• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    influences of pre-torsion deformation on microstructure and mechanical properties of pure titanium subjected to subsequent tension deformation

    2018-04-21 06:03:02JieLIUFuguoLIHnCHEN
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Jie LIU,Fuguo LI,Hn CHEN

    aSchool of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    bState Key Laboratory of Solidi fication Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    1.Introduction

    Pure titanium and its alloys are widely used in the aviation industry due to their excellent properties such as low density and high specific intensity.1–3Besides,for its good biocompatibility,excellent corrosion resistance,and low modulus of elasticity,the use of pure titanium and its alloys for automotive and biological applications is increasing.4,5

    Pure titanium is usually shaped by bulk forming where the material is actually subjected to large plastic deformation.It is well known that large plastic deformation can be used to prepare billets with desired shapes and excellent comprehensive properties.6,7A torsion test is an ideal means to provide large strain dominated by shear deformation.8In addition,a torsion test can achieve large uniform deformation without rupture or strain localization,and thus it can accumulate a higher plastic strain than tension and compression deformation.9,10Therefore,torsion deformation has been paid extensive attention to in recent years.The microstructures,mechanical properties,and deformation behaviors of materials during torsion have been studied by many scholars.10–18However,the accumulated plastic strain is limited in single torsion deformation,and thus the torsion deformation is often combined with other deformation modes to obtain a higher strain accumulation with the purpose of improving the comprehensive performance of materials,for instance,high pressure torsion(HPT)19,20and twist extrusion(TE).21,22Unfortunately,the applications of these severe plastic deformation processes are limited because of their higher costs,complicated manufacturing processes,and products with small sizes.6

    Recently,a kind of simple and practical deformation process called combined tension and torsion has been proposed and studied by many scholars.23–25It has been shown that an introduction of pre-tension has important effects on microstructures and mechanical properties of materials subjected to later torsion deformation.It is because different loading patterns lead to different dislocation movements.25Thus it is reasonable to speculate that microstructures and mechanical properties have different trends of variation for tensile samples via pre-torsion deformation.26However,scarce special studies on microstructure evolution and mechanical properties of materials in tension deformation with pre-torsion strain have been conducted.Therefore,there is a detailed investigation of the impacts of pre-torsion on the microstructure evolution,mechanical properties,and fracture morphology of pure titanium subjected to subsequent tension deformation at room temperature in this paper.The detailed investigation may provide a new idea for improving materials’comprehensive performances by combining different deformation modes,which can provide theoretical and experimental supports to the preparation of materials with excellent high-tough-matching using traditional metal materials.

    2.Experiments and methods

    Pure titanium Ti-GR2(ASTM)rods were annealed at 823 K for 1 h in argon atmosphere and then cooled in air for removing residual stress.The rods after annealing were subjected to torsion and tension deformation,and the detailed dimensions about the samples are shown in Fig.1(a).Torsion and tension tests were carried out at room temperature using an XC-10 wire torsion testing machine and an Instron 3382 tension testing machine,respectively.The torsion speed and tension strain rate are 30 r/min and 10-3s-1,respectively.The first group of rods was subjected to tension deformation and torsion deformation separately,and the maximum tensile strain and torsion turns were 0.212(marked as Torsion-0-Tension)and 3.1 turns(marked as Torsion-3.1).A schematic diagram of the experimental procedure is shown in Fig.2(a).The second group of rods was subjected to single torsion deformation,and samples after twisting 1,2,and 3 turns were marked as Torsion-1,Torsion-2,and Torsion-3.A schematic diagram of the experimental process is shown in Fig.2(b).The third group of rods was firstly subjected to torsion deformation for 1,2,and 3 turns,and then the twisting samples were subjected to tension deformation until an occurrence of failure.The elongations were 19.6%,13.5%,and 9.84%,respectively,and the three deformed samples were marked as Torsion-1-Tension,Torsion-2-Tension,and Torsion-3-Tension.A schematic diagram of the technological process is shown in Fig.2(c).

    Fig.1 Detailed dimensions of specimens and positions for micro hardness measurements on transversal and longitudinal sections as well as sampling locations for microstructure.

    Fig.2 Schematic diagrams of different torsion and tension processes.

    Vickers hardness tests were conducted on undeformed and deformed pure titanium with a load of 4.903 N and a dwell time of 15 s using an HMV micro hardness tester(SHIMADZU).The positions for micro hardness measurements are marked as red triangles in Fig.1(b)and(c),and the horizontal and longitudinal ordinates refer to radius(r)and height(h)on selected sections.For deformed samples by single torsion or tension,the shape of the transversal section is similar to a circle;for deformed samples by combined torsion and tension,the shape of the transversal section is like an ellipse.Their shapes can be seen from fracture appearance in Section 3.3.Microstructures were characterized on the transversal and longitudinal sections of deformed rods by using an optical microscope(OLYMPUS/PMG3),as shown in Fig.1(d).The chemical etchant used on the samples was a solution of 5 mL HNO3,10 mL HF,and 85 mL H2O.27The fracture surface morphology of deformed samples was observed by using a scanning electron microscope(SEM,MIRA3 TESCAN).

    3.Results and discussion

    3.1.Mechanical properties

    The engineering stress strain curves of samples after twisting different turns are shown in Fig.3.The yield strength σsand the ultimate tensile strength σbin Fig.3 refer to the yield and ultimate tensile strengths,respectively.ε1and ε2represent the engineering strains at the ultimate tensile strength stage and fracture,respectively.It is shown that the strength(σsand σb)increases dramatically(σs:365.06–545.90 MPa; σb:5 03.81–660.74 MPa),and plasticity (ε1:0.156–0.0363; ε2:0.211–0.0984)decreases evidently with increasing torsion turns.It can be seen that the necking phenomenon becomes more and more obvious with increasing deformation,which indicates that the percentage of non-uniform plastic deformation increases.28An increase of the percentage of non-uniform strain indicates that the toughness of the material increases to some extent.

    Hardness tests were conducted to investigate the variation trends of mechanical properties of samples after single deformation and combined deformation.From the observation of Fig.4,it indicates that the hardness of deformed samples by single tension or torsion deformation increases obviously,and the hardness increment caused by torsion deformation is about 50 HV,which is higher than that by tension deformation(about 40 HV).This phenomenon can be explained by the fact that the shear deformation by torsion can improve the strength better than that by tension or compression deformation.9,10For samples after combined torsion and tension deformation(Torsion-1-Tension, Torsion-2-Tension, and Torsion-3-Tension samples),it is found that the hardness increases further compared to the samples by single tension or torsion deformation.The increase increments are about 48,56,and 65,respectively,and the maximum increment(65)is higher than that by single torsion(50).This phenomenon is attributed to the fact that combined torsion and tension deformation can obtain a higher plastic strain accumulation.

    Fig.3 Engineering stress stain curves of samples after twisting different turns.

    Fig.4 Variation trends of the Vickers hardness of different deformation processes.

    Taken together,an introduction of pre-torsion deformation could make the plasticity of samples decrease and improve their strength,and this phenomenon is attributed to dislocation strengthening.However,the toughness of materials is improved to a certain extent,for the percentage of nonuniform plastic strain increases and materials can still absorb a large amount of energy after necking.It indicates that materials present good comprehensive performance when they are subjected to torsion deformation and tension deformation subsequently.

    3.2.Microstructure evolution

    The microstructure of a metal material is the main factor deciding its mechanical properties and corresponding fracture behavior.The microstructure of undeformed pure titanium on the transversal section is shown in Fig.5(a),and the microstructure of a Torsion-0-Tension sample on the transversal section is shown in Fig.5(b).The average grain sizes are about 70 and 40 μm in Fig.5(a)and(b),respectively,which indicates that the grains are refined during tension deformation.Fig.6 shows the microstructure on the transversal section of deformed rods after single torsion(Torsion-1,Torsion-2,and Torsion-3 samples)and combined torsion and tension(Torsion-1-Tension, Torsion-2-Tension, and Torsion-3-Tension samples).The average grain sizes are about 60,50,and 40 μm in Fig.6(a),(b),and(c),respectively,which states that the grains are refined gradually when increasing the torsion turns.The red curves in Fig.6 refer to deformation twins,and it is found that the percentage of generated deformation twins increases with increasing deformation degree.It is inferred that the dislocation movement is impeded with increasing deformation,and as a result,deformation twins are activated to promote plastic deformation.29It is known that the appearance of deformation twins could change the crystal orientation and promote dislocation slip.The grains can be refined better under a combination of deformation twins and dislocation slip.17,18It can be seen from Fig.6(a)and(d)that the grains of a Torsion-1 sample are refined further when it is subjected to tension deformation.Similar results can be seen by comparing Fig.6(b)and(e)as well as comparing Fig.6(c)and(f).The average grain sizes are about 50,25,and 35 μm in Fig.6(d),(e),and(f).It is inferred that the refinement effect is attributed to an accumulated plastic strain,and combined deformation(Torsion-1-Tension,Torsion-2-Tension,and Torsion-3-Tension samples)with a higher plastic strain can ref i ne grains better.In addition,it is shown that the generated twins disappear,and it is because that the introduced twins by torsion deformation increase the chances of dislocation slip.Thus the produced twins disappear.

    Fig.5 Microstructures on the transversal sections of undeformed pure titanium and Torsion-0-Tension samples.

    Fig.6 Microstructures on the transversal sections of samples after torsion and combined deformation.

    It can be seen that the refinement effect of a specimen with 2 turns pre-torsion(Torsion-2-Tension sample)strain is the best among all the combinations(from 70 to 25 μm),which is higher than those with single tension(from 70 to40 μm)and single torsion(from 70 to 40 μm).As illustrated in Fig.3,the Torsion-2-Tension sample is of good ductile performance,and thus it is speculated that the materials can possess better comprehensive performance(including microstructure and mechanical properties)by combining torsion and tension reasonably.Equiaxial grains are present on the transversal section in Fig.6(a),(b),a nd(c),while elongated grains are observed on the longitudinal section of a twisting specimen in Fig.7(a).It is related that the equiaxial grains are elongated by shear stress in torsion deformation.In addition,a large number of deformation twins occur on the selected section.The local amplification of generated twins is shown in Fig.7(b),and it is found that the twins are parallel to each other and distribute the grains.However,the grains are refined and equiaxial grains are always present on the longitudinal section of a specimen after combined torsion and tension,as illustrated in Fig.7(c).Therefore,we speculate that an introduction of subsequent tension stress can control grains’morphology.

    Fig.7 Microstructures on the longitudinal sections of Torsion-3 and Torsion-3-Tension samples.

    Fig.8 Fracture morphology of specimen after different torsion and tension processes.

    In a word,grains are refined and elongated during torsion deformation,but the elongated effect is weakened or eliminated by latter tension deformation.Deformation twins formed during torsion deformation will disappear owing to the introduction of the subsequent tension stress.By contrasting Figs.6 and 7,the grains are refined most evidently for the specimen with 2 turns pre-torsion deformation(Torsion-2-Tension sample),and its morphology also changes obviously.It indicates that the refinement of grains and their appearances are controlled by both torsion and tension deformations.

    3.3.Fracture analysis

    The fracture appearances of specimens machined from different torsion and tension processes by SEM are shown in Fig.8.A dimple is the main microscopic characteristic of ductile fracture,which is caused by the micro-voids connected to each other after fracture.The macroscopic and microscopic fracture modes reflect different features with different enlargement levels.The macroscopic fracture analysis mainly shows the overall process of failure in essence,while the microscopic fracture mode reveals the formation of micro-voids and dimples in a local failure process.In this paper,dimples cover the fracture appearance and are the main characteristic of ductile fracture.30

    The local amplification fractographs of the center and margin sections on the macroscopic fracture surface(the middle figure in Fig.8(a))of a Torsion-0-Tension sample are shown in locations A and B of Fig.8(a).Lots of equiaxial dimples with a similar size uniformly are distributed on the fracture surface,and the blue arrows in locations A,C,E,G,and I of Fig.8 refer to f i ne voids.It is inferred that the appearance of equiaxial dimples is related to the normal stress during tension deformation.Fig.8(b)shows the representative fractographs of a Torsion-3.1 sample.The middle figure in Fig.8(b)refers to the overall fracture morphology,and it is found that the overall fracture surface is flatter in contrast to that of Fig.8(a).Besides,torsion traces can be seen on the fracture appearance.It is known that a fracture caused by tension or torsion deformation is attributed to shear stress for ductile metal materials,and pure titanium suffers from a larger plastic strain accumulation during torsion.Unlike the fracture appearance by tension deformation,quantities of micro-voids and dimples with different types and sizes are distributed on the fracture section,as shown in locations C and D of Fig.8(b).1 and 3 in locations C and D refer to equiaxial and elongated dimples,and we speculate that elongated dimples are caused by the non-uniform shear stress during torsion deformation.In addition,it is found that a cleavage platform occurs on the fracture surface,marked as 2 in location D of Fig.8(b),which indicates that the fracture belongs to the range of brittle fracture.Fig.8(c),(d),and(e)shows the fracture appearances of specimens by combined torsion and tension deformation(Torsion-1-Tension, Torsion-2-Tension, and Torsion-3-Tension samples).A fracture appearance with an elliptical shape is observed,and an approximate parallelogram trace is present on the fracture surface,which are attributed to the introduction of combined shear and tension stress.

    Compared to the fracture morphology caused by single torsion,dimples with larger sizes and depths are distributed uniformly on the fracture appearance for combined samples,as shown in locations F,H,and J of Fig.8(c),(d),and(e).An obvious slip is traced,marked as 6,7,8,and 9 in locations G and I of Fig.8(d)and(e).In addition,elongated and equiaxial dimples appear,marked as 4 and 5 in location F of Fig.8(c).Lots of micro-voids disappear,and it may be that a part of micro-voids formed in the torsion test are covered in subsequent tension deformation.The depth and size of dimples on fracture by combined torsion and tension are larger than those by single tension.The appearance of elongated dimples is related to the shear stress,and it is inferred that an introduction of pre-torsion deformation could improve materials’toughness compared to that of single tension deformation.

    4.Conclusions

    The mechanical properties,microstructure,and fracture analysis of pure titanium with pre-torsion strain subjected to subsequent tension deformation were investigated by experiments.It is found that an introduction of pre-torsion deformation has significant effects on microstructure,mechanical properties,and fracture appearance.Some conclusions can be obtained as follows:

    (1)Single torsion or tension deformation can improve the materials’strength,but tension deformation with pretorsion can improve the materials’strength further.The maximum hardness increment of 65 HV by combined torsion and tension deformation is higher than those by single tension deformation(40 HV)and single torsion deformation(50 HV).

    (2)An introduction of pre-torsion strain can re fine grains better by combining later tension deformation.The grains are re fined most evidently for samples with 2 turns pre-torsion strain(from 70 to 25 μm),which are finer than those by single tension(from 70 to 40 μm)and single torsion(from 70 to 40 μm).Moreover,the grain morphology can be controlled by combined torsion and tension deformation.

    (3)An introduction of pre-torsion strain can change dimples’type,size,and depth.It is shown that the materials after combined torsion and tension deformation can present good toughness performance based on fracture analysis.

    Acknowledgements

    The authors are very grateful for the supports received from the National Natural Science Foundation of China(No.51275414),the Aeronautical Science Foundation of China(No.2011ZE53059),the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)of China(No.130-QP-2015),and the National College Students Innovation Experiment Program(No.201610699287).

    1.Banerjee D,Williams JC.Perspectives on titanium science and technology.Acta Mater2013;61(3):844–79.

    2.Qu NS,Fang XL,Wei L,Zeng YB,Di Z.Wire electrochemical machining with axial electrolyte f l ushing for titanium alloy.Chinese J Aeronaut2013;26(1):224–9.

    3.Sun ZQ,Huang MH.Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap.Chinese J Aeronaut2013;26(3):601–5.

    4.Song FF,Yang H,Li H,Zhan M,Li GJ.Springback prediction of thick-walled high-strength titanium tube bending.Chinese J Aeronaut2013;26(5):1336–45.

    5.Kar A,Nath R,Barik A.Ion implantation of titanium based biomaterials.Prog Mater Sci2011;56(8):1137–77.

    6.Valiev RZ,Islamgaliev RK,Alexandrov IV.Bulk nanostructured materials from severe plastic deformation.Prog Mater Sci2000;45(2):103–89.

    7.Valiev RZ,Estrin Y,Horita Z,Langdon TG,Zechetbauer MJ,Zhu YT.Producing bulk ultraf i ne-grained materials by severe plastic deformation.JOM2006;58(4):33–9.

    8.Kang JY,Bacroix B,Brenner R.Evolution of microstructure and texture during planar simple shear of magnesium alloy.Scripta Mater2012;66(9):654–7.

    9.Unga′r T,To′th LS,Illy J,Kova′cs I.Dislocation structure and work hardening in polycrystalline OFHC copper rods deformed by torsion and tension.Acta Metall1986;34(7):1257–67.

    10.Wang CP,Li FG,Li JH,Dong JZ,Xue FM.Microstructure evolution,hardening and thermal behavior of commercially pure copper subjected to torsion deformation.Mater Sci Eng A2014;598(6):7–14.

    11.Zhao TZ,Zhang SH,Zhang GL,Song HW,Cheng M.Hardening and softening mechanisms of pearlitic steel wire under torsion.Mater Des2014;59(7):397–405.

    12.Khamsuk S,Park N,Adachi H,Terada D.Evolution of ultraf i ne microstructures in commercial purity aluminum heavily deformed by torsion.J Mater Sci2012;47(22):7841–7.

    13.B?hlke T,Bertram A,Krempl E.Modeling of deformation induced anisotropy in free-end torsion.Int J Plasticity2003;19(11):1867–84.

    14.Duche?ne L,Houdaigui FE,Habraken AM.Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques.IntJPlasticity2007;23(8):1417–38.

    15.Sanchez P,Pochettino A,Chauveau T,Bacroix B.Torsion texture developmentofzirconium alloys.JNuclMater2001;298(3):329–39.

    16.Biswas S,Beausir B,Toth LS,Suwas S.Evolution of texture and microstructure during hot torsion of a magnesium alloy.Acta Mater2013;61(14):5263–77.

    17.Chen H,Li FG,Li JH,Ma XK,Li J,Wan Q.Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation.MaterSciEngA2016;671:17–31.

    18.Chen H,Li FG,Li JH,Zhao Z,Zhou SS,Wan Q.Experimental study on pure titanium during the positive-torsion and positivenegative-torsion.Mater Sci Eng A2016;674:552–68.

    19.Zhilyaev AP,Langdon TG.Using high-pressure torsion for metal processing:Fundamentals and applications.Prog Mater Sci2008;53(6):893–979.

    20.Yang C,Song M,Liu Y,Ni S,Sabbaghianrad S,Langdon TG.Evidence for a transition in deformation mechanism in nanocrystalline pure titanium processed by high-pressure torsion.Philos Mag2016;96(16):1–11.

    21.Zendehdel H,Hassani A.influence of twist extrusion process on microstructure and mechanical properties of 6063 aluminum alloy.Mater Des2012;37:13–8.

    22.Wang CP,Li FG,Lu HY,Yuan ZW,Chen B.Optimization of structural parameters for elliptical cross-section spiral equalchannel extrusion dies based on grey theory.Chinese J Aeronaut2013;26(1):209–16.

    23.Wang CP,Li FG,Wei L,Yang YJ,Dong JZ.Experimental microindentation of pure copper subjected to severe plastic deformation by combined tension–torsion.Mater Sci Eng A2013;571(4):95–102.

    24.Li JH,Li FG,Hussain MZ,Wang CP,Wang L.Micro-structural evolution subjected to combined tension–torsion deformation for pure copper.Mater Sci Eng A2014;610(29):181–7.

    25.Chen H,Li FG,Zhou SS,Li JH,Zhao C,Wan Q.Experimental study on pure titanium subjected to different combined tension and torsion deformation processes.MaterSciEngA2017;680:278–90.

    26.Guo N,Song B,Guo CF,Xin RL,Liu Q.Improving tensile and compressive properties of magnesium alloy rods via a simple pretorsion deformation.Mater Des2015;83:270–5.

    27.Chen H,Li FG,Liu J,Li JH,Ma XK,Wan Q.Microstructure and microtexture evolution of pure titanium during single direction torsion and alternating cyclic torsion.Metall Mater Trans A2017;48(5):2396–409.

    28.Courtney TH.Mechanical behavior of materials.2nd ed.Beijing:China Machine Press;2004.p.404–50.

    29.Smith WF,Hashemi J.Foundations of materials science and engineering.5th ed.Beijing:China Machine Press;2011.p.240–59.

    30.Bathini U,Srivatsan TS,Patnaik A,Quick T.A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy:influence oforientation and microstructure.J Mater Eng Peform2010;19(8):1172–82.

    这个男人来自地球电影免费观看| 成人精品一区二区免费| 精品一区二区三区视频在线观看免费 | 国产在线精品亚洲第一网站| 一级a爱视频在线免费观看| 午夜激情av网站| 黄网站色视频无遮挡免费观看| 日韩成人在线观看一区二区三区| 久久人妻熟女aⅴ| 日本一区二区免费在线视频| 91老司机精品| 999精品在线视频| 国产精品久久久人人做人人爽| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 脱女人内裤的视频| 大型黄色视频在线免费观看| 成人亚洲精品一区在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 日本黄色视频三级网站网址 | 黑人欧美特级aaaaaa片| 欧美日韩黄片免| 久久精品国产清高在天天线| 久久九九热精品免费| 国产精品免费大片| 九色亚洲精品在线播放| 久久精品国产亚洲av香蕉五月 | 亚洲欧美激情在线| 久久亚洲精品不卡| 麻豆av在线久日| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 99久久人妻综合| 啦啦啦 在线观看视频| 久久性视频一级片| 免费在线观看日本一区| 日韩制服丝袜自拍偷拍| 亚洲九九香蕉| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看. | 久久ye,这里只有精品| 国产在线精品亚洲第一网站| 国产成人免费无遮挡视频| 91九色精品人成在线观看| ponron亚洲| 男女床上黄色一级片免费看| 麻豆av在线久日| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院 | 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 久久精品国产综合久久久| 好男人电影高清在线观看| av中文乱码字幕在线| 日韩欧美一区二区三区在线观看 | 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看| 久热这里只有精品99| 电影成人av| 国产激情久久老熟女| 岛国在线观看网站| 精品一品国产午夜福利视频| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕 | 国产成人系列免费观看| 亚洲黑人精品在线| 人人妻人人添人人爽欧美一区卜| 国产深夜福利视频在线观看| 男女免费视频国产| 中文字幕最新亚洲高清| 久久久精品区二区三区| 亚洲av电影在线进入| 三级毛片av免费| 热re99久久国产66热| 99久久人妻综合| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产看品久久| 一区二区三区精品91| 久久国产精品人妻蜜桃| 亚洲全国av大片| 女性生殖器流出的白浆| 久久久久视频综合| 免费日韩欧美在线观看| 他把我摸到了高潮在线观看| 国产色视频综合| 午夜免费鲁丝| 涩涩av久久男人的天堂| 夜夜爽天天搞| 国产激情欧美一区二区| 国产成人系列免费观看| 欧美乱妇无乱码| 国产精品电影一区二区三区 | 大片电影免费在线观看免费| 午夜两性在线视频| 午夜福利,免费看| 波多野结衣一区麻豆| 国产1区2区3区精品| 亚洲 国产 在线| 国产成人精品在线电影| 成人三级做爰电影| 中文亚洲av片在线观看爽 | 好看av亚洲va欧美ⅴa在| 在线视频色国产色| a在线观看视频网站| 91老司机精品| 老熟女久久久| 久久亚洲真实| 黄片播放在线免费| 亚洲专区中文字幕在线| 亚洲av日韩在线播放| 国产精品 欧美亚洲| 中文亚洲av片在线观看爽 | 两性午夜刺激爽爽歪歪视频在线观看 | 宅男免费午夜| 无人区码免费观看不卡| 美女国产高潮福利片在线看| 天堂√8在线中文| 精品国产一区二区久久| 欧美日韩av久久| 国产精品国产av在线观看| 亚洲国产欧美一区二区综合| 日日夜夜操网爽| 午夜免费成人在线视频| 麻豆av在线久日| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| 老司机影院毛片| x7x7x7水蜜桃| 一级黄色大片毛片| 成人亚洲精品一区在线观看| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 亚洲精品粉嫩美女一区| 亚洲精品乱久久久久久| 精品福利观看| 老汉色av国产亚洲站长工具| 色综合欧美亚洲国产小说| 国产精品免费视频内射| 天天添夜夜摸| 国产高清videossex| 激情视频va一区二区三区| 岛国毛片在线播放| www.精华液| 不卡一级毛片| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩高清在线视频| 天天影视国产精品| 免费观看a级毛片全部| 亚洲av成人一区二区三| 巨乳人妻的诱惑在线观看| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 无遮挡黄片免费观看| 一级片免费观看大全| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 中国美女看黄片| 国产精品电影一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 久久久久久久国产电影| 午夜亚洲福利在线播放| 亚洲 欧美一区二区三区| 精品亚洲成a人片在线观看| 欧美在线一区亚洲| 精品第一国产精品| 国产一区有黄有色的免费视频| 丝袜人妻中文字幕| 男男h啪啪无遮挡| 丁香欧美五月| 免费在线观看黄色视频的| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 18在线观看网站| 91精品国产国语对白视频| tube8黄色片| 久久天躁狠狠躁夜夜2o2o| 久久青草综合色| 精品久久久久久,| 欧美日韩成人在线一区二区| 日韩免费高清中文字幕av| 久久天堂一区二区三区四区| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女 | netflix在线观看网站| 精品亚洲成a人片在线观看| 亚洲性夜色夜夜综合| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 亚洲国产精品sss在线观看 | 国产一区二区三区综合在线观看| 欧美乱妇无乱码| 国产精品久久电影中文字幕 | 亚洲成人国产一区在线观看| 91国产中文字幕| 成人影院久久| 少妇 在线观看| 一进一出好大好爽视频| 久久人妻福利社区极品人妻图片| 777米奇影视久久| 亚洲专区字幕在线| 国产在线观看jvid| 亚洲精华国产精华精| 免费久久久久久久精品成人欧美视频| 成人永久免费在线观看视频| 自线自在国产av| 女人久久www免费人成看片| 制服诱惑二区| 欧美精品av麻豆av| 97人妻天天添夜夜摸| 亚洲国产精品sss在线观看 | 国产精品免费一区二区三区在线 | 成人18禁在线播放| 高清欧美精品videossex| 新久久久久国产一级毛片| 一进一出好大好爽视频| 高清毛片免费观看视频网站 | 91麻豆av在线| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 亚洲五月色婷婷综合| 国产成人精品在线电影| 免费在线观看日本一区| 另类亚洲欧美激情| 亚洲第一欧美日韩一区二区三区| 乱人伦中国视频| 亚洲精品自拍成人| a级毛片黄视频| 大香蕉久久网| 国产精品一区二区免费欧美| 国产一区有黄有色的免费视频| 欧美日韩成人在线一区二区| 99久久99久久久精品蜜桃| 欧美乱码精品一区二区三区| 亚洲av第一区精品v没综合| 制服诱惑二区| av一本久久久久| 久久久久国产精品人妻aⅴ院 | 他把我摸到了高潮在线观看| 香蕉丝袜av| 成人手机av| 国产精品一区二区免费欧美| 美女视频免费永久观看网站| 国产精品九九99| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 无遮挡黄片免费观看| 久久99一区二区三区| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频| 国产成人免费观看mmmm| 女性被躁到高潮视频| 久久久精品免费免费高清| 91av网站免费观看| 国产精品 欧美亚洲| 免费看a级黄色片| 中文欧美无线码| www日本在线高清视频| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 女人爽到高潮嗷嗷叫在线视频| 日本精品一区二区三区蜜桃| www.精华液| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 欧美最黄视频在线播放免费 | 国产精品.久久久| 成人影院久久| 国产精品国产av在线观看| 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 久久这里只有精品19| 国产成人欧美| 18在线观看网站| 激情在线观看视频在线高清 | 欧美成人午夜精品| 久久久久久久久久久久大奶| 老熟妇乱子伦视频在线观看| 满18在线观看网站| 757午夜福利合集在线观看| 成人亚洲精品一区在线观看| 真人做人爱边吃奶动态| 99国产精品免费福利视频| 高清在线国产一区| 人妻 亚洲 视频| 在线av久久热| 极品少妇高潮喷水抽搐| 美女 人体艺术 gogo| 悠悠久久av| 欧美亚洲 丝袜 人妻 在线| 欧美日韩av久久| 精品免费久久久久久久清纯 | 电影成人av| 免费日韩欧美在线观看| 久久中文字幕一级| netflix在线观看网站| 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 99re6热这里在线精品视频| 国产高清videossex| 一a级毛片在线观看| 国产区一区二久久| 久久久国产欧美日韩av| 国产成人欧美在线观看 | 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 一边摸一边做爽爽视频免费| 亚洲五月天丁香| 亚洲专区字幕在线| 日本a在线网址| 好看av亚洲va欧美ⅴa在| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 亚洲色图综合在线观看| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 夫妻午夜视频| 男女午夜视频在线观看| 中文欧美无线码| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人国产一区在线观看| 在线av久久热| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| 一级片'在线观看视频| 国产无遮挡羞羞视频在线观看| 黄色视频,在线免费观看| 夫妻午夜视频| av天堂在线播放| 视频在线观看一区二区三区| 丝袜美足系列| 国产主播在线观看一区二区| 日韩有码中文字幕| 黄色成人免费大全| 老司机影院毛片| 男女高潮啪啪啪动态图| 韩国精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 在线永久观看黄色视频| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 看黄色毛片网站| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| 国产精品自产拍在线观看55亚洲 | 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲黑人精品在线| 变态另类成人亚洲欧美熟女 | 高清黄色对白视频在线免费看| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 国产精品国产高清国产av | 悠悠久久av| 久9热在线精品视频| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 免费不卡黄色视频| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看 | 亚洲情色 制服丝袜| 亚洲第一青青草原| 日日夜夜操网爽| 久久久久久久午夜电影 | 午夜免费成人在线视频| 亚洲精品乱久久久久久| 午夜福利乱码中文字幕| 久久国产精品人妻蜜桃| 黄色视频不卡| 咕卡用的链子| 天堂中文最新版在线下载| 欧美人与性动交α欧美软件| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区| 男人操女人黄网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品乱久久久久久| 欧美黑人精品巨大| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 久久中文字幕一级| 成年版毛片免费区| 丝袜人妻中文字幕| 悠悠久久av| 视频区图区小说| av中文乱码字幕在线| 国产成人欧美在线观看 | 人妻丰满熟妇av一区二区三区 | 正在播放国产对白刺激| 老汉色av国产亚洲站长工具| 黑人操中国人逼视频| 香蕉丝袜av| 色老头精品视频在线观看| 一级,二级,三级黄色视频| 在线观看免费视频日本深夜| 后天国语完整版免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 一本大道久久a久久精品| 精品免费久久久久久久清纯 | 日韩有码中文字幕| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 人妻一区二区av| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 欧美日韩精品网址| 日韩大码丰满熟妇| 男人舔女人的私密视频| 成年女人毛片免费观看观看9 | 狂野欧美激情性xxxx| av欧美777| 丰满迷人的少妇在线观看| 啦啦啦 在线观看视频| 亚洲欧美一区二区三区久久| 18禁美女被吸乳视频| 激情在线观看视频在线高清 | 亚洲精品在线观看二区| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 久久 成人 亚洲| 国产男女超爽视频在线观看| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 国产精品综合久久久久久久免费 | 国产亚洲精品久久久久5区| a级毛片黄视频| 十八禁人妻一区二区| 国产精品综合久久久久久久免费 | 日本a在线网址| 在线观看66精品国产| 免费观看a级毛片全部| 午夜免费成人在线视频| 夫妻午夜视频| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 国产精品 国内视频| 亚洲精品国产区一区二| 免费在线观看黄色视频的| 十八禁高潮呻吟视频| 成人三级做爰电影| 久久中文看片网| 真人做人爱边吃奶动态| 天堂中文最新版在线下载| 一级a爱视频在线免费观看| 国产精品成人在线| 亚洲av成人不卡在线观看播放网| 美女扒开内裤让男人捅视频| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 高清毛片免费观看视频网站 | 久久国产乱子伦精品免费另类| √禁漫天堂资源中文www| 亚洲成av片中文字幕在线观看| 亚洲中文日韩欧美视频| 欧美精品人与动牲交sv欧美| 悠悠久久av| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av香蕉五月 | 黄色怎么调成土黄色| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 精品国产一区二区久久| 久热这里只有精品99| 国产精品电影一区二区三区 | 天堂俺去俺来也www色官网| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 国产精品免费大片| 中文字幕人妻丝袜一区二区| 高清欧美精品videossex| 十八禁人妻一区二区| av线在线观看网站| 色尼玛亚洲综合影院| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 国产av又大| 免费看a级黄色片| 高清在线国产一区| 色94色欧美一区二区| 老熟妇乱子伦视频在线观看| 精品熟女少妇八av免费久了| 色在线成人网| 欧美精品av麻豆av| 老司机影院毛片| 亚洲欧美精品综合一区二区三区| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 91老司机精品| 精品免费久久久久久久清纯 | 在线av久久热| 亚洲av美国av| 一本综合久久免费| 国产精品成人在线| 国产精品久久久av美女十八| 50天的宝宝边吃奶边哭怎么回事| 久久人妻熟女aⅴ| 变态另类成人亚洲欧美熟女 | 制服诱惑二区| 精品亚洲成国产av| 国产aⅴ精品一区二区三区波| 国产精品自产拍在线观看55亚洲 | 日本wwww免费看| 亚洲精品久久成人aⅴ小说| 亚洲精品久久午夜乱码| 叶爱在线成人免费视频播放| 丰满饥渴人妻一区二区三| 最新在线观看一区二区三区| 欧美激情 高清一区二区三区| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说 | 国产片内射在线| 久久久久久久午夜电影 | 午夜免费观看网址| 亚洲成人手机| 国产成人影院久久av| 久久久久久久国产电影| 夫妻午夜视频| 老司机影院毛片| 麻豆乱淫一区二区| 99久久精品国产亚洲精品| 丰满的人妻完整版| 国产亚洲精品一区二区www | av中文乱码字幕在线| 91大片在线观看| 日韩视频一区二区在线观看| 在线观看66精品国产| 色婷婷av一区二区三区视频| 免费在线观看完整版高清| 国产免费男女视频| 麻豆国产av国片精品| 一a级毛片在线观看| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 老熟女久久久| 丰满迷人的少妇在线观看| 黄频高清免费视频| 少妇粗大呻吟视频| svipshipincom国产片| 成在线人永久免费视频| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| 成年人免费黄色播放视频| 一边摸一边抽搐一进一出视频| 亚洲人成电影免费在线| 一区二区日韩欧美中文字幕| 精品高清国产在线一区| 超色免费av| 亚洲第一av免费看| 免费一级毛片在线播放高清视频 | 国产成人精品久久二区二区91| 999久久久国产精品视频| 国产片内射在线| 中文字幕另类日韩欧美亚洲嫩草| 身体一侧抽搐| 亚洲国产中文字幕在线视频| 露出奶头的视频| 激情视频va一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲欧美在线一区二区| 国产亚洲av高清不卡| 黄色片一级片一级黄色片| 亚洲精品一二三| 国产精品久久久久成人av| 国产欧美日韩一区二区精品| 久热这里只有精品99| av电影中文网址| 别揉我奶头~嗯~啊~动态视频| 国产免费av片在线观看野外av| 天天躁日日躁夜夜躁夜夜| 一区在线观看完整版| 久久亚洲精品不卡| 亚洲国产欧美网| 两性夫妻黄色片| 欧美黑人精品巨大| 午夜福利影视在线免费观看| 国产黄色免费在线视频| 纯流量卡能插随身wifi吗| 中文字幕色久视频| 国产精品国产av在线观看| 国产99久久九九免费精品| 亚洲av电影在线进入| 757午夜福利合集在线观看| 久久久久久久精品吃奶| av天堂久久9| 亚洲成av片中文字幕在线观看| 亚洲成人手机| 精品国产乱码久久久久久男人|