• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    7YSZ coating prepared by PS-PVD based on heterogeneous nucleation

    2018-04-21 06:02:55ZiqianDENGXiaofengZHANGKesongZHOUMinLIUChunmingDENGJieMAOZhikunCHEN
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Ziqian DENG,Xiaofeng ZHANG,Kesong ZHOU,Min LIU,Chunming DENG,Jie MAO,Zhikun CHEN

    aSchool of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China

    bNational Engineering Laboratory for Modern Materials Surface Engineering Technology&the Key Lab of Guangdong for Modern Surface Engineering Technology,Guangdong Institute of New Materials,Guangzhou 510650,China

    cSchool of Materials Science and Engineering,South China University of Technology,Guangzhou 510640,China

    1.Introduction

    The plasma spray-physical vapor deposition(PS-PVD)process has been developed with the aim of depositing different structured functional coatings(such as thin,gas tight,columnar coatings,etc.)with large area coverage by plasma spray.1–3The PS-PVD is developed based on low-pressure plasma spray(LPPS),where electrical current up to 3000 A,plasma gas flow up to 200 L/min,and an input power level of 180 kW could be achieved.With operation pressure decreasing,the plasma plume expands to a length of more than 2200 mm and a diameter of 400 mm.Using appropriate parameters,it is possible to evaporate powder feedstock materials,resulting in variant micro structures and non-line-of-sight deposition.4,5Li et al.6reported that using an advanced PS-PVD process,the nanohardness and micro-hardness of prepared dense coatings were markedly higher than those of conventional YSZ coatings(i.e.,coatings fabricated by atmospheric plasma spray or electron beam-physical vapor deposition),even comparable with those of sintered YSZ polycrystal.Goral et al.7presented that columnar YSZ coatings were deposited from evaporating powders during the process of PS-PVD.The microstructures of coatings were affected by the feed rate,chamber pressure,sample rotation rate,and plasma gas ratio(Ar,He,and N2).Hospach et al.8produced columnar-structured YSZ coatings with a diameter between 20 and 750 μm through PS-PVD.Thinner and thicker coatings seem to be possible.The geometry and arrangement of a sample and the sample holder have a big influence on the coating quality.

    Despite much investigation about PS-PVD have been done in the past few years,however,the basic process technology,such as heating of powder particles to spray-deposited molten,semi-molten droplets or vapor gas phase onto substrate surface,has remain edessentially the same.9,10There are still a lot of areas which have not been investigated thoroughly.These areas consist of particle-plasma interactions in the rarefied plasma,particle vaporization and its affect on plasma properties,and deposition mechanisms associated with different micro structures.Now,any further under standing in each of these areas will enable the spray community to more easily apply the PS-PVD technology to meet emerging coating challenges.11,12

    To exploit the potential such as gas-phase deposition by PSPVD,the deposition mechanisms and their dependency on process conditions must be better understood.The PS-PVD process can be summarized as three steps9:(A)feedstock processing in plasma torch;(B)plasma jet formation and materials transport;and(C)deposition and coating growth.The third step mainly includes heterogeneous and homogeneous nucleation depending on the spray distance.13When the spray distance is set at the middle area in the axial direction of the plasma f l ame,coating deposition primarily relies on heterogeneous nucleation on the substrate surface.In this work,different structured coatings based on heterogeneous nucleation have been obtained,and these principles are summarized in this investigation.

    2.Experimental procedure

    The experimental set-up is based on an Oerlikon-Metco MulticoatTMPS-PVD system together with an O3CP plasma torch mounted on a robot manipulator of ABB insidea?2.5 m×4.5 m vacuum chamber.The PS-PVD system is obtained through a comprehensive reconstruction of an existing conventional LPPS system.In particular,the system is equipped with an additional vacuum pumping unit,a large vacuum blower to provide sufficient pumping capacity at low pressures and enhanced cooling capacity,additional power sources,a new torch transfer arc system,and new operational control units.In terms of the powder feeding system,two powder injectors are located in the cylindrical section of the O3CP nozzle(diameter=12.5 mm)close to the divergent part.

    Feedstock agglomerated 7YSZ powders(Metco 6700,Oerlikon-Metco)were used and their grain sizes ranged from 5 to 22 μm.7YSZ coatings were deposited on graphite,sintered zirconia,and nickel-based superalloy K417 substrates(size ?25.4 mm × 5 mm and surface roughness <2 μm)at a spray distance of 950 mm,where the Ar-He hybrid plasma was operated at a 67 kW net power of O3CP under an operation pressure of 150 Pa.Meanwhile,the substrate pre-heating temperatures were controlled at 850°C and room temperature prior to deposition of 7YSZ coating,respectively.During the pre-heating or deposition process,the substrate remained still,while the plasma gun moved at a speed of 1000 mm/s.The detailed spray parameters are shown in Table 1.

    The microstructures of 7YSZ coatings were characterized by field emission-scanning electron microscopy(FE-SEM,Nova-Nono430,FEI)and transmission electron microscopy(TEM,JEM2100F,JEOL).Additionally,before TEM characterization,test samples were prepared by focused ion beam(FIB,450S,FEI)milling.

    3.Results and discussion

    3.1.Variation of coating microstructure

    3.1.1.Effect of substrate materials

    Taking graphite as a substrate without pre-heating by plasma flame(namely,the substrate temperature is controlled at room temperature),7YSZ coatings prepared by PS-PVD show typical columnar microstructure,as seen in Fig.1(a).The interface between the coating and the substrate has good bonding without crack.Among columns,there exist different sizes of gaps.Between columns,many small particles were formed,which were resulted from condensation of the vapor phase14,15,as shown in the magnified Fig.1(b).When the graphite substrate was replaced by sintered zirconia,similar columnar 7YSZ coating was generated with the same parameters at room temperature,as presented in Fig.2(a)and(b).According to the result of comparison,it can be known that the horizontal width of a single column is larger than that of a column deposited on graphite.Moreover,the deposition rate of 7YSZ on graphite is higher than that on sintered zirconia due to different thermal conductivities between graphite(129 W/(m·K))and zirconia(2.2 W/(m·K)).During the deposition process,the temperature gradient on graphite is larger than that on zirconia,which results in a higher growth driving force on graphite.Thus,graphite has a higher deposition rate.Due to similar properties,the interface between 7YSZ coating and sintered zirconia has a better bonding.Between columns,there is no apparent vertical gap,and no small particle as well appears in the gaps.Besides,the columns are made of f i ne grains and denser than those deposited on graphite.

    Table 1 Parameters of 7YSZ coating by PS-PVD.

    Fig.1 7YSZ coating deposited on graphite at room temperature.

    Fig.2 7YSZ coating deposited on sintered zirconia at room temperature.

    3.1.2.Effect of substrate temperature

    With a net power of 60 kW,the inner O3CP gun provided high plasma energy density,and the electron excitation temperature is more than 10,000°C,so that most of the 7YSZ powders can be evaporated in the inner plasma torch and a short-distance flame appears ahead of the nozzle before jet expansion.5A columnar 7YSZ coating could be obtained by vapor phase deposition with a spray distance of 950 mm,as seen in Fig.3.It shows a typical well-arranged columnar 7YSZ coating deposited on K417 at a substrate pre-heating temperature of 850°C.Fig.3(a)illustrates that the growth directions of all columnar grains are perpendicular to the substrate.The gaps between the columnar grains are larger than the internal grains.The columnar coating was analyzed by TEM.Fig.3(b)shows the bright- field cross-sectional image.The internal structure of a column shows a feather-like structure and is separated by nano-gaps.In the internal feather-like columnar coating,nano-sized secondary columns(~20 nm length in the perpendicular direction to the substrate)called feather arms are clearly observed,as seen in the high-resolution image of Fig.3(c).

    As the substrate temperature decreased to room temperature,at which no pre-heating was conducted by plasma plume to the substrate prior to 7YSZ coating deposition,a dense coating was obtained(seen in Fig.4(a))exhibiting a different microstructure from that of the coating deposited at 850°C as shown in Fig.3(a).The dense coating is thinner than the columnar coating after the same spray times.The magnified image of Fig.4(b)shows that the dense coating has a mixed structure consisting of fine grains and columnar grains.No large-size gaps exist in the mixed coating,where the columnar grains are surrounded by a large amount of fine grains.The fine-grain field is made of lots of nano-sized grains.Mostly,the shape of fine grains is spherical without an oriented direction,which is different from secondary columns in the columnar field through an observation by the bright- field image of TEM(Fig.4(c)).

    3.2.Heterogeneous nucleation

    According to the reported literature13,when the spray distance is set at 950 mm,heterogeneous nucleation of absorbed gas particles will occur on the substrate surface.When vapor particles in plasma plume impinge on the substrate,heterogeneous nucleation occurs on the substrate surface that lowers the critical free energy required to form a stable nucleus of mean dimensionr.Fig.5 shows a spherical cap-shaped solid nucleus on the substrate with a contact angle θ.16The critically-sized nucleus(r*)is related to the amount of under cooling by the following relation16,17:

    Fig.3 7YSZ coating deposited on K417 at a substrate temperature of 850°C.

    Fig.4 7YSZ coating deposited on K417 at room substrate temperature.

    whereTmis the equilibrium freezing temperature of the feedstock powders, ΔHfis the latent heat of fusion,and ΔTis the amount of under cooling at which the nucleus is formed,and γvnis the specific surface free energy between the vapor and the nucleus.Thus,the free-energy change of heterogeneous nucleation can be given by

    Fig.5 Schematic of heterogeneous nucleation on the substrate surface during vapor deposition.16

    where ΔGvis the volume free energy of a nucleus,andnis the number of formed nucleus.

    Section 3.1.1 has demonstrated that the width of a columnar grain deposited on zirconia(a2)is larger than that of a column on graphite(a1).The corresponding sketch can be seen in Fig.6.For occurrence of heterogeneous nucleation,the substrate must be wetted by the vapor phase.Fig.5 indicates that a nucleus is formed on the substrate surface,creating a contact angle θ between the nucleus and the substrate.Importantly,the contact angle θ depends solely on the surface properties of the involved materials,and will affectr*and Δ.The contact angle θ between a nucleus and the zirconia substrate is larger than that between a nucleus and graphite due to a higher surface tension of zirconia at room temperature.Thus,r*and Δwill increase with a decrease of the contact angle θ based on Eqs.(1)and(2),resulting in a larger width of columns deposited on the zirconia substrate.Meanwhile,the total amount of columns will reduce.

    Fig.6 Schematics of different structures of columnar coatings deposited on different substrate materials.

    3.3.Coating growth

    It can be inferred from Eqs.(1)and(2)that with a decrease of the substrate temperature,r*and Δwill decrease correspondingly.Using superalloy K417 as a substrate,the coating structure will change from oriented columns to fine grains when the substrate pre-heating temperature varies from 850°C to room temperature,as described in Section 3.1.2.Due to a lower surface energy than those of inorganic materials such as graphite and zirconia,the coating tends to be a dense structure instead of porous columns.

    Most of the feedstock 7YSZ powders when charged with a rate of 18 g/min will be vaporized into vapor particles before impinging on the substrate surface.13,17,18Some of the vapor particles will be absorbed,but most of them will be rebounded by the rigid substrate and vortex flow.As a consequence,a boundary layer will be formed ahead of the substrate surface,where the number of vapor particles in a unit volumeCVis variable and given by19,20

    whereC0is the number of vapor particles without a rebound effect,K0is the equilibrium partition coefficient,Rxis the absorbed rate of vapor particles by the substrate that is proportional to the distancexahead of the substrate surface,andDis a constant for a certain vapor material.Thus,the critical temperature of heterogeneous nucleation can be calculated by the following equation,which is influenced byCV:

    whereTAis the melting temperature of the feedstock material,andmis a constant.TVis proportional to the distancexfrom the substrate surface as plotted in Fig.7.Whenx=0,the interface temperatureTibetween the substrate and the coating is given by the following relation:

    The practical temperatureTDof the vapor phase ahead of the substrate depends on the gradient temperatureG(dT/dx),and it can be described by the following equation:

    Eq.(6)indicates thatTDhas a linear relationship with the distancexfrom the substrate surface.The coating structure deposited on the substrate mainly depends on the amount of undercooling whenTD<TV.When the substrate pre-heating temperature was set at 850°C,the amount of undercooling ΔT(1)and the practical temperatureTD(1)are shown in Fig.7(a).With the substrate pre-heating temperature decreasing,ΔT(2)andTD(2)decrease as well,which are shown in Fig.7(b).Moreover,when the substrate pre-heating temperature reduces to room temperature,Fig.7(c)indicates ΔT(3)andTD(3).Fig.7 indicates that undercooling of the interface between the substrate and the vapor phase has the relationship of ΔT(1)< ΔT(2)< ΔT(3),and the slope ofTDincreases along with a decrease of the substrate pre-heating temperature(TD(1)<TD(2)<TD(3)).In Fig.7(a)and(b),with an increase of the distancex,ΔTincreases first and then decreases whenTD<TV.As opposite to Fig.7(c),ΔTdecreases continuously.If ΔTis low,a columnar coating can be obtained,which has been demonstrated in Fig.3,and when ΔTdecreases,a mixed structure composed of columnar coating and f i ne grains can be obtained as illustrated in Fig.4.Thus,if ΔTreduces continuously,a dense coating completely made of f i ne grains can be fabricated.

    Fig.7 Different amounts of undercooling related to variant coating structures.

    4.Conclusions

    Different columnar structured 7YSZ coatings were prepared by plasma spray-physical vapor deposition on graphite and zirconia substrates.The effects of the substrate pre-heating temperature on the coating structure deposited on metallic materials have been investigated.The following gas-deposition principles based on heterogeneous nucleation can be drawn:

    (a)Without pre-heating,the coatings deposited on the graphite and zirconia substrates are of a columnar structure.Due to the higher surface energy of zirconia,the horizontal width of columns is larger than that deposited on graphite.

    (b)Undercooling of the interface between substrate and vapor phase plays an important role in the coating structure.With the substrate pre-heating temperature decreasing,a typical columnar structure will transform into a mixed structure made of columns and f i ne grains.

    Acknowledgements

    We would like to acknowledge f i nancial supports from National Key Research Program(2017YFB0306100),Guangdong Academy of Sciences(No.2017GDASCX-0843),GuangdongTechnicalResearchProgram (Nos.201707010385,2014B070706026,2013B061800053),Guangdong Natural Science Foundation(No.2016A030312015),National Natural Science Foundation of China(No.51501044),and Guangzhou Technical Research Program(No.201707010385).

    1.Gindrat M,Hohle HM,Niessen KV,Guittienne P,Grange D,Hollenstein C.Plasma spray-CVD:A new thermal spray process to produce thin f i lms from liquid or gaseous precursors.J Therm Spray Technol2011;20(4):882–7.

    2.Zotov N,Baumann S,Meulenberg WA,Vaben R.La-Sr-Fe-Co oxygen transport membranes on metal supports deposited by low pressure plasma spraying-physical vapour deposition.J Membrane Sci2013;442(442):119–23.

    3.Smith MF,Hall AC,Fleetwood JD,Meyer P.Very low pressure plasma spray–a review of an emerging technology in the thermal spray community.Coatings2011;1(2):117–32.

    4.Mauer G,Hospach A,Vaben R.Process development and coating characteristics of plasma spray-PVD.Surf Coat Technol2013;220(15):219–24.

    5.Zhu L,Zhang NN,Zhang BC,Sun F,Bolot R,Planche M,et al.Very low pressure plasma sprayed alumina and yttria-stabilized zirconia thin dense coatings using a modified transferred arc plasma torch.Appl Surf Sci2011;258(4):1422–8.

    6.Li JQ,Huang HJ,Ma T,Eguchi K,Yoshida T.Twin-structured yttria-stabilized t′zirconia coatings deposited by plasma spray physical vapor deposition:microstructure and mechanical properties.J Am Ceram Soc2007;90(2):603–7.

    7.Goral M,Kotowski S,Nowotnik A,Pytel M,Drajewicz M,Sieniawski J.PS-PVD deposition of thermal barrier coatings.Surf Coat Technol2013;237:51–5.

    8.Hospach A,Mauer G,Vaben R,Stover D.Columnar-structured thermal barrier coatings(TBCs)by thin film low-pressure plasma spraying(LPPS-TF).J Therm Spray Technol2011;20(1):116–20.

    9.Mauer G,Hospach A,Zotov N,Vaben R.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying.J Therm Spray Technol2013;22(2):83–9.

    10.Gao LH,Guo HB,Wei LL,Li CY,Xu HB.Microstructure,thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition.Surf Coat Technol2015;276:424–30.

    11.Zhang XF,Zhou KS,Liu M,Deng CM,Deng ZQ,Chen BY.Toughness and elasticity behaviors in nano-structured 7 wt.%Y2O3-stablized ZrO2coating.Surf Coat Technol2015;276:316–9.

    12.Song JB,Zhang XF,Deng CM,Deng CG,Liu M,Zhou KS,et al.Research of in situ modified PS-PVD thermal barrier coating against CMAS(CaO-MgO-Al2O3-SiO2)corrosion.Ceram Int2016;42(2):3163–9.

    13.Zhang XF,Zhou KS,Liu M,Deng ZQ,Deng CM,Song JB.Gasdeposition mechanisms of 7YSZ coating based on plasma sprayphysical vapor deposition.J Eur Ceram Soc2016;36(3):697–704.

    14.Lizuka K,Kambara M,Yoshida T.Growth of tin oxide thick films by plasma spray physical vapor deposition.Sens Actuat B2011;155(2):551–6.

    15.Mauer G,Vaben R.Plasma spray-PVD:Plasma characteristics and impact on coating properties.J Phys:Conf Ser2012;406(406):012005–17.

    16.Ohring M.Materials science of thin films deposition and structure;2006.p.357–406.

    17.Smith WF,Hashemi J.Foundations of materials science and engineering;2009.p.136–47.

    18.Gao LH,Guo HB,Wei LL,Li CY,Gong SG,Hu HB.Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition.Ceram Int2015;41(7):8305–11.

    19.Kurz W,Fisher DJ.Fundamental of solidi fication;1984.p.53–8.

    20.He W,Mauer G,Gindrat M,W?ger R,Va?en R.Investigations on the nature of ceramic deposits in plasma spray–physical vapor deposition.J Therm Spray Technol2017;26(1):83–92.

    国产成人精品一,二区| 精品一区二区免费观看| 夜夜看夜夜爽夜夜摸| 久久人妻熟女aⅴ| 国产av码专区亚洲av| 十八禁网站网址无遮挡| 国产片特级美女逼逼视频| 天美传媒精品一区二区| 国产精品久久久久久av不卡| 天堂8中文在线网| 男女免费视频国产| 成人亚洲精品一区在线观看| 高清视频免费观看一区二区| 女性生殖器流出的白浆| 亚洲国产成人一精品久久久| 韩国av在线不卡| 亚洲内射少妇av| av免费在线看不卡| 777米奇影视久久| 日韩一本色道免费dvd| 69精品国产乱码久久久| 哪个播放器可以免费观看大片| 精品久久久久久久久亚洲| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 成人国产麻豆网| 九色成人免费人妻av| 亚洲av国产av综合av卡| av播播在线观看一区| 国产在线一区二区三区精| 亚洲精品一区蜜桃| 精品久久久精品久久久| av国产精品久久久久影院| 王馨瑶露胸无遮挡在线观看| 日韩制服骚丝袜av| 欧美日韩视频精品一区| 午夜福利网站1000一区二区三区| 两个人的视频大全免费| 成人亚洲精品一区在线观看| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久久电影| 婷婷色麻豆天堂久久| 99国产综合亚洲精品| 高清黄色对白视频在线免费看| 色网站视频免费| 美女大奶头黄色视频| 国产极品粉嫩免费观看在线 | 免费观看性生交大片5| 亚洲国产欧美在线一区| 亚洲情色 制服丝袜| 卡戴珊不雅视频在线播放| 亚洲国产精品一区三区| 国产男女内射视频| 91在线精品国自产拍蜜月| 黄片播放在线免费| 国产国拍精品亚洲av在线观看| 免费大片18禁| 三级国产精品片| av免费在线看不卡| 久久人人爽av亚洲精品天堂| 午夜福利影视在线免费观看| 国精品久久久久久国模美| 精品卡一卡二卡四卡免费| 国产一区二区在线观看日韩| 啦啦啦在线观看免费高清www| 色哟哟·www| 在线观看免费高清a一片| 国产成人免费无遮挡视频| 亚洲国产色片| 久久 成人 亚洲| 国产片内射在线| 插阴视频在线观看视频| 亚洲欧美一区二区三区国产| 午夜激情av网站| 内地一区二区视频在线| 欧美日韩亚洲高清精品| 天天影视国产精品| 亚洲国产精品国产精品| 久久久精品免费免费高清| 欧美丝袜亚洲另类| 18禁观看日本| 少妇人妻精品综合一区二区| 国产乱来视频区| 18禁在线无遮挡免费观看视频| 国产黄色视频一区二区在线观看| 黑人高潮一二区| 欧美日韩视频精品一区| 日韩不卡一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 伊人亚洲综合成人网| av免费观看日本| 日韩三级伦理在线观看| 男的添女的下面高潮视频| 岛国毛片在线播放| 99国产综合亚洲精品| 国产乱来视频区| 久久久久久久国产电影| 免费黄频网站在线观看国产| 黑人巨大精品欧美一区二区蜜桃 | 欧美97在线视频| 欧美日韩亚洲高清精品| 亚洲人成网站在线播| 欧美变态另类bdsm刘玥| 国产精品人妻久久久久久| 亚洲国产精品一区二区三区在线| 精品人妻在线不人妻| 伊人久久精品亚洲午夜| 九草在线视频观看| 男女免费视频国产| 夜夜看夜夜爽夜夜摸| 日韩精品有码人妻一区| xxx大片免费视频| 搡老乐熟女国产| 色视频在线一区二区三区| 国内精品宾馆在线| 精品99又大又爽又粗少妇毛片| 亚洲精品456在线播放app| 如何舔出高潮| 午夜福利影视在线免费观看| 三上悠亚av全集在线观看| a级毛色黄片| 99热6这里只有精品| 亚洲欧美清纯卡通| 水蜜桃什么品种好| 插阴视频在线观看视频| 九九爱精品视频在线观看| 久久这里有精品视频免费| 久久99热6这里只有精品| 久热这里只有精品99| 亚洲,欧美,日韩| www.av在线官网国产| 国产爽快片一区二区三区| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区| 久久精品人人爽人人爽视色| 全区人妻精品视频| 91aial.com中文字幕在线观看| 日韩三级伦理在线观看| 欧美国产精品一级二级三级| 免费观看性生交大片5| 亚洲精品乱久久久久久| 午夜福利视频精品| 欧美少妇被猛烈插入视频| 丝袜美足系列| 性色avwww在线观看| 久久精品夜色国产| 亚洲成人手机| 欧美亚洲日本最大视频资源| 女的被弄到高潮叫床怎么办| 久久国产精品男人的天堂亚洲 | 五月开心婷婷网| 人成视频在线观看免费观看| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 赤兔流量卡办理| 亚洲av欧美aⅴ国产| 亚洲av福利一区| 中国三级夫妇交换| 精品少妇久久久久久888优播| 男人爽女人下面视频在线观看| 美女视频免费永久观看网站| 少妇人妻精品综合一区二区| 男人添女人高潮全过程视频| 国产午夜精品一二区理论片| 男女免费视频国产| 成人国产麻豆网| 18禁裸乳无遮挡动漫免费视频| av卡一久久| 美女视频免费永久观看网站| 一级毛片aaaaaa免费看小| 永久网站在线| 国产 一区精品| 日本wwww免费看| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 少妇 在线观看| 久久精品久久久久久久性| 久久狼人影院| 国产av精品麻豆| 蜜臀久久99精品久久宅男| 免费观看av网站的网址| 亚洲精品乱久久久久久| 欧美三级亚洲精品| 亚洲综合色惰| 王馨瑶露胸无遮挡在线观看| 亚洲美女搞黄在线观看| 日韩,欧美,国产一区二区三区| 国产欧美亚洲国产| 国产 一区精品| 午夜免费鲁丝| 一区二区三区四区激情视频| 丝袜在线中文字幕| 在线 av 中文字幕| 男人爽女人下面视频在线观看| 国产免费又黄又爽又色| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜爱| 嘟嘟电影网在线观看| 青春草视频在线免费观看| 少妇高潮的动态图| 国产精品国产三级专区第一集| 人人妻人人澡人人看| 久久韩国三级中文字幕| 久久精品国产亚洲网站| 18禁观看日本| 国产精品.久久久| 亚洲美女视频黄频| 国产一区二区三区av在线| 男女高潮啪啪啪动态图| 亚洲精品日本国产第一区| 99热这里只有精品一区| 国产乱人偷精品视频| 欧美人与善性xxx| 国产精品不卡视频一区二区| 欧美亚洲 丝袜 人妻 在线| 久久99蜜桃精品久久| 精品久久久久久久久av| 一级a做视频免费观看| 久久国内精品自在自线图片| 国产爽快片一区二区三区| 高清在线视频一区二区三区| 91精品三级在线观看| 国产精品 国内视频| 久久久久久伊人网av| 少妇被粗大猛烈的视频| 久久人人爽av亚洲精品天堂| 国产高清有码在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 久久国产精品男人的天堂亚洲 | 亚洲精品久久久久久婷婷小说| 十分钟在线观看高清视频www| 亚洲内射少妇av| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 亚洲第一区二区三区不卡| 最近最新中文字幕免费大全7| 中文乱码字字幕精品一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 色婷婷av一区二区三区视频| 91久久精品国产一区二区成人| 国产精品久久久久久精品电影小说| 午夜视频国产福利| 精品国产露脸久久av麻豆| 91aial.com中文字幕在线观看| 亚洲欧美日韩卡通动漫| 性色av一级| 飞空精品影院首页| 波野结衣二区三区在线| 亚洲欧美一区二区三区黑人 | 国产免费现黄频在线看| 69精品国产乱码久久久| 大片免费播放器 马上看| tube8黄色片| 午夜影院在线不卡| 国产在线视频一区二区| 亚洲美女视频黄频| 97超视频在线观看视频| 国产精品99久久99久久久不卡 | 久久久久精品性色| 亚洲人成网站在线观看播放| 最近中文字幕2019免费版| 色吧在线观看| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 久久久精品94久久精品| 国产亚洲一区二区精品| 国产精品99久久久久久久久| 国产免费福利视频在线观看| 狂野欧美激情性xxxx在线观看| 一本一本综合久久| 一级毛片aaaaaa免费看小| 亚洲国产精品一区二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| 三上悠亚av全集在线观看| 欧美xxⅹ黑人| 成人国产av品久久久| 国产精品99久久99久久久不卡 | 麻豆成人av视频| 最新中文字幕久久久久| 久久精品久久精品一区二区三区| 亚洲成人手机| 午夜福利视频在线观看免费| videosex国产| 女人精品久久久久毛片| 热99国产精品久久久久久7| av视频免费观看在线观看| 久久精品人人爽人人爽视色| 久久久国产一区二区| 人妻系列 视频| 久久婷婷青草| 久久99精品国语久久久| 久久青草综合色| a 毛片基地| 99久久精品一区二区三区| 制服丝袜香蕉在线| a级毛片在线看网站| 亚洲内射少妇av| 久热久热在线精品观看| 国产一区有黄有色的免费视频| 只有这里有精品99| 成人漫画全彩无遮挡| 最后的刺客免费高清国语| 久久婷婷青草| 精品少妇黑人巨大在线播放| 成人国语在线视频| 日韩欧美精品免费久久| 九九爱精品视频在线观看| 我的老师免费观看完整版| 亚洲情色 制服丝袜| 大片免费播放器 马上看| 日韩电影二区| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 亚洲av成人精品一区久久| 91久久精品电影网| 人妻夜夜爽99麻豆av| 观看美女的网站| 国产亚洲av片在线观看秒播厂| 十八禁网站网址无遮挡| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 丝袜喷水一区| 免费高清在线观看视频在线观看| 国产高清有码在线观看视频| 免费黄网站久久成人精品| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 午夜91福利影院| h视频一区二区三区| 国产熟女午夜一区二区三区 | 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在| 五月伊人婷婷丁香| 五月天丁香电影| 在线亚洲精品国产二区图片欧美 | 性色avwww在线观看| 97超碰精品成人国产| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 秋霞伦理黄片| 久久久亚洲精品成人影院| 成人国语在线视频| 免费看av在线观看网站| 亚洲国产精品成人久久小说| 成年人免费黄色播放视频| 日韩大片免费观看网站| 免费黄色在线免费观看| 亚洲av免费高清在线观看| 精品少妇黑人巨大在线播放| 成人国语在线视频| 一级黄片播放器| 亚洲国产日韩一区二区| 日韩av免费高清视频| 超碰97精品在线观看| 色5月婷婷丁香| 五月玫瑰六月丁香| 一级黄片播放器| 午夜免费观看性视频| 少妇丰满av| 一级毛片我不卡| 男人添女人高潮全过程视频| 欧美人与性动交α欧美精品济南到 | 国产精品一区二区在线不卡| 最近手机中文字幕大全| 免费看光身美女| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 日韩成人伦理影院| 亚洲精品乱久久久久久| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 欧美日韩在线观看h| 久久久精品94久久精品| 新久久久久国产一级毛片| 日本与韩国留学比较| 男女边吃奶边做爰视频| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 免费少妇av软件| 99热网站在线观看| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 丰满乱子伦码专区| 人妻系列 视频| 黑丝袜美女国产一区| 成人国产麻豆网| 国产乱来视频区| 精品国产露脸久久av麻豆| 成人国产麻豆网| 日本黄色片子视频| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 99热6这里只有精品| 高清视频免费观看一区二区| 久久久久精品久久久久真实原创| 青春草国产在线视频| 日韩一区二区视频免费看| 色吧在线观看| 2021少妇久久久久久久久久久| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 亚洲精品自拍成人| 国产视频首页在线观看| 丝袜在线中文字幕| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 91久久精品国产一区二区成人| 一级爰片在线观看| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 美女脱内裤让男人舔精品视频| 搡老乐熟女国产| h视频一区二区三区| 少妇被粗大猛烈的视频| 午夜激情av网站| av.在线天堂| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 我的女老师完整版在线观看| 亚洲不卡免费看| 插逼视频在线观看| 久久99热这里只频精品6学生| videos熟女内射| 欧美bdsm另类| 老司机影院成人| 精品国产露脸久久av麻豆| 欧美另类一区| 亚洲丝袜综合中文字幕| 日产精品乱码卡一卡2卡三| 国产精品嫩草影院av在线观看| videosex国产| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 国产午夜精品久久久久久一区二区三区| 精品少妇内射三级| 午夜视频国产福利| 国产亚洲午夜精品一区二区久久| 欧美 亚洲 国产 日韩一| 国产一区二区三区综合在线观看 | 成人毛片a级毛片在线播放| 久久97久久精品| 一区二区三区乱码不卡18| 成人免费观看视频高清| 永久免费av网站大全| 免费观看无遮挡的男女| 国产成人freesex在线| av国产精品久久久久影院| 久热这里只有精品99| 精品国产一区二区久久| 午夜91福利影院| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 午夜视频国产福利| 十分钟在线观看高清视频www| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| a级毛色黄片| 欧美人与善性xxx| 国产精品女同一区二区软件| 97超碰精品成人国产| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 成人亚洲精品一区在线观看| 黑人欧美特级aaaaaa片| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 国内精品宾馆在线| 黄色配什么色好看| 高清不卡的av网站| 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 免费观看的影片在线观看| 久久久国产精品麻豆| 成人黄色视频免费在线看| 欧美3d第一页| 高清黄色对白视频在线免费看| 国内精品宾馆在线| av在线老鸭窝| 国产精品人妻久久久影院| 国产精品99久久99久久久不卡 | 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线 | 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 国产日韩一区二区三区精品不卡 | 午夜福利在线观看免费完整高清在| 毛片一级片免费看久久久久| 国产色婷婷99| 亚洲内射少妇av| 黄色欧美视频在线观看| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 永久网站在线| 黄色视频在线播放观看不卡| 夫妻性生交免费视频一级片| 97在线视频观看| 国产欧美日韩一区二区三区在线 | 欧美亚洲日本最大视频资源| 精品酒店卫生间| 亚洲高清免费不卡视频| 黄色一级大片看看| 国产男人的电影天堂91| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 午夜激情久久久久久久| 在线观看免费视频网站a站| 99热国产这里只有精品6| 久久精品国产亚洲av天美| 日本免费在线观看一区| 丝袜美足系列| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 91精品三级在线观看| 91精品国产国语对白视频| 大陆偷拍与自拍| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区| 久久韩国三级中文字幕| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| videosex国产| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 成人国语在线视频| 精品亚洲成国产av| 久久久国产一区二区| 久久久精品免费免费高清| 女人精品久久久久毛片| 亚洲第一av免费看| 五月伊人婷婷丁香| 一本大道久久a久久精品| 午夜福利在线观看免费完整高清在| 一区二区三区乱码不卡18| 亚洲经典国产精华液单| 夜夜骑夜夜射夜夜干| 亚洲成色77777| 日本爱情动作片www.在线观看| 性高湖久久久久久久久免费观看| 国产黄片视频在线免费观看| 欧美+日韩+精品| 大码成人一级视频| av视频免费观看在线观看| 欧美日韩视频高清一区二区三区二| 欧美激情国产日韩精品一区| 18禁裸乳无遮挡动漫免费视频| 久久这里有精品视频免费| 制服人妻中文乱码| 国产成人freesex在线| 免费不卡的大黄色大毛片视频在线观看| h视频一区二区三区| 91久久精品国产一区二区三区| 一个人看视频在线观看www免费| 亚洲天堂av无毛| 极品少妇高潮喷水抽搐| 26uuu在线亚洲综合色| av在线老鸭窝| 母亲3免费完整高清在线观看 | 高清午夜精品一区二区三区| 亚洲成人手机| 纵有疾风起免费观看全集完整版| 少妇熟女欧美另类| 最黄视频免费看| 国产精品久久久久久精品电影小说| 国产精品成人在线| 妹子高潮喷水视频| 日韩中字成人| 人妻人人澡人人爽人人| 22中文网久久字幕| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 日韩欧美一区视频在线观看| 91aial.com中文字幕在线观看| 高清在线视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 久久久久久久大尺度免费视频| 97超视频在线观看视频| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看| 一边亲一边摸免费视频| 国产精品99久久久久久久久| 日韩欧美精品免费久久| 久久精品国产亚洲av涩爱| 一本久久精品| 日韩av不卡免费在线播放| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 欧美日韩视频高清一区二区三区二| 免费av不卡在线播放| 成人18禁高潮啪啪吃奶动态图 | 亚洲av福利一区| 日韩精品免费视频一区二区三区 | 高清av免费在线|