• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lyapunov-based switched-gain impact angle control guidance

    2018-04-21 06:02:30ZhongtaoCHENGLeiLIUYongjiWANG
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Zhongtao CHENG,Lei LIU,Yongji WANG

    National Key Laboratory of Science and Technology on Multispectral Information Processing,School of Automation,Huazhong University of Science and Technology,Wuhan 430074,China

    1.Introduction

    The primary requirement for a guidance law is to reduce relative distance to an acceptable order of magnitude.As time goes on,the task for a missile becomes more diverse and the battlefield becomes more complex in modern warfare.As a result,there arises new requirement for the missile.Many additional constraints,like field of view constraints in Refs.1,2,a desired impact time for salvo attack in Refs.3–5,or a desired impact angle,are imposed to the missile in practical cases.A certain impact angle can maximize the lethality for the missile in a certain mission.Therefore,the guidance law with the ability to achieve certain impact angle has drawn extensive attention.It is of great importance to do research on impact angle control for the missile.

    A large number of methods concerning impact angle control guidance are based on the optimal control theory.This category is usually obtained from solution of linear quadratic regulation problem.One typical feature of this category is that the control inputs need to be minimized.An early example of optimal control theory applied to impact angle constrained terminal guidance was in Ref.6on a reentry vehicle,the guidance system could meet the given specifications for a certain region of initial states through adaptive feedback gains.Ref.7found an adaptive proportional-navigation guidance approach to guide a hypersonic lifting vehicle to impact a ground target in a specif i ed direction.In their law,guidelines were provided for the selection of initial condition and control parameters.Ref.8provided the impact angle optimal guidance law in the form of the state feedback.Based on the linear model around the zero-effort collision triangle,Ref.9developed an impact angle control optimal guidance law against maneuvering targets with arbitrary velocity profiles.Ref.10linearized the kinematic equations around a nominal circular trajectory,a new optimal controller based on the inscribed angle rate was obtained.Usually,the guidance command in this category needs the information of time-to-go.

    Besides the optimal guidance law,another category is mainly based on classical way like Proportion Navigation(PN)and its variants.Proportion navigation withN<2 would cause the guidance command to inf i nity as the relative range decreases to 0.While with guidance constant beingN≥2,the PN guidance law could not achieve all angles from-π to 0.Therefore,Ratnoo and Ghose came up with a composite guidance strategy.In their law,an additional phase was added to the PN guidance,in this way,the guidance law could reach any desired impact angle from-π to 0 against stationary targets in Ref.11Then the two-phase PN guidance law was strengthened to work against non-stationary targets in Ref.12Ref.13provided a variant form of PN with a time-varying bias to satisfy the angular constraints.Ref.14presented an indirect way to control the impact angle.An integral bias term was added to the pure PN in order to shape the trajectory of the missile,and the impact angle could be controlled by adjusting the bias term.Ref.15obtained the estimated form of the interception angle from the closed-form linear trajectory solution,and the difference between the desired angle and the interception angle was added to the PN guidance command.Unlike the former mentioned category which solved impact angle optimal control problem by minimum energy constraints,the variants of PN guidance usually need large control effort.

    Besides the two categories mentioned above,there were also other forms of impact angle control guidance law.For example,some of these took advantage of the sliding-mode control theory,and some may make use of the geometrical relationship.And there were others based on Lyapunov stability control theory.The first attempt in this direction seemed to be presented in Ref.16After that,some other guidance laws in Refs.17–22with different concerns were obtained from the famous nonlinear theory.The theory was often used to demonstrate global asymptotic stability of the guidance controller.Ref.23presented an integrated method which involved multiple sliding surface control theory.Ref.24considered the speed disadvantage scenario,a generalized variable structure was used to solve the problem,an additional sliding mode surface was added to increase the achievable range.The study in Ref.25addressed a geometric guidance law in the absence of line-of sight rate information.Another guidance law,a new three point guidance law based on the inscribed angle,without the information of line-of-sight angle rate was presented in Ref.26The study in Ref.27involved the time-to-go in the cost function to form a extended optimal guidance law.The study in Ref.28found a way to deal with the look angle constraints and impact angle constraints in the same time.The work presented in Ref.29assumed the guidance command as a polynomial function of time-to-go and the coefficients are determined by terminal constraints.

    In this paper,a novel Lyapunov-based Impact Angle Control Guidance(LIACG)is proposed.With the help of the proper control parameter setting,the desired impact angle happens to be achieved in the end.To reach a wider range of impact angle,the guidance law is further developed into a composite one.The first phase is to establish the proper initial condition for the second phase,and the second phase is to f i nish the engagement in a desired impact angle.

    The main advantages of the proposed method are highlighted as follows.First,the guidance law is derived from Lyapunov stability theory,which can guarantee the stability of the system.Second,it does not need the estimation of the time-to go,which can simplify the calculation of guidance command and improve accuracy.Third,it does not need a bias term to regulate the error between the instantaneous heading angle and the desired impact angle,which makes the structure of the guidance law simple and feasible.Furthermore,the control effort is much less than that of the energy optimal guidance law.

    The paper is organized as follows.In Section 2,a surfaceto-surface engagement geometry is introduced to describe the relationship between missile and stationary target on the ground.Then the engagement problem is formulated and a guidance law is obtained through Lyapunov stability control theory,which ensures the convergence of heading angle error and relative range.In Section 3,a composite strategy is adopted to expand the achievable zones for the missile.In Section 4,algorithm to implement the guidance laws is presented.In Section 5,first,simulations are carried out to demonstrate the advantages of the proposed LIACG;then,different cases are presented to further demonstrate the property of the composite guidance law.

    2.Lyapunov-based guidance law design

    The main purpose of this paper is to find a guidance law to hit the target in a specif i ed direction.The planar surface-to surface engagement geometry is denoted in Fig.1.The following assumptions are claimed before deriving the kinematic equations.First,the target is assumed stationary.Second,the autopilot lag is so fast that it can be neglected.Third,the missile is flying at a constant speedV.

    Here,the heading angle θ is the angle between the velocity vector and the fixed reference axis.The heading error σ is the angle between the velocity vector and the Line of Sight(LOS)vector.The LOS angle is denoted by λ.All angles are positive in the counterclockwise direction.The relationship between these angles is

    The two dimensional kinematic equations can be obtained from the engagement geometry as

    Fig.1 Engagement geometry.

    The instantaneous position of the missile is denoted byxandy,andais the lateral acceleration.The heading angle turning rate is connected with the acceleration by

    The range between missile and target is denoted byR.The differential equations governing the range and LOS angle are

    The missile head should aim to the target at the instant of attack,which means the heading error should decrease to zero as the engagement processes.Taking this into consideration,the following Lyapunov candidate function is considered in order to reduce the impact angle error as well as the relative range.

    DifferentiatingWwith respect to time yields

    In order to satisfy the Lyapunov asymptotic stability condition,the following heading error rate is proposed:

    in whichcis the control parameter.Substituting Eq.(9)in Eq.(8)results in

    Eq.(10)implies that˙Wis negative definite as long asc>0,and it is obvious thatWis positive definite.Hence,the asymptotic stability condition is satisfied.Dividing Eqs.(9)and(5)side by side yields

    Integrating both sides of Eq.(11)yields

    Substituting Eq.(12)into Eq.(9),we get

    According to Eq.(13),normalized heading error variations with several different control parameters are plotted in Fig.2.Each curve starts from their respective control parameter value.And control value lower than 1 will inevitably cause inf i nity as the relative range goes to zero.

    The proposed guidance law can be applied in a midcourse guidance situation as well as the terminal course situation.The relative range of the former situation will not decline to zero,while the latter does.Eq.(13)and Fig.2 demonstrate thatc<1 will lead to inf i nity as the relative range goes near zero.This valuable information indicates it is necessary to requirec≥1 in the terminal guidance situation.As to the midcourse situation,there is no need to worry about the inf i nity caused by zero relative range,the value of the control parameter just needs to meet the requirement of the Lyapunov stability condition,which isc>0.So the reasonable range for the control parameter is

    Fig.2 Heading error rate variations.

    From the above analysis,it is necessary to choose the value ofcas Eq.(14)shows.On one hand,it can meet the requirement of Lyapunov stability theory.On the other hand,it will avoid inf i nity.

    2.1.Impact angle variation with c

    Combining Eqs.(9)and(6)yields

    Integrating both sides of Eq.(15)yields

    Substituting Eq.(16)in Eq.(1)yields

    Theorem 1.Consider that the missile satisfiesEqs.(13)and(15),the desired impact angle within the achievable area can be obtained through the adjustment of control parameter.

    Proof.From the assumed Lyapunov candidate function and Eq.(12),the heading error will vanish as the relative range goes to zero.Then the impact angle is given as

    The partial derivative of θfwith respect to control parameterccan be obtained from Eq.(18)as

    It is obvious that Eq.(19)is positive,which means the impact angle increases monotonically with increments of control parameter.Corresponding to the monotonous behavior,the minimum angle θfminand maximum angle θfmaxare expressed as

    The range of the permissible set[θfmin,θfmax)depends on the initial heading angle and LOS angle.Taking advantage of Eqs.(20)and(21),the desired impact angle demonstrated by Eq.(18)can be expressed in the following way

    And the actual control parameter connected with the desired impact angle can be obtained from Eq.(22)as

    Sincec≥ 1,the set of possible value for θfin the terminal course can be obtained as

    As Fig.1 demonstrated,for a surface-to-surface engagement the initial value of LOS angle is

    And then the achievable impact angle range is simplified into

    The achievable area is shown in Fig.3 in shaded region.If the desired impact angle is in the achievable area,it can be obtained through the adjustment of control parameter.□

    Hence,we have proved that the impact angle can be easily adjusted via a single control parameter.With the help of the proper control parameter setting,the desired impact angle happens to be achieved in the end.And heading angle error will converge to zero.

    2.2.Acceleration command in the terminal course

    Differentiating Eq.(1)with respect to time yields

    Substituting Eqs.(9)and(15)into Eq.(27)gives

    Fig.3 Achievable area of LIACG in the terminal course.

    From Eqs.(4)and(28),the following guidance command can be obtained

    Substituting Eq.(12)into Eq.(29)yields

    Theorem 2.Consider the guidance law being applied in the terminal course,the magnitude of acceleration demand a decreases as the relative range decreases.

    Proof.From Eq.(30)we have Differentiating Eq.(31)with respect toRresults in

    Considering Eqs.(14)and(32),the following result can be obtained

    Hence,the magnitude of the acceleration in the terminal course decreases monotonically as the relative range decreases.From Eq.(5)we know the relative range decreases monotonically as the engagement proceeds.Then,the maximum magnitude of acceleration demand appears at the initial moment of the engagement and can be expressed as

    2.3.Permissible impact angle with acceleration constraint

    Assume the maximum acceleration constraint isa*,and we have

    Combining Eqs.(34)and(35)we get

    in whichc*is the limit value calculated from given maximum acceleration constraint.Combining Eqs.(14)and(36)we get the feasible range forcin the terminal course as

    Substitute Eq.(37)into Eq.(18)yields the permissible impact angle with acceleration constraint

    3.Composite guidance law

    The analysis in Section 2 indicates that the achievable impact angle is seriously relied on the initial conditions.Once the initial conditions are given,the achievable range for impact angle will be set.For a vertical engagement,the impact angle should be able to reach-π/2.If the desired impact angle is in the range as Eq.(38)shows,it can be achieved through the adjustment of control parameter.However,if the desired angle is not in the range for given initial conditions,the only way to achieve the desired angle is to change the initial conditions,which seems unreasonable and impractical.On account of this,it is obliged to set an additional phase to form a composite guidance law.The additional phase is to establish the suitable initial conditions for the latter phase.

    3.1.Two phase control strategy

    Assume that the first phase also takes advantage of the proposed LIACG law.The first phase is proposed to lead the missile to a suitable initial point for the second phase,and the purpose of the second phase is to hit the target in a desired direction,which means the states at the switching point are the initial conditions of the second phase.Under the proposed strategy,proper switching states are of great importance to achieve a desired impact angle.

    In the first phase,the control parameter is denoted byc1,the initial states are λ0and σ0,and the terminal states of this phase are λsand σs,where the subscript s also indicates the switching states.Substituting all these states into Eq.(16)yields

    Under the proposed strategy,the terminal states λsand σsin phase 1 are also the initial conditions for phase 2.Control parameter in phase 2 is denoted byc2.Substituting λsand σsinto Eq.(18)yields

    Combining Eqs.(39)and(40)yields

    Substituting Eq.(40)into Eqs.(20)and(21)yields

    Eq.(42)implies the switching states determine the achievable angle set.And λsand σswill not stop changing until phase 1 ends.As a result,the achievable angle set will remain constant once phase 1 ends.The purpose of the composite guidance law is to reach the angles smaller than (λ0- σ0),which cannot be achieved by single LIACG for given initial conditions.To be capable of achieving this,the value of (λs- σs)must have a decreasing profile with respect to time when phase 1 is taking control.The above analysis indicates that the switching states are affected by the control parameter of phase 1.Furthermore,the switching states and the control parameter in phase 2 determine the impact angle.It is quite necessary to find out the proper relationship betweenc1andc2.

    Theorem 3.Concerning Phase 1,the value ofθfminwill decrease monotonously if c1<c2is satisfied.

    Proof.Differentiate Eq.(41)with respect to time,

    Using Eqs.(9)and(39)in Eq.(43)results in

    if 0<c1<c2,then the following equation can be obtained θfmin.

    Hence,we have proved that 0<c1<c2can guarantee a decreasing profile for the θfmin. □

    3.2.Proper control parameters for impact angle-π/2

    Former analysis gives the feasible scope for control parameter of both phases.Unlike phase 2,not only the miss distance will not decrease to 0,but also the heading angle has no need to converge in phase 1.Control parameters are proposed asc1=0.0001 in phase 1 andc2=1 in phase 2,respectively.And Theorem 3 verif i es that it is a proper combination to expand the achievable angle range.

    The missile follows the trajectory generated by phase 1 until the value computed by Eq.(40)equals to the desired impact angle θd.Then phase 2 takes control,and the desired impact angle can be achieved in the end.The desired impact angle is expressed as

    Substitutingc1=0.0001 into Eq.(9)yields

    Which means the heading angle error will remain nearly constant in phase 1.As a result,

    Consideringc2=1,substitute Eq.(48)into Eq.(46)

    Alternatively,the desired impact angle can be achieved by switching fromc1toc2at

    The desired impact angle for a vertical strike is θd=-π/2.Replace θdin Eq.(50)with-π/2 to get the switching angle for a vertical strike

    Fig.4 Achievable area of two phase LIACG.

    Eq.(6)implies that λsdecreases monotonously,which means the suitable switching state for the desired impact angle is unique for given control parameters.As shown in Fig.4,the heading error remains constant before the switching point.Once the impact angle calculated from Eq.(46)equals to the desired impact angle,the control parameter switch fromc1toc2.

    And the guidance command can be obtained from Eq.(29)as

    a2has been analyzed in Section 2.But the range for control parameter in phase 1 is different.It is obliged to discuss acceleration in phase 1 here.Combining Eqs.(14)and(32)yields

    If 0<c<1,the magnitude of acceleration demand|a1|will increase as the relative range decreases,and the maximum magnitude of the acceleration will appear at the end of phase 1.Ifc≥1,it will decrease as the relative range decreases,which is the same as the terminal course situation.Then we can get the maximum acceleration in phase 1 as

    Rsis the relative range at the end of phase 1,which is also the initial relative range of phase 2.Substitute the switching states into Eq.(34)yields

    Considering Theorem 3,it is obvious that

    Eq.(56)indicates the maximum magnitude of acceleration in the composite guidance law appears at the switching moment.If the acceleration calculated from Eq.(55)is larger thana*,the guidance law is not suitable for this mission.

    4.Implementation

    4.1.LIACG

    Based on the analysis of Section 2,a desired impact angle in the permissible set can be achieved through a single control parameter.The detailed algorithm is presented in the following steps.

    Step 1.Use Eq.(38)to obtain the permissible set Ω.

    Step 2.Select an θf∈ Ω.

    Step 3.Find the proper c

    Step 4.Generate the guidance command.

    Step 5.If R>0.1 m,go back to step 4.If R≤0.1 m,end.

    4.2.Composite LIACG

    Based on the analysis of Section 3,a vertical strike can be obtained through a proper combination of control parameters and switching time.The detailed algorithm is presented in the following steps.

    Step 1.Use Eq.(51)to compute the switching angle λs.

    Step 2.Compute the instantaneous λ in each time step.

    Step 3.If λ > λs,phase 1 in control.If λ ≤ λs,phase 2 in control.

    Step 4.If R>0.1 m,go back to step 2.If R≤0.1 m,end.

    Compared to the existing work,the implementation of proposed guidance law has several advantages.First,the proposed guidance strategy does not need the estimation of the time-togo.This can simplify the calculation of guidance command and improve accuracy.Then,the guidance law does not need a bias term to regulate the impact angle error,which makes the structure of the guidance law simple and feasible.

    5.Simulation

    For all simulation cases,we consider the missile is flying at a constant speed 270 m/s,and the target is stationary.The initial position for the missile is (x0,y0)=(0 m,0 m),and the target position is (xf,yf)=(8000 m,0 m).The initial LOS angle is zero.The limit value for the acceleration is 8g.All simulation cases are terminated when the relative range is less than 0.1 m.

    5.1.Case 1:Comparison between existing work and proposed guidance law

    To demonstrate the advantage of the proposed composite guidance law,the Trajectory Shaping Guidance Law(TSGL)in Ref.30and the Optimal Guidance Law(OGL)in Ref.8with impact angle control are considered as comparison.Three major evaluation indexes are final impact angle error,miss distance and control effort,which is calculated by∫|a|dt.The guidance commands for the considered guidance laws are

    Initial heading error in this case is σ0=30°.Accordingly,switching angle for the proposed guidance law is computed from Eq.(50)as λs=-60°.The simulation results are presented in Fig.5,solid lines stand for the results of proposed guidance law,missile switches to phase 2 when LOS angle equals to the switching state.Results for TSGL and OGL are demonstrated in dashed lines and dotted lines,respectively.It can be seen from Fig.5 that all the guidance law can lead the missile to the target with a desired impact angle.

    The comparison results are in Table 1.Despite the fact that TSGL and OGL were derived by solving the minimum energy problem,the control efforts are larger than that of the proposed LIACG.

    In order to hit the target with a desired impact angle,TSGL and OGL would force the velocity vector away from the LOS vector at the beginning of the course.On the other hand,the proposed LIACG applies a guidance command with the same sign of the LOS rate.This keeps the velocity vector close to the LOS angle,resulting in less control effort as well as less flight time.Furthermore,the proposed guidance law does not need the estimation of time-to-go,which makes it quite simple to implement.

    5.2.Case 2:Control the impact angle through a single control parameter

    The initial heading angle for the missile is θ0=90°for a surface-to-surface engagement.The initial LOS angle and heading error angle can be acquired as λ0=0,σ0= θ0.Using Eq.(22)to get the permissible set of impact angleS= [-90°,0°).Consider three typical desired impact angle θd=-90°,-80°and-70°.Control parameter can be calculated by Eq.(23)asc=1,c=1.125,c=1.2857,The simulation results are plotted in Fig.6.

    The missile trajectories are presented in Fig.6(a).The corresponding lateral acceleration and impact angle profile are showed in Fig.6(b)and c,respectively.The desired impact angles are achieved successfully with the control parameter obtained from Eq.(23).The heading error is presented in Fig.6(d),where the heading error reduces monotonously all the way to zero as the engagement processes.The behavior proves the effectiveness of the proposed LIACG law.

    5.3.Case 3:Composite guidance with different impact angles

    Initial states and control parameters are the same for all scenarios in Case 3,but the desired impact angle is different from each other.The very purpose of this case is to show that different switching angles results in different impact angle under the proposed composite control strategy.The switching angles are computed from Eq.(50).The details are demonstrated in Table 2.

    Results for Case 3 are shown in Fig.7.The missile trajectories are presented in Fig.7(a).The corresponding lateral acceleration profile is presented in Fig.7(b).There exists a turning point for each missile,but the switch angle is different.The missile with smaller desired impact angle requires more accel-eration.The impact angle profile is plotted in Fig.7(c).The later the switch is,the smaller the impact angle is.Both the impact angle error(see Fig.7(d))and relative range converge to zero in the end.

    Table 1 Comparison results.

    Fig.5 Comparison of impact angle control methods.

    Fig.6 Simulation results under LIACG.

    Table 2 Simulation parameters for four missiles with the same initial conditions.

    Fig.7 Same initial conditions reach different impact angles under composite guidance law.

    5.4.Case 4:Different initial conditions reach the same impact angle

    Case 4 is set to demonstrate that different initial conditions can end in a same impact angle as long as the control parameters are calculated through algorithm in Section 4.This property can be put into salvo attack.The detailed control parameters are exhibited in Table 3.

    Results for Case 4 are shown in Fig.8.The missile trajectories are presented in Fig.8(a).The missile with lager heading angle error needs more time to achieve the desired impact angle.Corresponding lateral acceleration profile is presented in Fig.8(b).There exists a turning point for each missile,but the switch angle is different due to the different initial conditions.The impact angle profile is plotted in Fig.8(c).Each missile ends in the same impact angle.Both of the impact angle error(see Fig.8(d))and relative range converge to zeroin the end,which shows the effectiveness of the Lyapunov stability control theory.

    Table 3 Simulation parameters for three missiles under different initial conditions.

    Fig.8 Different initial conditions reach-π/2 under composite guidance law.

    6.Conclusions

    By introducing Lyapunov stability control theory into impact angle control for the missile,a novel Lyapunov-based guidance law is presented.The impact angle can be adjusted through a single control parameter,while it is affected by initial conditions.Then an additional phase is added to build the ideal initial condition for the second phase,and in turn,the second phase will ensure a desired impact angle.The heading angle error will converge to zero as the engagement progresses,and the impact angle happens to be achieved in the end.This guidance law controls the impact angle in an indirect way.The simulation results verify that the proposed guidance law has many advantages compared to the exiting laws.

    Acknowledgements

    This study was co-supported in part by the National Natural Science Foundation of China(Nos.61473124,61573161).

    1.Wang L,Yao Y,He FH,Liu K.A novel cooperative mid-course guidance scheme for multiple intercepting missiles.Chin J Aeronaut2017;30(3):1140–53.

    2.Liang ZX,Li QD,Zhang R.Waypoint constrained guidance for entry vehicles.Aerosp Sci Technol2016;52:52–61.

    3.Zhao Y,Sheng YZ,Liu XD.Trajectory reshaping based guidance with impact time and angle constraints.Chin J Aeronaut2016;29(4):984–94.

    4.Si YJ,Song SM.Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets.Chin J Aeronaut2017;30(6):1985–2003.

    5.Zhang Y,Ma GX,Liu AL.Guidance law with impact time and impact angle constraints.Chin J Aeronaut2013;26(4):960–6.

    6.Kim M,Grider KV.Terminal guidance for impact attitude angle constrained flight trajectories.IEEE Trans Aerosp Electron Syst1973;AES-9(6):852–9.

    7.Lu P,Doman DB.Adaptive terminal guidance for hypervelocity impact in specif i ed direction.J Guid Control Dynam2006;29(2):269–78.

    8.Ryoo CK,Cho HG,Tahk MJ.Optimal guidance laws with terminal impact angle constraint.J Guid Control Dynam2005;28(4):724–32.

    9.Cho HG,Ryoo CK,Tsourdos A,White B.Optimal impact angle control guidance law based on linearization about collision triangle.J Guid Control Dynam2014;37(3):958–64.

    10.Tsalik R,Shima T.Optimal guidance around circular trajectories for impact-angle interception.J Guid Control Dynam2016;39(6):1–14.

    11.Ratnoo A,Ghose D.Impact angle constrained interception of stationary targets.J Guid Control Dynam2012;31(6):1816–21.

    12.Ratnoo A,Ghose D.Impact angle constrained guidance against nonstationary nonmaneuvering targets.J Guid Control Dynam2010;33(1):269–75.

    13.Kim BS,Lee JG,Han HS.Biased PNG law for impact with angular constraint.IEEE Trans Aerosp Electron Syst1998;34(1):277–88.

    14.Erer KS,Merttopc?uoglu O.Indirect impact-angle-control against stationary targets using biased pure proportional navigation.J Guid Control Dynam2012;35(2):700–4.

    15.Lee CH,Kim TH,Tahk MJ.Interception angle control guidance using proportional navigation with error feedback.J Guid Control Dynam2013;36(36):1556–61.

    16.Yanushevsky RT.Concerning Lyapunov-based guidance.J Guid Control Dynam1971;29(2):509–11.

    17.Lechevin N,Rabbath CA.Lyapunov-based nonlinear missile guidance.J Guid Control Dynam2004;27(6):1096–102.

    18.Kim M,Kim Y.Lyapunov-based pursuit guidance law with impact angle constraint.Proceedings of the 19th IFAC world congress;2014 Aug 24–29;Cape Town.2014.p.2509–14.

    19.Saleem A,Ratnoo A.Lyapunov-based guidance law for impact time control and simultaneous arrival.J Guid Control Dynam2015;39(1):1–9.

    20.Cho DH,Lee D,Mok SH,Bang H.Lyapunov-based lunar capture guidance scheme.International aerospace congress;2009 Oct 10–12;Daejeon.Seoul:KSAS;2009.p.5290–98.

    21.Kim M,Jung B,Han B,Lee S,Kim Y.Lyapunov-based impact time control guidance laws against stationary targets.IEEE Trans Aerosp Electron Syst2015;51(2):1111–22.

    22.Yanushevsky R,Boord W.New approach to guidance law design.J Guid Control Dynam2015;28(1):162–6.

    23.Chao T,Wang S,Tian G,Yang M.Integrated guidance and control with terminal impact angular constraint for bank to turn flight vehicle.Proceedings of the 33rd Chinese control conference;2014 July 28–30;Nanjing.Beijing:Chinese Association of Automation;2014.p.681–5.

    24.Hou ZW,Liu L,Wang YJ,Huang J,Fan HJ.Terminal impact angle constraint guidance with dual sliding surfaces and modelfree target acceleration estimator.IEEE Trans Control Syst Technol2017;25(1):85–100.

    25.Ratnoo A,Ghose D.Kill-band-based lateral impact guidance without line-of-sight rate information.J Guid Control Dynam2012;35(6):1740–50.

    26.Tsalik R,Shima T.Inscribed angle guidance.J Guid Control Dynam2015;38(1):30–40.

    27.Wang H,Lin DF,Cheng ZX,Wang J.Optimal guidance of extended trajectory shaping.Chin J Aeronaut2014;27(5):1259–72.

    28.Kim TH,Park BG,Tahk MJ.Bias-shaping method for biased proportional navigation with terminal-angle constraint.J Guid Control Dynam2013;36(6):1810–6.

    29.Lee CH,Kim TH,Tahk MJ,Whang IH.Polynomial guidance laws considering terminal impact angle and acceleration constraints.IEEE Trans Aerosp Electron Syst2013;49(1):74–92.

    30.Zarchan P.Tacticalandstrategicmissileguidance. 6th ed.Reston:AIAA;2012.p.569–600.

    亚洲成人精品中文字幕电影| 亚洲一区二区三区色噜噜| www.999成人在线观看| 国产亚洲精品av在线| www.精华液| 法律面前人人平等表现在哪些方面| 免费在线观看成人毛片| 亚洲成av人片免费观看| 啪啪无遮挡十八禁网站| 免费看美女性在线毛片视频| 精品乱码久久久久久99久播| 午夜福利欧美成人| 国产一区在线观看成人免费| www.自偷自拍.com| 国产爱豆传媒在线观看| 亚洲中文字幕日韩| 手机成人av网站| 亚洲午夜理论影院| 99精品在免费线老司机午夜| 久久伊人香网站| 99久久国产精品久久久| a级毛片在线看网站| 欧美日韩乱码在线| 国产午夜精品久久久久久| 男女下面进入的视频免费午夜| 午夜福利高清视频| 老熟妇仑乱视频hdxx| 国产视频一区二区在线看| 一个人看视频在线观看www免费 | 噜噜噜噜噜久久久久久91| 国产野战对白在线观看| 欧美+亚洲+日韩+国产| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av| 亚洲av成人一区二区三| 久久热在线av| 亚洲国产精品久久男人天堂| 欧美一级毛片孕妇| 女警被强在线播放| 午夜福利视频1000在线观看| 听说在线观看完整版免费高清| 18禁国产床啪视频网站| 国产主播在线观看一区二区| 91av网一区二区| 日本与韩国留学比较| av中文乱码字幕在线| 亚洲专区中文字幕在线| 九九在线视频观看精品| 黑人巨大精品欧美一区二区mp4| 国产精品99久久99久久久不卡| 又黄又爽又免费观看的视频| 在线a可以看的网站| 亚洲国产精品合色在线| 国产精品乱码一区二三区的特点| 高潮久久久久久久久久久不卡| 亚洲天堂国产精品一区在线| 人妻久久中文字幕网| av片东京热男人的天堂| 国产精品美女特级片免费视频播放器 | cao死你这个sao货| 在线观看美女被高潮喷水网站 | 麻豆国产av国片精品| 午夜精品在线福利| 久久天躁狠狠躁夜夜2o2o| 啪啪无遮挡十八禁网站| 一夜夜www| 欧美zozozo另类| 亚洲aⅴ乱码一区二区在线播放| 一夜夜www| 叶爱在线成人免费视频播放| 亚洲九九香蕉| 国产亚洲欧美在线一区二区| 国产精品免费一区二区三区在线| 男女做爰动态图高潮gif福利片| 91av网一区二区| 少妇人妻一区二区三区视频| 男女午夜视频在线观看| 亚洲精品一区av在线观看| 午夜福利在线在线| av在线蜜桃| 欧美av亚洲av综合av国产av| 精品人妻1区二区| 欧美+亚洲+日韩+国产| 18禁观看日本| 好男人电影高清在线观看| 日韩精品青青久久久久久| 又粗又爽又猛毛片免费看| 成人国产一区最新在线观看| 亚洲成人久久性| 黄色 视频免费看| 欧美一区二区精品小视频在线| 神马国产精品三级电影在线观看| 亚洲中文字幕日韩| 亚洲精品色激情综合| 国产精品久久久久久精品电影| 男女下面进入的视频免费午夜| 五月伊人婷婷丁香| 午夜福利欧美成人| 一a级毛片在线观看| 国产高清激情床上av| 国产精品香港三级国产av潘金莲| 久久精品国产清高在天天线| 欧美黑人欧美精品刺激| 国产午夜精品久久久久久| 精品国产乱码久久久久久男人| 黄频高清免费视频| 亚洲精品中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| 欧美成人性av电影在线观看| 欧美性猛交黑人性爽| avwww免费| 两个人的视频大全免费| 熟女电影av网| 一区二区三区高清视频在线| 又粗又爽又猛毛片免费看| 国产精品久久久久久亚洲av鲁大| 亚洲精品一区av在线观看| 中文字幕人成人乱码亚洲影| 久久这里只有精品中国| 91麻豆精品激情在线观看国产| 国产欧美日韩精品亚洲av| 久久香蕉国产精品| 亚洲av熟女| 这个男人来自地球电影免费观看| 青草久久国产| 精品一区二区三区四区五区乱码| 亚洲欧美精品综合久久99| 国产激情久久老熟女| 久久久久精品国产欧美久久久| 久久久精品大字幕| 又黄又粗又硬又大视频| 国产精品国产高清国产av| av天堂中文字幕网| 国产精品一区二区精品视频观看| 国语自产精品视频在线第100页| 亚洲av五月六月丁香网| 激情在线观看视频在线高清| 亚洲专区国产一区二区| 色哟哟哟哟哟哟| 精品人妻1区二区| 草草在线视频免费看| 免费电影在线观看免费观看| 九色成人免费人妻av| 偷拍熟女少妇极品色| 91在线精品国自产拍蜜月 | 视频区欧美日本亚洲| 精品国产乱码久久久久久男人| 欧美日韩乱码在线| 夜夜爽天天搞| 欧美色视频一区免费| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 国产探花在线观看一区二区| 国产成人精品久久二区二区免费| 成人国产综合亚洲| 亚洲精品在线美女| 亚洲精品一区av在线观看| 巨乳人妻的诱惑在线观看| 亚洲国产精品999在线| 国产私拍福利视频在线观看| 五月玫瑰六月丁香| 亚洲av电影在线进入| 成人午夜高清在线视频| 成人无遮挡网站| 免费在线观看成人毛片| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 麻豆一二三区av精品| av天堂中文字幕网| 欧美又色又爽又黄视频| 亚洲国产看品久久| 丰满人妻一区二区三区视频av | 黑人巨大精品欧美一区二区mp4| 国产高潮美女av| 色噜噜av男人的天堂激情| 五月玫瑰六月丁香| 男女之事视频高清在线观看| 精品一区二区三区视频在线 | 亚洲成人久久爱视频| 精品无人区乱码1区二区| 亚洲第一电影网av| 日日夜夜操网爽| 网址你懂的国产日韩在线| 人人妻,人人澡人人爽秒播| 国产精品香港三级国产av潘金莲| 99在线人妻在线中文字幕| 嫩草影院精品99| 成人无遮挡网站| 日韩有码中文字幕| 国产成人啪精品午夜网站| 免费一级毛片在线播放高清视频| 日本熟妇午夜| 国产高潮美女av| 男女下面进入的视频免费午夜| 久久中文字幕一级| 母亲3免费完整高清在线观看| 毛片女人毛片| 丰满人妻熟妇乱又伦精品不卡| 天堂网av新在线| 亚洲av五月六月丁香网| 嫩草影视91久久| 他把我摸到了高潮在线观看| a级毛片a级免费在线| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 天堂网av新在线| 日韩欧美 国产精品| 99热只有精品国产| 亚洲七黄色美女视频| 亚洲国产色片| 99热这里只有精品一区 | 老司机在亚洲福利影院| 特级一级黄色大片| 最近视频中文字幕2019在线8| 久久久久久久午夜电影| 国产久久久一区二区三区| 97超视频在线观看视频| 美女黄网站色视频| 90打野战视频偷拍视频| 十八禁人妻一区二区| 校园春色视频在线观看| 日韩大尺度精品在线看网址| 久久久久国产精品人妻aⅴ院| 日本免费一区二区三区高清不卡| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影在线进入| 国产淫片久久久久久久久 | 两性午夜刺激爽爽歪歪视频在线观看| 欧美三级亚洲精品| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 男人和女人高潮做爰伦理| 欧美国产日韩亚洲一区| 在线观看舔阴道视频| 国产高潮美女av| 国产精品久久久久久精品电影| 一夜夜www| 很黄的视频免费| 亚洲在线观看片| 国产精品98久久久久久宅男小说| 日本五十路高清| 国产欧美日韩精品亚洲av| 18美女黄网站色大片免费观看| 人妻久久中文字幕网| 国产精品99久久久久久久久| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 亚洲五月天丁香| 首页视频小说图片口味搜索| 少妇的逼水好多| 999久久久精品免费观看国产| 热99在线观看视频| 亚洲性夜色夜夜综合| 欧美乱妇无乱码| 天堂影院成人在线观看| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 亚洲无线在线观看| www.www免费av| 色av中文字幕| 无限看片的www在线观看| 亚洲专区中文字幕在线| 中文字幕人妻丝袜一区二区| 亚洲五月天丁香| 精品99又大又爽又粗少妇毛片 | 窝窝影院91人妻| 全区人妻精品视频| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 亚洲色图 男人天堂 中文字幕| 国产久久久一区二区三区| 国产精品99久久久久久久久| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 十八禁人妻一区二区| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费 | 此物有八面人人有两片| 久久久久久久久久黄片| 国产精品久久视频播放| 精品久久久久久成人av| 熟妇人妻久久中文字幕3abv| 国产三级中文精品| 国产三级黄色录像| 最近在线观看免费完整版| 国产人伦9x9x在线观看| 国产黄片美女视频| 热99在线观看视频| 色播亚洲综合网| 特大巨黑吊av在线直播| 久久精品亚洲精品国产色婷小说| 人人妻人人澡欧美一区二区| 午夜福利免费观看在线| 久99久视频精品免费| 淫妇啪啪啪对白视频| 午夜两性在线视频| 亚洲18禁久久av| 美女cb高潮喷水在线观看 | 18禁黄网站禁片免费观看直播| 观看美女的网站| 国产v大片淫在线免费观看| 欧美日本视频| 免费在线观看影片大全网站| 欧美午夜高清在线| 亚洲精华国产精华精| 精品99又大又爽又粗少妇毛片 | 国产精品98久久久久久宅男小说| 日韩中文字幕欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件 | 男插女下体视频免费在线播放| 国产aⅴ精品一区二区三区波| 国产精品一区二区精品视频观看| 国产蜜桃级精品一区二区三区| 成人午夜高清在线视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品一区二区www| 免费看a级黄色片| 日韩欧美免费精品| 国产成人欧美在线观看| 国产免费男女视频| 国产三级在线视频| 黄色视频,在线免费观看| 欧美日韩一级在线毛片| 国产探花在线观看一区二区| av在线蜜桃| 欧美一区二区国产精品久久精品| 国产美女午夜福利| 亚洲成av人片在线播放无| 精品电影一区二区在线| or卡值多少钱| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 少妇人妻一区二区三区视频| 国产精品女同一区二区软件 | 校园春色视频在线观看| 精品福利观看| 最新中文字幕久久久久 | av片东京热男人的天堂| 人人妻人人看人人澡| 日本成人三级电影网站| 国产真人三级小视频在线观看| 最近视频中文字幕2019在线8| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 啦啦啦免费观看视频1| 91久久精品国产一区二区成人 | 国产精品精品国产色婷婷| 在线看三级毛片| 成人永久免费在线观看视频| 国产精品久久久av美女十八| 岛国在线免费视频观看| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 香蕉国产在线看| 色综合婷婷激情| 在线视频色国产色| 最近最新免费中文字幕在线| 亚洲第一电影网av| 精品国产亚洲在线| 亚洲精品美女久久久久99蜜臀| 精品欧美国产一区二区三| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 亚洲性夜色夜夜综合| 首页视频小说图片口味搜索| 不卡av一区二区三区| 草草在线视频免费看| 最近在线观看免费完整版| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 看黄色毛片网站| av国产免费在线观看| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看 | 精华霜和精华液先用哪个| 午夜免费激情av| 一区二区三区国产精品乱码| 搡老岳熟女国产| 毛片女人毛片| 国产熟女xx| 国产精品久久久久久精品电影| 精品一区二区三区视频在线 | 一本综合久久免费| 国产主播在线观看一区二区| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 热99在线观看视频| 国产成人aa在线观看| 欧美绝顶高潮抽搐喷水| 国产高清视频在线观看网站| 亚洲成a人片在线一区二区| 国产黄片美女视频| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产99精品国产亚洲性色| 变态另类成人亚洲欧美熟女| 色综合站精品国产| 欧美成人免费av一区二区三区| 在线免费观看不下载黄p国产 | 免费av不卡在线播放| 老汉色av国产亚洲站长工具| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 日韩大尺度精品在线看网址| 91av网一区二区| 久久久国产成人免费| 色老头精品视频在线观看| 天堂√8在线中文| 老司机午夜福利在线观看视频| 夜夜看夜夜爽夜夜摸| 日韩欧美免费精品| xxx96com| 91av网一区二区| 久久久国产成人免费| 黄色成人免费大全| 免费观看人在逋| 中文在线观看免费www的网站| 免费在线观看影片大全网站| 12—13女人毛片做爰片一| 听说在线观看完整版免费高清| 伦理电影免费视频| 此物有八面人人有两片| 91久久精品国产一区二区成人 | 真人一进一出gif抽搐免费| 国产精品久久久av美女十八| av在线天堂中文字幕| 天堂影院成人在线观看| 国产野战对白在线观看| 高清毛片免费观看视频网站| 欧美高清成人免费视频www| 香蕉av资源在线| x7x7x7水蜜桃| 成人国产综合亚洲| 成人三级黄色视频| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 12—13女人毛片做爰片一| 免费人成视频x8x8入口观看| 看黄色毛片网站| 18禁国产床啪视频网站| 欧美3d第一页| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 国产激情欧美一区二区| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 国产乱人伦免费视频| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 国产乱人伦免费视频| 国产三级黄色录像| 欧美国产日韩亚洲一区| 日本与韩国留学比较| 精品一区二区三区视频在线 | 亚洲va日本ⅴa欧美va伊人久久| 变态另类丝袜制服| 日本三级黄在线观看| 午夜福利高清视频| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 日韩欧美三级三区| 精品久久久久久成人av| 嫩草影视91久久| 午夜福利视频1000在线观看| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 丁香欧美五月| 熟女人妻精品中文字幕| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 日韩 欧美 亚洲 中文字幕| 国产淫片久久久久久久久 | 99热精品在线国产| 亚洲乱码一区二区免费版| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 丰满的人妻完整版| 精品无人区乱码1区二区| 国产精品1区2区在线观看.| 久久久国产精品麻豆| 特大巨黑吊av在线直播| 亚洲 欧美 日韩 在线 免费| 日本a在线网址| 亚洲在线观看片| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区视频在线 | 美女高潮的动态| 老汉色∧v一级毛片| 亚洲精品中文字幕一二三四区| 窝窝影院91人妻| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 亚洲熟女毛片儿| 免费观看人在逋| 99热精品在线国产| 久久婷婷人人爽人人干人人爱| 在线看三级毛片| 久久精品91蜜桃| 亚洲av熟女| 国产亚洲精品av在线| 五月玫瑰六月丁香| 国产激情久久老熟女| av在线蜜桃| 久久精品91无色码中文字幕| 香蕉久久夜色| 日韩三级视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲真实伦在线观看| 久久久色成人| 日韩中文字幕欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 综合色av麻豆| 99热精品在线国产| 99热只有精品国产| 在线播放国产精品三级| 国产伦精品一区二区三区视频9 | 日韩欧美免费精品| 成人精品一区二区免费| 床上黄色一级片| 亚洲 欧美一区二区三区| 色吧在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式 | 国产伦精品一区二区三区视频9 | 99riav亚洲国产免费| 黄色成人免费大全| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 18美女黄网站色大片免费观看| 小说图片视频综合网站| 成人无遮挡网站| 熟女电影av网| 男插女下体视频免费在线播放| 久久香蕉精品热| a在线观看视频网站| 黑人巨大精品欧美一区二区mp4| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 啪啪无遮挡十八禁网站| 国产精品1区2区在线观看.| 亚洲国产欧美一区二区综合| 小说图片视频综合网站| 国模一区二区三区四区视频 | 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 欧美黑人巨大hd| 麻豆成人av在线观看| 18美女黄网站色大片免费观看| 久久国产精品影院| 亚洲18禁久久av| 99热这里只有是精品50| 波多野结衣高清作品| 怎么达到女性高潮| 长腿黑丝高跟| 国产成人精品久久二区二区免费| 亚洲无线在线观看| 亚洲午夜理论影院| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 国产成人精品久久二区二区91| 欧美不卡视频在线免费观看| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 国产主播在线观看一区二区| 中文在线观看免费www的网站| 国产精品一区二区三区四区久久| 国产激情欧美一区二区| 淫秽高清视频在线观看| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 超碰成人久久| 夜夜爽天天搞| 亚洲精品在线美女| 国产成人aa在线观看| 2021天堂中文幕一二区在线观| 欧美一级毛片孕妇| 欧美午夜高清在线| 天堂网av新在线| 久久久久久久午夜电影| 国产亚洲精品一区二区www| 亚洲精品中文字幕一二三四区| 亚洲精品一卡2卡三卡4卡5卡| a在线观看视频网站| 12—13女人毛片做爰片一| bbb黄色大片| 精品人妻1区二区| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 国产爱豆传媒在线观看| 俺也久久电影网|