 精品久久久久久电影网| 日韩欧美一区视频在线观看|