• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of fatigue crack growth rate for smallsized CIET specimens based on low cycle fatigue properties

    2018-04-21 06:02:19ChenBAOLixunCAIKaikaiSHI
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Chen BAO,Lixun CAI,Kaikai SHI

    Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province,School of Mechanics and Engineering,Southwest Jiaotong University,Chengdu 610031,China

    1.Introduction

    The fatigue crack propagation rate per cycle,da/dN,governed by the stress intensity factor range,ΔK,is commonly applied to represent the fracture behavior of a cracked body subjected to cyclic loading.Taking into account local cyclic plastic deformation around the crack tip,the fatigue crack growth behavior can be predicted by the low cycle fatigue property of a material in conjunction with a description of the stress and strain field ahead of the crack tip and an appropriate failure criterion.

    Different failure criteria such as critical stress,plastic strain ahead of the crack tip,1the magnitude of crack tip damage accumulation ahead of the crack tip,2–7and strain energy5–13have been used in past fatigue crack growth models.These energy-based criteria are mainly based on the critical level of energy dissipation within the material ahead of the crack tip,and it is found that they are more accurate than other failure criteria in predicting fatigue crack growth behaviors.An important fact generally observed in fatigue crack growth experiments is that the specimen geometry and load ratio can remarkably affect the fatigue crack growth law because of the crack closure effect.14–17Only Shi et al.7introduced an effective stress ratioUto quantify the crack closure effect in a fatigue crack growth model.Here,the used effective stress ratioUcan only eliminate the effect of the load ratio on the fatigue crack growth rate.For different specimen geometries,the transverseT-stress is another factor which may alter the cyclic plastic zone size and further affect the crack closure behavior.16,18Bao et al.19conducted a group of experiments on the fatigue crack growth rate of 5083-H112 aluminum alloy by using traditional Compact Tension(CT)and small-sized C-shaped Inside Edge-notched Tension(CIET)specimens,and the resulted fatigue crack growth curves showed an outstanding difference between two specimen geometries.

    The present work aims to predict the fatigue crack growth data reported in Ref.19,according to two types of energy-based fatigue crack growth models based on low cycle fatigue properties by introducing the effective stress ratioUdetermined by different methods.

    2.Fatigue crack growth models

    2.1.Cyclic stress and strain fields ahead of crack tip

    For a crack body subjected to a remote external load,the classical HRR20,21solution is commonly employed to describe the stress and strain fields in the vicinity of the crack tip under a plane stress condition.By introducing the plastic superposition principle,22the cyclic stress and strain fields ahead of the crack tip under small-scale yielding can be obtained from the HRR solution23as follows:

    whereEis elastic modulus,Δσ and Δε are the stress and strain ranges,respectively.ΔKis the stress intensity factor range,and(r,θ)are the polar coordinates centered at the crack tip.σycis the reference cyclic yield stress,αcis the cyclic strain hardening coefficient in the Ramberg-Osgood relationship,24andncis the cyclic strain hardening exponent but is the reciprocal of the exponent in the Ramberg-Osgood model.~σθ,~σr,andIncare dimensionless distribution functions only related toncand tabulated by Shih.25rcis the cyclic plastic zone under mode I loading considering the stress redistribution and the strain hardening effect,and its expression under the plane stress condition can be described as13

    2.2.Energy-based fatigue crack growth models

    In the research of low cycle fatigue behavior,the well-known Manson-Coff i n model is commonly applied to describe the relationship between the strain amplitude,Δε/2,and the number of reversals to failure,2Nf,in the following form:

    By taking into consideration the total ductility loss of a material within a cyclic plastic zone,Pandey and Chand12,13developed a fatigue crack growth model based on the low cycle fatigue property as follows:

    where ΔKthis the threshold stress intensity factor range.Here,the crack closure effect is not considered in the Pandey&Chand model.Similarly,Shi and Cai5proposed another energy-based fatigue crack growth model according to the equivalence of plastic strain energy within the cyclic plastic zone,and it will be hereafter referred to as the Shi&Cai model.This model is described as follows:

    where ρcis the cyclic plastic zone corresponding to ΔKth.To eliminate the effect of crack closure on the fatigue crack growth,Shi et al.7introduced an effective stress ratioUproposed by Antunes et al.26and Codrington et al.27into the Shi&Cai model,which is

    Here,the effective stress ratioUis deduced from a rigid perfectly plastic strip-yield model,and is only related by the load ratioR.According to the correction of crack closure using the effective stress ratioU,the Shi&Cai model can be amended by replacing the cyclic plastic zonesrcand ρcwith the effective cyclic plastic zonesreffand ρeffas shown in the following equation:

    Fig.1 configurations and dimensions of a straight round bar,a CIET specimen,and a CT specimen.

    In fact,not only the load ratioRbut the specimen geometry characterized by the transverseT-stress may also affect the crack closure and further affect the fatigue crack growth behavior.In the work of Bao et al.,19the classical plastic induced crack closure model developed by Newman14,28has been applied to correct the fatigue crack growth curves of CT and CIET specimens with different specimen thicknesses and load ratiosR,and the effective stress ratio is expressed as

    where σopis the crack opening stress,and σmaxis the maximum stress.In order to facilitate the convenience of application,the crack opening stress σophas been simplified as29

    Here,the effective reference cyclic stressis corrected by using theT-stress to consider the effect of the specimen configuration on the fatigue crack growth as follows:

    whereT-stress is defined as

    in which σxxand σyyare the stress components in thexandydirections applied on the crack face,respectively.TheT-stress for both CT and CIET specimens can be expressed by Ref.19as follows:

    Fig.2 Evolution of stress amplitude Δσ/2 with an increasing normalized number of reversals N/Nf.

    Fig.3 Hysteresis loops of stress σ vs strain ε at different strain amplitudes.

    Fig.4 Comparison between stress–strain constitutive curves under uniaxial and cyclic loadings for 5083-H112 aluminum alloy.

    where σyis the uniaxial reference yield stress,andWis the specimen width.

    Fig.5 Curves of Δε/2 vs 2Nffor 5083-H112 aluminum alloy.

    Fig.6 Experimental da/dN–ΔK curves of CIET and CT specimens for 5083-H112 aluminum alloy.

    Fig.7 Prediction of da/dN–ΔK curves of CIET specimens according to Pandey&Chand model with different effective stress ratios.

    Fig.8 Prediction of da/dN–ΔK curves of CT specimens according to Pandey&Chand model with different effective stress ratios.

    The above-discussed energy-based fatigue crack growth models,the Pandey&Chand model and the Shi&Cai model,will be applied to predict the fatigue crack growth curves of CIET and CT specimens based on low cycle fatigue properties.Simultaneously,the correction of crack closure with different effective stress ratios given by Newman’s method(Eqs.(11)–(16))and Codrington’s method(Eq.(9))will be compared in the prediction of fatigue crack growth curves in detail.

    3.Materials and experimental procedure

    Fig.9 Prediction of da/dN–ΔK curves of CIET specimens according to Shi&Cai model with different effective stress ratios.

    A typical aluminum alloy 5083-H112 was employed to carry out the tests of low cycle fatigue and fatigue crack growth rate in this study.Its chemical composition is:Si+Fe,0.45%;Cu,0.1%;Mn,0.1%;Mg,2.2%–2.8%;Cr,0.15%–0.35%;Zn,0.1%;in weight.The mechanical properties of this alloy are:elastic modulusE=86.6 GPa,yield stress σs=141 MPa,ultimate strength σb=297 MPa,and elongation after fracture δ=15%.As shown in Fig.1,a group of straight round bars with a diameter of 5 mm was used for low cycle fatigue tests at room temperature,and traditional CT and small-sized CIET specimens with different thicknesses were applied in the tests of fatigue crack growth rate under load ratiosR=0.1,0.3,0.5 at room temperature,respectively.The thicknesses of the used CT specimens areB=5,10 mm,and those of CIET specimens areB=5,7.85 mm.The other dimensions of these three types of specimens are given in Fig.1.

    All the tests were conducted on an electromechanical test machine MTS 809 with a load frame of 25 kN capacity under tension.A standard Crack Opening Displacement(COD)extensometer MTS632.02F-20 with a gage length of 5 mm and a full range of 4 mm was used to measure the CODs of CT and CIET specimens. A strain extensometer MTS632.54F-14 with a gage length of 12 mm and a full range of±10%was applied to measure the strain of a straight round bar.The low cycle fatigue test was controlled by the strain of the work zone of a straight round bar at a strain rate of 0.006 s-1under different levels of strain amplitude,and the load ratio was-1.The compliance technique as indicated in Ref.19was applied to measure the real-time crack lengths of CIET and CT specimens in the fatigue crack growth rate tests.

    4.Results and discussion

    4.1.Experimental results of low cycle fatigue and fatigue crack growth rate

    Fig.2 gives the change of the stress amplitude,Δσ/2,with an increasing number of reversals normalized by the number of reversals to failure,N/Nf,at different controlling strain amplitudes,Δε/2.At the beginning of the number of reversals,the stress amplitude increases sharply,and then almost keeps constant.It is indicated that the used 5083-H112 aluminum alloy is cyclically steady in the behavior of low cycle fatigue.By extracting the records of strain and stress at the steady phase of the stress amplitude evolution in Fig.2 for each specimen,the hysteresis loops of stress σ versus strain ε at different strain amplitudes are shown in Fig.3.

    By extracting the upper vertex of the stable stress-strain hysteresis loop at different levels of controlling strain amplitude,a cyclic stress-strain curve can be obtained,as shown in Fig.4.Additionally,this cyclic stress-strain curve can be described by using a power function as

    where αc=0.173,σyc=230 MPa,andnc=0.214.

    Fig.10 Prediction of da/dN–ΔK curves of CT specimens according to Shi&Cai model with different effective stress ratios.

    From Fig.4,5083-H112 aluminum alloy exhibits remarkable cyclic hardening compared with the uniaxial constitutive curve.Additionally,the maximum cyclic strain amplitude is only 0.006 which is extracted from test data,but it is now extended to 0.012 to meet the requirement of prediction of the fatigue crack growth rate via Eq.(16).Fig.5 presents the curves of the strain amplitude, Δε/2,versus the number of reversals to failure,2Nf.Here,the elastic part Δεe/2–2Nfcurve and the plastic part Δεp/2–2Nfcurve are also given in this figure.Definitely,the relationship between Δε/2 and 2Nfcan be described by the Manson-Coffin model given in Eq.(4),and the parameters of this model are:=770.6 MPa,=0.0752,b=-0.123,c=-0.488.

    Fig.11 Predictions of Pandey&Chand and Shi&Cai models with Newman’s U value for CIET specimens.

    As reported in Ref.19,the experimental curves of the fatigue crack growth rates of CT and CIET specimens with different load ratios and thicknesses are shown in Fig.6.It can be seen that the fatigue crack growth curves of both types of specimens are strongly influenced by the load ratio.This alloy presents better resistance to fatigue crack growth when specimens are subjected to a cyclic load with a smaller load ratio,and vice versa.The thickness of specimens has little effect on the fatigue crack growth curves of CIET specimens,but it quite affects the fatigue crack growth curves of CT specimens.Bao et al.19successfully eliminated the effects of the load ratio and thickness on the fatigue crack growth curves of both types of specimens by introducing crack closure correction based on Newman’s effective stress ratioU,and it will not be repeated here.

    4.2.Prediction of fatigue crack growth curves based on energy based predictive models

    According to the two above-mentioned energy-based fatigue crack growth models,the Pandey&Chand model and the Shi&Cai model,Figs.7–10 give the prediction of fatigue crack growth curves of all the CIET and CT specimens in consideration of crack closure correction with the effective stress ratioUresulted from Newman’s and Codrington’s methods,and without crack closure correction,respectively.

    As seen from Fig.7,the predicted results of the Pandey&Chand model without crack closure correction for CIET specimens with different load ratios are much closer to test data than the results predicted from this model with the other two means of crack closure correction.However,as seen in Fig.8,for CT specimens with different load ratios and specimen thicknesses,the predicted results of the Pandey&Chand model with and without crack closure correction are quite different from test data,except when the load ratio is 0.3 and the thickness is 5 mm,while the Pandey&Chand model without crack closure correction can match the lower rate part of the experimental da/dN–ΔKcurve.

    In Fig.9,the Shi&Cai model without crack closure correction loses the capacity of predicting fatigue crack growth rates of CIET specimens with different load ratios and thicknesses.As shown in Figs.9(a)and(b),the Shi&Cai model with two different means of determination of the effective stress ratioUgets consistent results,which match well with test data.When the load ratio is 0.5,the predicted curve from the model with the effective stress ratio developed by Newman agrees well with test data,but the predicted curve from the model by means of Codrington’s effective stress ratio is quite different from test results.

    As plotted in Fig.10,the Shi&Cai model with crack closure correction by means of Newman’s effective stress ratio shows more capable of predicting fatigue crack growths of CT specimens with different load ratios and thicknesses than the model with the other way of crack closure correction and without crack closure correction.

    Fig.12 Predictions of Pandey&Chand and Shi&Cai models with Newman’s U value for CT specimens.

    Figs.11 and 12 present a comparison between the da/dN–ΔKcurves predicted by the Pandey&Chand and Shi&Cai models by means of Newman’s crack closure correction for CIET and CT specimens,respectively.The results indicate that the predictions of the Shi&Cai model match well with test curves,but the predicted results of the Pandey&Chand model deviate from thetestdata.In comparison with thepredicted da/dN–ΔKcurves of CT specimens,the Shi&Cai model shows more accurate prediction of the curves of CIET specimens.

    5.Conclusions

    (1)Using the low cycle fatigue properties of 5083-H112 aluminum alloy,the Shi&Cai model with crack closure correction by means of Newman’s effective stress ratioUexhibits the best capacity of predicting the fatigue crack growth rates of CT and CIET specimens with different load ratios and specimen thicknesses,but the Pandey&Chand models with and without crack closure correction get unsatisfactory predicted results of da/dN–ΔKcurves.

    (2)In terms of effective stress ratio used in crack closure

    correction,Newman’s method considered the effects of the specimen configuration and load ratio on the crack closure issue,while Codrington provided an empirical expression of the effective stress ratio in which only the influence of the load ratio was under consideration.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Nos.11202174 and 11472228).

    1.Duggan TV.A theory for fatigue crack propagation.Eng Fract Mech1977;9(3):735–47.

    2.Glinka G,Robin C,Pluvinage G,Chehimi C.A cumulative model of fatigue crack growth and the crack closure effect.Int J Fatigue1984;6(1):37–47.

    3.Wu SX,Mai YW,Cotterell B.A model of fatigue crack growth based on dugdale model and damage accumulation.Int J Fract1992;57(3):253–67.

    4.Chen L,Cai LX,Yao D.A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation.Chin J Aeronaut2013;26(1):130–5.

    5.Shi KK,Cai LX,Chen L,Wu SX,Bao C.Prediction of fatigue crack growth based on low cycle fatigue properties.Int J Fatigue2014;61:220–5.

    6.Shi KK,Cai LX,Bao C,Wu SX,Chen L.Structural fatigue crack growth on a representative volume element under cyclic strain behavior.Int J Fatigue2015;74:1–6.

    7.Shi KK,Cai LX,Qi S,Bao C.A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties.Eng Fract Mech2016;158:209–19.

    8.Ellyin F,Kujawski D.Plastic strain energy in fatigue failure.J Press Vess–T1984;106(4):342–7.

    9.Ellyin F.Crack growth rate under cyclic loading and effect of different singularity fields.Eng Fract Mech1986;25(4):463–73.

    10.Kujawski D,Ellyin F.A fatigue crack growth model with load ratio effects.Eng Fract Mech1987;28(4):367–78.

    11.Li D,Nam W,Lee C.An improvement on prediction of fatigue crack growth from low cycle fatigue properties.Eng Fract Mech1998;60(4):397–406.

    12.Pandey K,Chand S.An energy based fatigue crack growth model.Int J Fatigue2003;25(8):771–8.

    13.Pandey K,Chand S.Fatigue crack growth model for constant amplitude loading.Fatigue Fract Eng M2004;27(6):459–72.

    14.Newman JJ.A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading.West Conshohocken:ASTM;1981.Report No.:ASTM STP748.

    15.McClung R.Finite element analysis of specimen geometry effects on fatigue crack closure.Fatigue Fract Eng M1994;17(8):861–72.

    16.Kim J,Lee S.Fatigue crack opening stress based on the strip-yield model.Theor Appl Fract Mech2000;34(1):73–84.

    17.Toribio J,Kharin V.Role of plasticity-induced crack closure in fatigue crack growth.Fract Struct Integrity2013;7(25):130–7.

    18.Hutar P,Seitl S,Knesl Z.quantification of the effect of specimen geometry on the fatigue crack growth response by two-parameter fracture mechanics.Mater Sci Eng A2004;387:491–4.

    19.Bao C,Cai LX,Dan C.Estimation of fatigue crack growth behavior for small-sized C-shaped inside edge-notched tension(CIET)specimen using compliance technique.Int J Fatigue2015;81:202–12.

    20.Hutchinson J.Singular behavior at the end of a tensile crack in a hardening material.J Mech Phys Solids1968;16(1):13–31.

    21.Rice J,Rosengren G.Plane strain deformation near a crack tip in a power-law hardening material.J Mech Phys Solids1968;16(1):1–12.

    22.Rice J.The mechanics of crack tip deformation and extension by fatigue.West Conshohocken:ASTM;1966.Report No.:ASTM STP415.

    23.Glinka G.A cumulative model of fatigue crack growth.Int J Fatigue1982;4(2):59–67.

    24.Ramberg W,Osgood WR.Description of stress-strain curves by three parameters.Tech Notes Nat Adv Comm Aeronaut1943;1943(902):1–13.

    25.Shih CF.Tables of Hutchinson-Rice-Rosengren singular field quantities[dissertation].Providence:Division ofEngineering,Brown University;1983.p.1–61.

    26.Antunes F,Chegini A,Branco R,Camas D.A numerical study of plasticity induced crack closure under plane strain conditions.Int J Fatigue2015;71:75–86.

    27.Codrington J,Kotousov A.A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions.Mech Mater2009;41(2):165–73.

    28.Newman JJ.A crack opening stress equation for fatigue crack growth.Int J Fract1984;24(4):R131–5.

    29.Vormwald M.Effect of cyclic plastic strain on fatigue crack growth.Int J Fatigue2016;82:80–8.

    少妇被粗大猛烈的视频| 2018国产大陆天天弄谢| 国产亚洲欧美精品永久| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 免费在线观看视频国产中文字幕亚洲 | 国产免费一区二区三区四区乱码| 久久狼人影院| 欧美国产精品一级二级三级| 日韩一区二区视频免费看| 日日撸夜夜添| 黑人巨大精品欧美一区二区蜜桃| 高清视频免费观看一区二区| 国产人伦9x9x在线观看 | 国产成人精品久久二区二区91 | 日韩免费高清中文字幕av| 成人毛片a级毛片在线播放| 国产精品偷伦视频观看了| 久久精品夜色国产| 午夜日韩欧美国产| 精品一区在线观看国产| 国产极品粉嫩免费观看在线| 亚洲三级黄色毛片| 亚洲欧美中文字幕日韩二区| 免费观看性生交大片5| 一级毛片电影观看| 男女边摸边吃奶| 国产欧美亚洲国产| 伦精品一区二区三区| 三上悠亚av全集在线观看| 久久久久久久久免费视频了| 女人精品久久久久毛片| 亚洲精品乱久久久久久| 亚洲成国产人片在线观看| 免费观看av网站的网址| 男人添女人高潮全过程视频| 日韩制服丝袜自拍偷拍| av电影中文网址| 啦啦啦在线观看免费高清www| 在线看a的网站| 亚洲男人天堂网一区| 2021少妇久久久久久久久久久| 欧美日韩精品成人综合77777| 亚洲第一青青草原| 777久久人妻少妇嫩草av网站| 国产成人a∨麻豆精品| 日韩不卡一区二区三区视频在线| 国产精品 国内视频| 久久精品人人爽人人爽视色| 精品亚洲成a人片在线观看| 一区二区三区激情视频| 国产日韩欧美视频二区| 三级国产精品片| 我要看黄色一级片免费的| 久久ye,这里只有精品| 免费在线观看黄色视频的| 国产一区二区三区av在线| 最新的欧美精品一区二区| 99热国产这里只有精品6| 丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 亚洲精品自拍成人| 精品国产一区二区三区久久久樱花| 黑人巨大精品欧美一区二区蜜桃| 在线亚洲精品国产二区图片欧美| 国产乱人偷精品视频| 日韩中文字幕欧美一区二区 | 少妇被粗大的猛进出69影院| 亚洲人成网站在线观看播放| 男人添女人高潮全过程视频| 国产精品嫩草影院av在线观看| 七月丁香在线播放| 香蕉丝袜av| 日韩电影二区| 美女视频免费永久观看网站| 激情五月婷婷亚洲| 国产精品国产三级专区第一集| 18+在线观看网站| 国产亚洲一区二区精品| 少妇的丰满在线观看| 亚洲经典国产精华液单| 久久人人97超碰香蕉20202| 日韩成人av中文字幕在线观看| 亚洲国产日韩一区二区| 妹子高潮喷水视频| 国产1区2区3区精品| av又黄又爽大尺度在线免费看| 满18在线观看网站| 中文字幕人妻丝袜一区二区 | 亚洲精品久久午夜乱码| 男人操女人黄网站| 欧美日韩一区二区视频在线观看视频在线| 夫妻性生交免费视频一级片| 精品亚洲成国产av| 99九九在线精品视频| 久久免费观看电影| 妹子高潮喷水视频| 中文精品一卡2卡3卡4更新| 成人毛片60女人毛片免费| 国产不卡av网站在线观看| 伊人久久大香线蕉亚洲五| 亚洲欧美清纯卡通| 亚洲精品乱久久久久久| 天天操日日干夜夜撸| 不卡视频在线观看欧美| 亚洲av综合色区一区| 欧美国产精品va在线观看不卡| 2018国产大陆天天弄谢| 免费播放大片免费观看视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲三级黄色毛片| kizo精华| 亚洲国产日韩一区二区| 丝袜美腿诱惑在线| 丝袜美腿诱惑在线| 久久99一区二区三区| 老司机影院毛片| 日韩精品免费视频一区二区三区| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 国产黄色视频一区二区在线观看| 久久午夜福利片| 国产人伦9x9x在线观看 | 97在线视频观看| 母亲3免费完整高清在线观看 | 美女国产视频在线观看| 国产av码专区亚洲av| 蜜桃在线观看..| 国产爽快片一区二区三区| 国产精品嫩草影院av在线观看| 亚洲内射少妇av| 91国产中文字幕| videosex国产| 日本91视频免费播放| 女人被躁到高潮嗷嗷叫费观| 天堂俺去俺来也www色官网| 一二三四在线观看免费中文在| 老司机亚洲免费影院| 中文字幕av电影在线播放| 日本猛色少妇xxxxx猛交久久| 18禁裸乳无遮挡动漫免费视频| 99久久中文字幕三级久久日本| 日韩av不卡免费在线播放| 看免费成人av毛片| 高清在线视频一区二区三区| 一本久久精品| 一本大道久久a久久精品| 一区二区三区四区激情视频| 精品午夜福利在线看| 人人妻人人澡人人看| 国产 一区精品| 熟女电影av网| 成人午夜精彩视频在线观看| 午夜精品国产一区二区电影| 激情视频va一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲一级一片aⅴ在线观看| 久久免费观看电影| 亚洲,欧美,日韩| 少妇被粗大的猛进出69影院| 亚洲少妇的诱惑av| 亚洲成人一二三区av| 国产片特级美女逼逼视频| 大片免费播放器 马上看| 欧美中文综合在线视频| 精品国产一区二区久久| 久久99蜜桃精品久久| 在线看a的网站| 天天操日日干夜夜撸| 赤兔流量卡办理| 亚洲av在线观看美女高潮| 激情视频va一区二区三区| 国产免费一区二区三区四区乱码| 久久人人爽av亚洲精品天堂| 久久久精品94久久精品| 国产精品亚洲av一区麻豆 | 99re6热这里在线精品视频| 亚洲国产精品国产精品| 免费黄频网站在线观看国产| 亚洲久久久国产精品| 午夜福利在线观看免费完整高清在| 国产精品偷伦视频观看了| 久久99蜜桃精品久久| 99香蕉大伊视频| 亚洲成国产人片在线观看| 久久久久久久精品精品| 精品久久久精品久久久| 一本大道久久a久久精品| 国产无遮挡羞羞视频在线观看| 一级爰片在线观看| 色94色欧美一区二区| 一区在线观看完整版| 97在线视频观看| 一二三四中文在线观看免费高清| 最近手机中文字幕大全| 国产日韩欧美视频二区| 亚洲精品中文字幕在线视频| 丝袜喷水一区| www.av在线官网国产| 男女边摸边吃奶| 精品一区二区三区四区五区乱码 | 99九九在线精品视频| 国产精品嫩草影院av在线观看| 在线免费观看不下载黄p国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲男人天堂网一区| 交换朋友夫妻互换小说| 最新中文字幕久久久久| 国产高清国产精品国产三级| 美女福利国产在线| 一级a爱视频在线免费观看| 欧美成人午夜免费资源| 国产精品二区激情视频| 伊人亚洲综合成人网| 精品久久蜜臀av无| 美女福利国产在线| 亚洲精品日本国产第一区| 久久人人97超碰香蕉20202| 欧美激情 高清一区二区三区| 美女国产视频在线观看| 少妇猛男粗大的猛烈进出视频| 狂野欧美激情性bbbbbb| 日韩制服丝袜自拍偷拍| 欧美av亚洲av综合av国产av | 午夜激情av网站| 成年人午夜在线观看视频| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 国产极品粉嫩免费观看在线| 99久久综合免费| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| av免费观看日本| 久久影院123| 国产精品免费视频内射| 欧美av亚洲av综合av国产av | 日本-黄色视频高清免费观看| 成年女人毛片免费观看观看9 | 国产有黄有色有爽视频| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| 男女下面插进去视频免费观看| 色哟哟·www| 亚洲精品成人av观看孕妇| 99久久人妻综合| 亚洲,欧美,日韩| 日韩一本色道免费dvd| 国产麻豆69| 一本久久精品| 精品视频人人做人人爽| 国产黄色免费在线视频| 色视频在线一区二区三区| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 美女中出高潮动态图| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 亚洲国产欧美日韩在线播放| 午夜福利在线免费观看网站| 最近最新中文字幕免费大全7| 9热在线视频观看99| 久久久欧美国产精品| freevideosex欧美| 精品一区在线观看国产| 久久人人爽人人片av| 日韩在线高清观看一区二区三区| 午夜日本视频在线| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区蜜桃| av.在线天堂| 黑人猛操日本美女一级片| 亚洲av综合色区一区| 亚洲成色77777| xxx大片免费视频| 亚洲精品第二区| 伦理电影大哥的女人| 亚洲av男天堂| 一本大道久久a久久精品| 国产精品久久久av美女十八| 黄色一级大片看看| 中文字幕色久视频| 黄色视频在线播放观看不卡| a级片在线免费高清观看视频| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 韩国精品一区二区三区| 国产成人精品在线电影| 日韩中字成人| 午夜91福利影院| 午夜影院在线不卡| 满18在线观看网站| 欧美少妇被猛烈插入视频| 精品国产超薄肉色丝袜足j| 国产成人精品福利久久| 精品久久久久久电影网| 韩国精品一区二区三区| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 伊人亚洲综合成人网| av不卡在线播放| 亚洲经典国产精华液单| av卡一久久| 在线精品无人区一区二区三| 青青草视频在线视频观看| 亚洲人成网站在线观看播放| 男女国产视频网站| 免费看不卡的av| 午夜激情久久久久久久| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看 | 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| av卡一久久| 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 亚洲男人天堂网一区| 国产片内射在线| 午夜福利乱码中文字幕| √禁漫天堂资源中文www| 天天影视国产精品| 免费不卡的大黄色大毛片视频在线观看| 乱人伦中国视频| 久久久久精品久久久久真实原创| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 精品人妻偷拍中文字幕| 五月天丁香电影| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 亚洲国产成人一精品久久久| 欧美xxⅹ黑人| 欧美日韩视频高清一区二区三区二| 国产一区有黄有色的免费视频| 免费播放大片免费观看视频在线观看| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到 | 少妇的逼水好多| √禁漫天堂资源中文www| 美女中出高潮动态图| xxx大片免费视频| 一级爰片在线观看| 高清av免费在线| 一级爰片在线观看| 一边亲一边摸免费视频| 午夜福利一区二区在线看| 熟女少妇亚洲综合色aaa.| 国产成人精品一,二区| 精品国产乱码久久久久久小说| 五月天丁香电影| 成年人免费黄色播放视频| 人妻一区二区av| 1024视频免费在线观看| 嫩草影院入口| 人妻一区二区av| 亚洲精品乱久久久久久| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜制服| 在线观看美女被高潮喷水网站| 国产在线一区二区三区精| 欧美xxⅹ黑人| 久久久久网色| 午夜日本视频在线| 妹子高潮喷水视频| 少妇被粗大猛烈的视频| 乱人伦中国视频| 色婷婷av一区二区三区视频| 飞空精品影院首页| 母亲3免费完整高清在线观看 | 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 在线观看www视频免费| 超色免费av| 国产亚洲一区二区精品| 五月伊人婷婷丁香| www.自偷自拍.com| 性少妇av在线| 国产色婷婷99| 欧美精品av麻豆av| 熟女av电影| 久久人人爽av亚洲精品天堂| 黄色一级大片看看| 咕卡用的链子| 欧美最新免费一区二区三区| 亚洲情色 制服丝袜| 在线观看www视频免费| www日本在线高清视频| 人妻 亚洲 视频| 中文字幕人妻熟女乱码| 在现免费观看毛片| 国产成人精品福利久久| 亚洲精品国产色婷婷电影| 欧美av亚洲av综合av国产av | 一级片免费观看大全| 性色avwww在线观看| 国产一区二区三区综合在线观看| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 极品人妻少妇av视频| 亚洲精品国产av成人精品| 亚洲,欧美精品.| 日日撸夜夜添| 亚洲五月色婷婷综合| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| h视频一区二区三区| 日韩大片免费观看网站| 18禁观看日本| 国产一区二区三区av在线| 日韩一区二区三区影片| 欧美精品人与动牲交sv欧美| 王馨瑶露胸无遮挡在线观看| 久久久久国产网址| 久久久久久久久免费视频了| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 热re99久久国产66热| 欧美97在线视频| 搡女人真爽免费视频火全软件| 一二三四在线观看免费中文在| 久久女婷五月综合色啪小说| 9色porny在线观看| 久久狼人影院| 哪个播放器可以免费观看大片| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| 午夜激情久久久久久久| 日韩制服丝袜自拍偷拍| 亚洲av中文av极速乱| 99久久综合免费| 在线精品无人区一区二区三| 国产精品三级大全| 伊人久久国产一区二区| 搡女人真爽免费视频火全软件| 国产在线一区二区三区精| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 国产成人精品无人区| 99热全是精品| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 两个人看的免费小视频| 乱人伦中国视频| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久亚洲中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产乱人偷精品视频| 国产成人精品婷婷| 国产成人一区二区在线| 丝袜美足系列| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 99热国产这里只有精品6| av在线老鸭窝| 久久影院123| 看十八女毛片水多多多| 国产片特级美女逼逼视频| 一区二区三区精品91| 男人舔女人的私密视频| av网站在线播放免费| 亚洲国产精品999| 久久韩国三级中文字幕| 满18在线观看网站| 超碰97精品在线观看| 日韩制服骚丝袜av| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜| 叶爱在线成人免费视频播放| 亚洲欧美一区二区三区国产| 最黄视频免费看| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| 免费大片黄手机在线观看| 精品久久久精品久久久| 午夜日本视频在线| 韩国精品一区二区三区| 色哟哟·www| 国产一区二区三区综合在线观看| 2021少妇久久久久久久久久久| 2022亚洲国产成人精品| 久久精品国产a三级三级三级| 熟女少妇亚洲综合色aaa.| 亚洲久久久国产精品| 久久青草综合色| 狠狠婷婷综合久久久久久88av| 国产精品免费视频内射| 人人妻人人澡人人看| 精品一区二区三卡| 最近中文字幕高清免费大全6| 国产av码专区亚洲av| 秋霞在线观看毛片| 精品一区二区三区四区五区乱码 | 一二三四在线观看免费中文在| 美女主播在线视频| 男人添女人高潮全过程视频| 最近中文字幕高清免费大全6| av.在线天堂| 国产精品一二三区在线看| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 蜜桃国产av成人99| 久久久久国产一级毛片高清牌| 久久av网站| 人妻人人澡人人爽人人| 免费高清在线观看视频在线观看| 97在线人人人人妻| 中文字幕最新亚洲高清| 欧美日韩综合久久久久久| 国产黄色视频一区二区在线观看| 少妇人妻 视频| 久热这里只有精品99| av国产精品久久久久影院| 寂寞人妻少妇视频99o| 国产精品久久久久久精品古装| 亚洲一级一片aⅴ在线观看| 黄片小视频在线播放| 国语对白做爰xxxⅹ性视频网站| 欧美+日韩+精品| 人妻人人澡人人爽人人| 国产精品偷伦视频观看了| videos熟女内射| 精品第一国产精品| 免费观看av网站的网址| 亚洲精品中文字幕在线视频| 国产男人的电影天堂91| 免费大片黄手机在线观看| 亚洲国产色片| 日韩精品有码人妻一区| 少妇被粗大的猛进出69影院| 午夜91福利影院| 日产精品乱码卡一卡2卡三| 男女午夜视频在线观看| 欧美少妇被猛烈插入视频| 亚洲成色77777| 一级黄片播放器| 性少妇av在线| 午夜福利,免费看| 国产精品久久久久成人av| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看 | 91aial.com中文字幕在线观看| 波多野结衣av一区二区av| 日韩成人av中文字幕在线观看| 男女免费视频国产| 亚洲国产成人一精品久久久| 国产精品欧美亚洲77777| 亚洲av电影在线进入| 人妻系列 视频| 亚洲精品乱久久久久久| 日本黄色日本黄色录像| 99久久精品国产国产毛片| 国产熟女午夜一区二区三区| 国产xxxxx性猛交| 黄色毛片三级朝国网站| 亚洲精品视频女| 涩涩av久久男人的天堂| 观看美女的网站| 交换朋友夫妻互换小说| 99久久人妻综合| 国产一区二区 视频在线| 永久网站在线| 天天躁夜夜躁狠狠躁躁| 91久久精品国产一区二区三区| 国产有黄有色有爽视频| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 大陆偷拍与自拍| 亚洲成人一二三区av| 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 国产一区亚洲一区在线观看| 国产一区二区激情短视频 | 日本wwww免费看| 亚洲视频免费观看视频| av不卡在线播放| 国产欧美日韩综合在线一区二区| 国产又色又爽无遮挡免| 国产精品久久久久成人av| 最黄视频免费看| 亚洲视频免费观看视频| 亚洲av免费高清在线观看| av免费观看日本| 午夜福利一区二区在线看| 最近手机中文字幕大全| av福利片在线| 日韩在线高清观看一区二区三区| 国产精品熟女久久久久浪| 人人妻人人澡人人看| 午夜福利,免费看| 下体分泌物呈黄色| 国产成人免费观看mmmm| 看免费成人av毛片| 秋霞在线观看毛片| 777米奇影视久久| 亚洲av电影在线进入| 亚洲av综合色区一区| 国产精品 欧美亚洲| 熟女电影av网| 男人舔女人的私密视频|